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Abstract—We survey useful ingredients for a new class
of mathematical process-modeling languages aimed at spa-
tial and developmental biology. Existing modeling languages
for computational systems biology do not fully address the
problems of spatial modeling that arise in morphodynamics
(the local dynamics of form) and its applications to biological
development. We seek to extend the operator algebra semantics
approach from our previous “Dynamical Grammars” modeling
language, whose most spatial object type is the labelled graph,
to encompass more flexible topological objects. Taking clues
from current developments in 3D meshing and from topological
modeling for biology, illustrated by a plant tissue example,
we seek language support for the approximation of low-
dimensional CW complexes (which are nontrivial topologi-
cal spaces, with cardinality of the continuum) and dynamic
fields thereon, by finite labelled abstract complexes. Some
of the proposed types would be computationally demanding,
without further restriction. Restrictions and control of these
approximations can be specified by use of “metricated” types.
Minimally, such approximations should permit the accurate
simulation of spatial diffusion processes.
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I. INTRODUCTION

The operator algebra (OA) approach to process semantics
can rationalize modeling languages that support models in
developmental biological and more generally morphodynam-
ics, the local dynamics of form. A missing ingredient so
far has been the continuum limit of spatial models, an
idealization that while not essential [26, 27] is convenient for
bridging large gaps in spatial scale. Continuum limits tend to
increase the cardinality of all mathematical objects involved,
making their analysis a more advanced subject that we can
only sketch here. The present work builds on our previous
paper [22] where “metricated” object types were defined,
and an approach to integrating OA process semantics and
object type semantics was initiated. That study uses very
different mathematics (borrowed from physics) from most
work in foundations of programming languages. To bridge
the gap we will try to use natural language in the present
exploration. Readers who would like a more formalized
context for the present discussion are referred to the previous
paper.

II. KEY TYPES FOR MORPHODYNAMICS

The object types essential for morphodynamics fall into
two classes: spatially discrete, graph-like types, and spatially
continuous types built from topological spaces. (Topological
spaces on finite sets are trivial in the sense that T1 or Haus-
dorff =T2 separation axioms imply the discrete topology.)
Each class can be given process semantics in terms of an op-
erator algebra; the discrete types and their processes should
“approximate” the continuous ones in some norm. Dynamics
on discrete types can be computed (approximately) with a
hybrid discrete/stochastic/differential equation system solver
such as that in Plenum [21]. Often dynamics on continuous
types can be approximated by dynamics on discrete types.
On the other hand, spatial continua can also pose non-
Turing-computable situations such as fields (functions of
space) encoding infinite information density or flux.

As an example, it is possible to define a diffusion
process on a spatially discrete undirected graph such as a
d-dimensional square lattice of dimension Nd, using the
graph Laplacian. The result is a coupled set of ordinary
differential equations representing the diffusion of a particle
or substance on the graph. We may then take a limit of
smaller lattice spacing and larger N , keeping the density of
points constant, and approach a continuum diffusion process
represented by a partial differential equation. Unlike the
lattice, the results of the continuum model are rotationally
invariant for salient convergent observable quantities such as
particle density. In this way, a graph type with real-valued
vertex labels may approximate a space that is locally Eu-
clidean, eg. any compact differential manifold, for diffusion
processes. Furthermore, the graph-limiting process itself can
be defined by local subdivision rules in a graph grammar.

The concept of “salient observable quantities” can be
formalized by a sigma-algebra of indicator functions, out of
which other observables can be constructed. In Dynamical
Grammars and again here for morphodynamic modeling we
assume there is a sigma-algebra and a measure for each
of our object and parameter types. Furthermore, from level
sets of the solutions of a diffusion process (Figure 1) we
can define distance metrics on both graph and manifold that
agree in the small lattice spacing limit (converging to a
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Figure 1. Contours of equal density in steady state solution of diffusion
equation from a central point source with global decay, on a 61 square
lattice. Countours approach circularity on an intermediate spatial scale,
farthest from the lattice spacing and the global boundary conditions.

Euclidean rather than a Manhattan metric). Possession of
a sigma-algebra, measure, and generalized distance are the
essential features of a “metricated type” [22]. Metric spaces,
undirected graphs and differential manifolds are metricated
types. Metricated types permit certain quotient types to be
formed.

Undirected graphs and manifolds thus in principle form
a (discrete, continuous) pair of topological types, which in
some cases are related by approximation in the limit as a sin-
gle real-valued parameter tends towards zero. Every finite-
dimensional compact manifold can be so approximated;
but some graph limits (such as the Sierpinski gasket) have
convergent Laplacians but are not manifolds [15, 24]. Also,
function spaces on graphs and manifolds can form such
approximation pairs. Low-order partial differential equations
such as the diffusion equation can be formulated covariantly
on a manifold, reformulated as partial differential equations
(PDEs) in local patches of Euclidean space, and finally
approximated by a system of ODEs on a lattice. Processes
that actually change the manifold itself, such as nonuniform
growth of various two-dimensional animal tissues [14],
the sepals of Antirrhinum (snapdragon) plants [34], or the
abstract geometrical Ricci flow, can also be formulated
as systems of PDEs and their boundary conditions in the
continuum spatial limit. So it suffices to provide the OA
semantics for partial differential operators in Rn.

The OA semantics for partial differential operators in Rn

is provided simply by the derivative escalation of Equations
1 and 2 below. A common form for such PDE’s is second-
order nonlinear PDEs. In that case (all quantities are vectors,

with indices suppressed here)

∂ϕ(x)

∂t
= F [ϕ] (x) = F (ϕ(x),

∂ϕ(x)

∂x
,
∂2ϕ(x)

∂x2
) (1)

receives an operator algebraic expresion derived from the
Fokker-Planck equation [22],which is a form of the Master
Equation for the evolution of probabilities by time-evolution
operators in OA semantics:

Odrift =−
∫ ∫

DϕDϕ′ â(ϕ)a(ϕ′){∫
dx F [ϕ] (x)

δ

δϕ(x)
∆Dirac(ϕ− ϕ′)

}
In this way, partial derivatives are “escalated” to func-

tional derivatives:

∂x︸︷︷︸
partial derivative

−→ δ/δ(∂ϕ/∂x)︸ ︷︷ ︸
functional derivative

(2)

which occurs also in the variational calculus. For example,
x and ∂x may be monomial basis elements in a Weyl
algebra. Thus, PDE’s expressible in a Weyl algebra are all
given OA semantics compatible with and extending that of
Dynamical Grammars. In this way we obtain a probabilistic
representation of deterministic PDE dynamics, which can
be integrated with stochastic dynamics of pointlike particles
in the same topological spaces. To allow for stochastic
partial differential equations (SPDEs) takes another kind of
OA term [22]. A quantum mechanical interpretation of Weyl
algebras is conventional but the Master Equation for p(f(x))
is missing a crucial factor of i in the Schrodinger equation,
and hence governs classical probability densities p(...) rather
than quantum amplitudes.

For actual morphodynamic modeling we also need the
concept of cell complexes to explicitly model compartmental
structure in biology, to guide the formulation of invariant
PDEs, and to eliminate nongeometrical graph limits. Cell
compexes also come in discrete and continuous versions.
The discrete cell complex will be an abstract cell complex,
defined as an “abstract polytope” [19] which is somewhat
more general than the usual “abstract simplicial complex”
[11, 25] and allows discrete analogs of polyhedral cells
other than simplexes. The natural “fields” on such complexes
are cochains that map their cells to an abelian group, eg.
positions in Rn under vector addition. The continuous cell
complex will be a CW complex, with fields as cochains.
The simplest connection between these takes the form of
polyhedral cell complexes such as Voronoi diagrams and
Delaunay triangulations, along with useful generalizations
such as power diagrams, all of which can be considered
either as Rn-valued fields on abstract cell complexes or as
particular CW cell complexes. These objects are generally
referred to as “meshes” in numerical analysis. Questions of
approximation of a continuous cell complex by a discrete
one thus become questions of approximation within the class



of CW complexes i.e. of a general CW complex by a series
of restricted CW complexes, namely meshes. Finite Element
Methods (FEM) [13] allow functions to be approximated
on such meshes by low order polynomials within each cell,
satisfying specified degrees of continuity.

As a reminder, in a CW Complex an open p-cell is
a topological space, homeomorphic to an open ball of
dimension p 6 n; it is also called an open cell or in context
just a “cell”. A CW complex is then a Hausdorff topological
space X which is partitioned into a set of open cells, such
that each p-cell c has a continuous function from the closed
ball of dimension p to X , equal to c on the image of the open
ball, and equal to a union of lower-dimensional cells of X on
the image of the (spherical) boundary of the closed ball [8,
7]. A CW complex can be given a differential structure by
embedding in a differentiable manifold [23], in which case
the component cells become manifolds with corners [6].

Likewise an abstract polytope is a graded poset (partially
ordered set with an integer-valued rank function) whose
maximal chains can be interconverted by changing one node
at a time, and so that for a rank i − 1 node and a rank
i + 1 node there are exactly two intermediate rank i nodes
[19]. The poset relationship is interpreted as the boundary
relationship between cells of neighboring dimensionality in
a polyhedron. Brisson [5] observed the navigation property,
that maximal cell chains may be interconverted one cell at
a time, in computational geometry. This representation was
generalized by Cardoze et al. [8] to “cell chains”. Giavitto’s
MGS modeling language [10] adopts an even looser defi-
nition of an abstract complex and similarly emphasises the
role of cochains in modeling fields on discrete geometric
complexes for use in morphogenesis; MGS provides quite a
forward-looking formulation of discrete topological model-
ing for biological applications.

The foregoing construction of CW complexes by parti-
tioning a topological space can be repeated for each cell in
the complex, creating a refinement of a coarse complex into
a finer one if compatibility is maintained at the boundaries
of the coarse cells. This can be done by partitioning coarse
cells in the order from lowest dimension to highest, with
each p-cell partition constrained to be compatible with the
(p−1)-cell partitions on its boundary (an essentially elliptic
or boundary value problem). Alternatively the partitions of
two CW complexes embedded into the same differential
manifold can be intersected, provided that they satisfy the
transversality constraints of [Munkres 1967]. If the CW
complex has a differential structure eg. by embedding into a
manifold, then we also need to know where to draw map the
new boundaries that partition coarse cells. This is naturally
specified by means of level sets of scalar fields that evolve
within each cell according to PDE dynamics. A biological
application would be the biophysical sepatation process that
precedes plant cell division. Computationally, mesh refine-
ment is the subject of much literature eg. [28] on refinment

of Delauney tetrahedral meshes in three dimensions.
As an example, consider the growth equation that governs

1-dimensional displacements of position between times t1
and t2, starting from position x1 and ending up at position
Φ(t2, t1, x1). Using covariant derivatives ∇x,

limt2→t1

∂

∂t2
∇x1
· Φ(t2, t1, x1) = γ(t, x1) (3)

In one dimension, if the history of the growth function
γ(v(x1)) is known then the solution is:

Φ(t, t1, x0) =

∫ x0

0

exp[

∫ t

t0

γ(t, x0)dt]dx (4)

But generally the growth function depaends on the current
state of some biophysical fields v(x), so

γ(t, x0) = γ(v(x1(t, x0)))

Some components of these fields v may diffuse:

∆diffusion
a = ∇x · [Da(v(x)) · ∇xva(x)]

and some of them might participate in a gene regulation
network at each point:

dva(x)

dt
= Rag(ha +

∑
b

Tabvb(x)) + ∆ext
a (x)− λava(x)

(5)
The result is a general reaction-diffusion-growth model

which is Turing-universal at least, since every point has a
circuit and local memory attached, and perhaps much more
powerful for many initial conditions since more space can
be grown arbitrarily and real-valued variables can thereby
rise above any noise-induced floor. Biological applications
of similar 1D growth and cell division models have been
developed for auxin patterning in Arabidopsis root [35].

Progress in meshing for n = 3 dimensions is now
bringing the approximation of both geometry and dynamics
into the realm of practicality, even for challenging models.
For example, “Tetgen” [29] is a program that can input a
2D mesh on the surface of a polyhedral object and refine
it into a 3D mesh on the interior. (Note that this is the
minimal functionality required in the lower-dimension to
higher dimension iterative refinement of a CW complex
described above.) “Stellar” [16] can improve the numerical
quality of a mesh, measured ultimately by the condition
number of linear algebra problems required for approximate
PDE solution; this capability together with its interpolation
capability allows Stellar to dynamically remesh so as to
maintain mesh quality as a dynamical system deforms FEM
meshed models such as elastic solid or fluid continuous
media [32]. “Sundance” [18] and “DOLFIN” [17] explicitly
represent function spaces (Banach spaces), meshes contain-
ing various polyhedra, and FEM models specified indirectly
as variational problems rather than PDEs. These topological
types and their dynamics are represented in Sundance and



Dolfin by a C++ class library and a Python language
interface. Further computational geometry support software
that may be useful includes CGAL [33]. Of course, all of
these programs are limited to low-dimensional meshes and
to CW complexes that can be approximated by such means.

Another way to leverage cell complexes for the for-
mulation of dynamical systems is through the Discrete
Exterior Calculus (DEC) [9]. In DEC, PDE-like differential
operators are translated into the language of differential
forms of degree 1, 2, . . . n, and then given meaning on
discrete meshes which in the continuum limit of small mesh
size agrees with their meaning on differential manifolds.
Differential operators are translated into three operators of
exterior calculus: d (exterior derivative) for which d2 = 0, ∗
(Hodge star), and δ = ±∗d∗ (codifferential). The Laplacian
is expressed as ∆ = δd+ dδ. Assuming a field ϕ vanishes
quickly enough at infinity, the Hodge decomposition theo-
rem permits ϕ to be decomposed as ϕ = dψ + δθ + ω,
where ∆ω = 0. This generalizes the Helmholtz decompo-
sition from 1-form vectors to p-forms of any dimension p.
Advantages of the exterior calculus approach include: au-
tomatic restriction to coordinate-invariant dynamics (shared
with covariant derivatives); explicit conservation laws for
use in symplectic numerical integrators; correct relation of
dynamics in compartments and in their boundaries; and
natural mapping to discrete cell complexes. Unfortunately
we are not aware of 3D DEC software that permits dynamic
topology or geometry for the base space on which dynamic
fields are defined.

The operations supported by cell complexes go beyond
those of manifolds. For example there is “refinement”,
which requires a level set as input, and “coarsening” which
is combinatorial. But all topological types can engender
“embedding” function types, so that embedding is a type
constructor. Yet more general non-manifold geometries,
that may be useful in modeling plant development and/or
biomechanics of cytoskeleton during cell division, include
stratified spaces, in which a topological space is decomposed
into manifold ”strata” of varying dimensions whose bound-
ary relationships to one another are topologically invariant
within each stratum.

Normed function spaces can be used to prove the
existence of solutions to complicated PDEs, eg. [31] where
diffusion provides the necessary convergence power, and
also to prove the convergence of FEM approximations [1]
including the advantage of nonuniform meshes for elliptic
PDEs.

In summary the key topological types needed for mor-
phodynamics are shown in Table 1. These are to be aug-
mented by function spaces, function type constructors, and a
dynamics-defining calculus of differential operators defined
on each of the types in Table 1, as indicated (in parentheses).
OA semantics for the resulting process expressions can be
provided by means of the “derivative escalation” illustrated

Figure 2. Cell complexes are natural computational representations for
many biological cells. (a) A horizontal slice of a three dimensional confocal
microscope image of live plant cells (in a shoot apical meristem) which
form a tightly packed connected network. These epidermal plant cells are
naturally approximately convex-polyhedral; cells in other tissues can be
decomposed into such shapes. Fluorescent green cell membrane marker
highlights the cell walls; cell nuclei are marked with red. (Image courtesy
of Marcus Heisler). (b) Automatic image segmentation followed by hand
marking of a subset of 13 cells. (c) The marked cells are given a uniform
thickness and then meshed with nonuniform sized tetrahedra useful for
finite element simulations. The cutaway visualization displays an output
mesh created using Tetgen [29]. (d) Closeup of (c), with color coding of
the quality of tetrahedra according to a minimum dihedral angle criterion.
Mesh quality can be further improved by Stellar [16] while preserving the
mesh local feature size. Note that we are able to specify distinct levels of
spatial refinement as shown in regions of (c) and (d), where tetrahedra are
directed to be much smaller along the walls and particularly the edges of
a central cell, than elsewhere.



Table I
KEY TOPOLOGICAL TYPES

Discrete Continuous
(differential operators)

Lattice Rn

(finite differences) (differential operators)
Undirected graph Differential manifold
(finite differences) (covariant derivatives;

exterior calculus)
Abstract complex CW complex
(discrete exterior (cell manifold operators;

calculus) covariant derivatives;
exterior calculus)

in Equation 2.
The continuing challenge to mathematical analysis raised

by Table 1 is to define restrictions on all the continuous topo-
logical types, including their differential operator languages
(eg. bounding the degree of derivatives, and the information
content of fields), that guarantee their reduction to or com-
putable approximation in terms of the corresponding discrete
topological types. A potential dividend is the definition of
novel dynamical systems outside the bounds of practical
computation (at least for some initial condition data, as
for partial recursive functions) which can nevertheless be
explored by mathematical proof and may help to further
define the limits of computability, and of what can be proven
about it.

III. LANGUAGE FEATURES

We have previously considered sum, product, and
quotient type constructors for metricated types [22]. In
the topological context, ”gluing” operations quotients that
identify points in different objects. This is a way to construct
CW complexes.

Another important type constructor generates “functions”
from one type to another, possibly iteratively (as in a
Cartesian Closed Category or CCC); this is the basic idea in
functional programming and the lambda calculus. The first
level of such a hierarchy was defined for metricated types
in [22]. For topological types, several routes to function
types are open. If a CCC is essential, then Steenrod pointed
out [30] that topological spaces with continuous functions
don’t qualify but compactly generated Hausdorff topological
spaces do. Booth and Tillotson [4] removed the Hausdorff
separation restriction from this statement, and showed that
many “convenient topological categories” that are cartesian
closed are also closed under quotients. All topological spaces
we have considered so far qualify as compactly generated
– along with a lot of superfluous ones. Somewhat more
specific than compactly generated spaces, CW complexes
are not closed under the “exponential” but their homotopy
equivalence classes are [20]. These equivalence classes may
also suffice for our purposes, since an n-dimensional mani-

fold has the homotopy type of a CW complex of dimension
6 n ([12], p. 166, Theorem 4.3). Steenrod also suggested
taking the intersection: the category of compactly generated
CW complex homotopy classes. Yet another relevant kind
of “function” is an embedding between differentiable mani-
folds. Differentiable manifolds don’t form a CCC but various
other, more general definitions of “smooth spaces” do [2].

Using the concept of manifold embeddings one can
impose constraints f(x) = 0 to define new submanifolds
([12], pp. 21-22, Theorems 3.1 and 3.2). Thus constraints
can also act as a type constructor for objects that live on
manifolds. As an example, one can construct the “type”
consisting of points on the surface of a sphere, given vectors
in Rn, either as an equivalence class modulo nonnegative
scaling (a quotient type) or by imposing the unit-norm
constraint.

As in [3], each type has a type-specific logical language
of functions and relations involving objects of that type
and others, along with a set of axioms. Often the axioms
can be specified in terms of algebraic structures: groups,
rings, sum and product types, and so on. The types of Dy-
namical Grammars were sufficiently elementary – products,
normed function spaces, and labelled graphs built out of
basic algebraic types such as real vectors – that formalized
specification of new types wasn’t needed. However the
requirement for approximation by limiting processes creates
a new situation. Now a “limit type” with its own algebra
of convergent observable quantities can emerge from a
much larger set of measurable functions before the limit is
attained; nonconvergent information must be “hidden” from
the logical language of the limit type.

What is happening fundamentally is that a limit type
(such as a manifold or CW complex obeying implementabil-
ity constraints) is a special case of a reduction or implemen-
tation of one type in terms of others – similar to a “model” of
the first type’s logical language, in model theory. The tenets
of object-oriented programming provide ample precedent
for types that are defined by their computational reductions
to other types. The results of mixing type definition with
reduction include public and private accessor functions,
inheritance relations, and so on. Rather than tackle the whole
problem of representing such reductions algebraically eg. us-
ing category theory, we propose here to treat just the special
case of limit types by dividing up the processes associated
with a limit type (and their OA semantic expressions) into
those that do depend on a real-valued parameter that tends
towards zero or infinity, and those that don’t. Those that
do are “private” and stereotyped for all instances of a type;
they are always added into the set of operative processes
in a model involving the given type. An example would be
automatic mesh refinement implemented by “fast” rules that
respond to high gradients of any designated fields.

In most programming languages there is a strong dis-
tinction between types that are built-in to the language,



those that are implemented in a standard library, and those
that are user-defined. One may ask where these boundaries
should be drawn for a morphodynamic modeling language.
Clearly the type constructors are intended for extensibility:
creating library and user-defined object types. Beyond the
basic measurable types of Dynamical Grammars, the bare
minimum for built-in topological types is to support la-
belled graphs explicitly (rather than through integer-valued
Object ID parameters as in Dynamical Grammars) and also
to add compactly generated topological spaces, of which
manifolds and CW complexes are special cases. However,
with the type constructors we have considered so far, quite
a bit of construction would be required to move from
compactly generated spaces to differential manifolds and
CW complexes. This observation argues for providing the
key topological types of Table 1 as built-in types.

It is possible that a more abstract point of view, such
as sheaf theory, may simplify the construction of the key
topological types and thereby make it possible to refactor
the foregoing design sketch and move some of the key
topological types for mophodynamics out of the set of basic
or built-in types and into a library. Indeed many topological
object types, including differentiable functions, differen-
tial manifolds, differential operators, differential forms, and
probability distributions, can be formalized as sheaves. So
these or other object type abstractions may be useful for
future progress in formal modeling languages for morpho-
dynamic processes.
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