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Abstract

We expand the mathematical apparatus for relaxation networks, which conventionally consists
of an objective function E and a dynamics given by a system of differential equations along whose
trgjectories E is diminished. Instead we (1) retain the objective function E, in a standard neural
network form, as the measure of the network’s computational functionality; (2) derive the dynamics
from a Lagrangian function 1. which depends on both £ and a measure of computational cost; and
(3) tune the form of the Lagrangian according to a meta-objective MM which may involve measuring
cost and functionality over many runs of the network. The key new features are the Lagrangian,
which specifies an objective function that depends on the neural network’s state over al times
(analogous to Lagrangians which play a similar fundamental role in physics), and its associated
greedy functional derivative from which neural-net relaxation dynamics can be derived. It is the
greedy variation which requires the dissipation critical to optimization with neural dynamics.

With these methods we are able to analyze the approximate optimality of Hopfield/Grossberg
dynamics, the generic emergence of sub-problems involving learning and scheduling as aspects of
relaxation-based neural computation, the integration of relaxation-based and feed-forward neural
networks, and the control of computational attention mechanisms using priority queues, coarse-scale
blocks of neurons, default-valued neurons, and other specia-case optimization algorithms. Some of
these applications are the subject of part 1l of this work.

In part 1l of this work we show that the combination of Lagrangian and meta-objective suffice to
derive and provide an interpretation for so-called clocked objective functions, a notation useful for
the agebraic formulation and design of ramified neural network applications. Clocked objectives
thus generalize the original static objective function F and furnish a practical neural network
specification language.

1 INTRODUCTION

Optimization is a prominent way to bring mathematical methods to bear on the design of neural
networks. Often the connection is made [Flop84, Gro88, 11'1'85] by specifying the attractors of a



neural network’s dynawmics by means of a static objective function (Or objective) to be optimized,
provided that the optimization problem can be putin a standard neural-net form (which is not too
restrictive a requiretnent [MG90]). In this way it has proven possible to design neural networks for
applications in image processing [KMY86], combinatorial optimization [I> W87, clustering [RGF90,
BK93), particle tracking in accelerators [YHPY1], object recognition [Tre91] and other applications.
It is alsO customary (albeit limiting) to introduce a generic steepest-descent dynatnics to optimize or
‘(relax” the objective, without further regard to computational constraints. The resulting equations
of motion generaly contain gradients of thestatic objective, but arc otherwise ad hoc slid not
particularly suited to elaboration or refinement in response to varied computational constraints. We
shall develop a more genera approach, starting from basic principles, to formulating the dynamics
of arelaxation-based neural network.

Here we start from fundamental computational considerations which, wc hypothesise, constrain
al dynamical systems that compute. Specifically, the cost and functionality (efficacy) of a com-
putation are fundamental to its design, and in genera each must be traded oft against the other
in the course of optimizing that design. (llere the “design” is all the information which directly
specifies the structure or configuration of the dynamical system that performs a computation.) In
the context of neural computations, we will find measures of cost and functionality and combine
them into dynamical objective functions from which one may derive the entire dynamics of a neural
network. This dynamics includes not only the (fixed point) attractors but also the equations of
motion governing convergence to an attractor, i.e. a mathematical model or specification of the
network itself.

Our dynamical objective functions can be specialized in many ways that correspond to the wide
variety of goals and constraints that may be imposed on a computation. We will also relate the
dynamical objective functions to a so-called Lagrangian functional. Our Lagrangian is analogous
to one which plays a similar and fundamental role in physics. A basic constraint which we impose
on our approach is that such a dynamical objective function or Lagrangian is optimized in a special
way, by means of greedy algorithms which don’'t look ahead in time. This constraint alows our
algorithms to be implemented in physical hardware, and aso alows us to derive nonconservative,
irreversible dynamics which can lead to a desired fixed point. We will derive these algorithms by
means of a novel greedy variation applied to the Lagrangian functional.

Generally we will accept the limited type of optimization that results, but sometimes we can
do better by introducing another level of optimization: & meta-optimization problem in which the
(analytic) form of the dynamic objective (the Lagrangian functiona) is itself varied so as to optimize
another objective function. This latter optimization may involve measuring cost and functionality
over many runs of the network. ‘I’his meta-optimization problem determines the choice of the exact
algebraic form of the Lagrangian and hence of the computational dynamics for a whole class of
applications. So for a meta-objective function, cost and functionality are measured over a class of
computational problems rather than over a single instance of that class as would be the case for a
Lagrangian functional. In practice the computational cost or analytic effort required to perform the
rneta-optimization is to be amortized over many problem instances, One example of this approach
will be a (meta-) optimality objective for Hopfield/Grossberg dynamics [Hop84, Gro88], for which
we provide a proof that the associated Lagrangian is optimal in an approximate sense.

1.1 Cost and Functionality

Consider a physical system capable of nontrivial computation. More abstractly, consider a discrete,
continuous or mixed dynamical system which computes, in the sense that it models a computa-
tional device or framework. Examples include a general-purpose computer equipped with suitable
programs, a discrete data structure implemented by means of such a program, an individua sili-
con chip, or an anima brain. Such devices have detailed dynamics, often approximable as large
sparsely coupled systems of ordinary differential equations, which have been designed (or evolved in
the case of a brain) to serve some set of computational purposes at feasible cost. So we refer to these
dynamical systems as computational systems and hypothesize very broadly that fundamentally, a
computational system is designed (or evolved) tooptimize tWO things: its cost and its functionality.
Functionality means what the system can do, and cost means how cheaply or quickly it can do it.

For examiple, the design of silicon chips is largely coustrained by the use of chip area and cycle
time as the measures of cost, and the need to attain at least a minimallevel of functionality to make
the chip generally useful (eg. to implement an adequate instruction set in a CPU chip); tradeofls



between minimization of chip area and max trmization of detailed functionality are frequent in the
design process. For another example we refer to the implementation of abstract data structures
suchas priority queues, for which a functionality specification requires that a small set of operations
(such as adding a prioritized element to & queue and removing the element with highest priority
from the queue) must be supported, ancl cost is conventionally characterized by an asymptotic
scaling rule for the time-cost of performing a worst-case mix of these operations on a very large
queue.

For arelaxation-based neural net which is programmed or designed to optimize a static ob-
jective function f/(x)from an arbitrary starting point Xinitial, typical expressions for cost ¢ and
functionality F' might be

C' = 4-Volume of the Net = Space x Time (1)

and
= E(xgnal) F(Xinitial)- 2

The space-time product is familiar in computer science as an important measure of cost, in which
the Space term is a volumetric measure of hardware usage such as chip area (including on-chip
wires) or memory usage, and the Time term is likewise a computational version of physical time
such as the number of clock cycles required to comnplete a computation. (A specific volumetric
measure of wiring cost for circuit implementations of neural nets has been proposed in [Mjo85].)
As to functionality, the use of an objective function £ is a common way to measure progress (hence
functionality) in a wide variety of computational problems. For example, one can fit a piecewise-
constant model to a 2-d image given by the data {d,}, segmenting it into roughly constant regions,
with the objective function [KMY86]
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where fije® is a reconstructed version of the image, and sf‘j'” € {0, 1} represent discrete decisions
concerning the probable presence or absence of horizontal and vertical edges. f and s together
constitute the vector x appearing in equation (2). This kind of objective has been used to derive
functional neural networks for large-scale problems (10°neurons with 10°connections) as required

for image-processing [RC91, KMY86).

1.2 Outline

We (@) introduce a three-level optimization framework, concentrating on Lagrangians (of a type
relevant to computation) and their specialization to clocked objective functions (section 2); (b)
apply the framework to derive analog circuits such as those modeled by the Hopfield /Grossberg
dynamics for optimization (section 3); and (c) apply the framework to incorporate computational
attention mechanisms (similar to saccading and foveatiou in biological vision) into various dynamical
systems which are designed to solve optimization problems (section 2 of Part I).

Section 2 introduces the three-level optimization framework, beginning with the general form of a
Lagrangiau suitable for use in attractor dynamics for optimization problems. The greedy functional
derivative is defined and calculated for suchLagrangians (scctions 2.1 and 2.2). The strategy used
to design circuit-implementable Lagrangians is one oOf refinement (section 2.3), in which cost and
functionality measures are first defined at a coarse temporal scale and then refined for use at finer
time scales, down to the infinitesimal time scale suitable for dynamical systems that model anaog
circuits, The validity of the transformations required during refinement is ultimately specified by
ameta-objective function which measures network per formance. One circuit-implementable form
of Lagrangian is introduced in sections 2.2 and 2.3, though not completely derived until section
3.2, and it is illustrated by the concrete example of lHopfield/Grossberg dynamics for a region-
segmentation neural network. A more general circuit-imp lementable form of Lagrangian, which
allows network dynamics to be controlled by a repeating cycle of objective functions rather than a
single objective function, is introduced in section 2.1 of Part 11.



where it is illustrated by an algorithun simnilar to line minimization. T'his type of Lagrangian
gives rise to the practical clocked objective function and clocked sum notation of sections2.1.2 and
2.1.3 of Part 11, whose theoretical justification requires all three levels of opt imization:the objective
IY, the Lagrangian L, and the meta-objective M.

Section 3 is devoted to the study of circuit-level Lagrangians with continuoustime dynamics
and analog- valuedneurons. T'wo novel possibilities for suchlLagrangians are discussedin sections
J.L.land 3.1.2. In section 3.2 a siinple meta-optimality criterion for a limited class of analog circuit
Lagrangians is presented. Since this constrained meta-objective function M, is a function of the
fastest and slowest physical time scales in various circuits, it is invariant with respect to monotonic,
coordinatewise reparameterizat ions (changes of variable) of the circuit.

In sections 3.2.1, 3.2.2, and 3.2,3 we prove Theorem 1, which asserts that the Lagrangian 1,
corresponding to Hopfield/G rossberg dynamics yields a value of M [/.] which is within afactor of
two of the optimal value of MT. Thismeans, roughly, that the worst-case time constant for this
Lagrangian L is a most twice that of theoptimal Lagrangian 1,*, whatever that is. The proof
exploits a sharp global optimality result for Hopfield/G rossberg dynamics (I.einma 1 of section
3.2.2). Unlike MT, the optimized functional of Lemma 1 doesdepend on the coordinate system
chosen. A number of limitations of Theorem 1 are discussed. The resulting Lagrangian for analog
circuits can be generalized to clocked objective functions, as discussed in section 2.1.5 of Part
[l. Section 2.1.6 of Part 11 provides an instructive example: a clocked objective function which
incorporates one or more general feed-forward neural networks (for which relatively eflicient learning
algorithms are available) inside a general relaxation neural network.

In section 2 of Part 11 we show how simple cost constraints can lead to a variety of computational
attention mechanisms analogous to virtual memory protocols in present-day computers, and an
associated Lagrangian or clocked objective function to control each attention mechanism. Examples
of possible foci of attention include a subset of the n (out of N') neurons with nighest estimated
improvement in functionality |A F|, which may be tracked efliciently by means of a priority queue
data structure (section 4.1 of Part II ); a subset of course-scale blocks in a minimal partition of the
neurons, scheduled by their estimated individual and pairwise contributions to JAZ| (section 4.2
of Part 11 ); a set of rectangular windows in a two-cl imensional network, each of which can either
“jump” or “roll” to a new location (section 4.3 of Part Il ); a subset of neurons in a sparsely active
network inducting all neurons which don’t have prescribed default values and hence do require
storage space (section 4.4 of Part Il ); and a subset of neurons determined as the Cartesian product
of several simpler foci of attention (section 4.5 of Part 11 ). The designs presented in section 2
of Part 11 are theoretically well-rnotivatecl but may need to berevised in the light of subsequent
experimentation, which is beyond the scope of the present paper.

Finaly, a brief summary of our work is given in the concluding section 4.

2DYNAMICAL OBJECTIVE FUNCTIONS AND
LAGRANGIANS

We have argued that fundamentally, a computing system is designed by trading off two compet-
ing utilities: its cost of operation and its functionality. We may specify a fixed alowable cost and
seek to obtain maximal functiondity, or we may specify a fixed functionality and seek to obtain a
minimal cost, or we may seek a specified trade-off between cost and functionality. W’'e may specify
further dynamical constraints required for implementability. With Lagrange multipliers and/or
penalty terms we may reduce all these cases to extremizing

S = A(/vcost + B}"functionality; (4)

where the systemn is more functional for lower values of /', and where any dynamical constraints
have been absorbed into the C.ose term. Now the designer’s problem is to find functions C and F
(perhaps based on equations (I) and (2)) which dependon the trgjectory of some vector of state
variables x(t) over time, such that the globa optimization of S can be reduced to a collection of
local decisions about how to changethe individual components of the state vector x at a given
small time step from timet — Atto timet. (A loca decision could be viewed as the choice of the
value of a variable (e.g. a control variable).) T'hese decisions must however be made by very smple



physical devices such as transistor circuits containing only afew transistors.  Suchlocal decisions
will prove to be analogous, ina physical system, to a differential or difference equation formulation
of dynamics that follows fromthe principle of least action for the same system.

For example, it would be advantageousif ("and /" were eachsums (or integrals) over a collection
of decisions spread out over space and time. To express this sumnmation, let us index the components
of the state vector X by an index s. Since Sindexes dl the variables present a a fixed time, those
variables could be viewed as being cm beddedin one fixed-tirllc slice of a space-tiinc volume, in
which case s may aso be viewed as indexing spatial locations in the system. So wc refer to s as
the spatial inder and as the temporal index; the entire trgjectory of a computation is specified by
{z(s,t)}. Then the sum over decisions would be

S=4 3 Culzs,O+8 Y Foles, oy 5

decisions(s,t) decisions(s,t)

where each function (s ,or F; ;may depend on only a few of its arguments {x(s’,¢')} and hence on
only a small part of the trajectory near (s, t).In equation (5) we may introduce a continuous time
axis by replacing the temporal sums by integrals;, we can do this by integrating over ¢ and summing
over s. Following the analogy with physics, S is referred to as the “action”. The decomposition (5)
would be a useful first step towards enforcing spatial and temporal locality on the dynamics of our
computation, since the decomposition distributes S over a sum of terms which pertain to particular
spatial and temporal locations. Unlike space, time has an intrinsic directionality, and we will aso
need to enforce causality in the optimization of S. Before seeking specific forms for C,  and Fy ,,
we will discuss locality and especialy causdlity.

A pattern of communication is implicit in the dependence of C, . and Fs.:on (s, t). If Cy .
and F,, were each a function only of x, ., rather than a functional of the entire State vector x(¢')
at many different times t', then every decision terin could be optimnized independently, and the
associated computation would proceed without any communication. This is a trivia case, however,
and generally we will have quite a bit of interaction (via specific C and F' terms) between vari-
ables defined at different times and places. (For a non-trivial example see the region-segmentation
Lagrangian of section 2. | .2.) The pattern of communication is defined by a communication graph
whose nodes are space-time sites (s, ¢) and whose links record the presence or absence of functional
dependencies of C,.or F,, on trajectory variables = defined at other space-timesites (S, t'). We
want to keep this implicit pattern of communication relatively local, and we insist that it be causal.

The effect of causality on the communication pattern is twofold. (i) Causality favors the adoption
of a convention in which interactions between variables indexed by different times are entirely
incorporated in the C and /' terms indexed by the later of the two times, and do not enter into the
C and F terms defined at the earlier of the two times. That way, every C,or I termdepends only
on variables indexed by times ¢ < ¢.Thisis called the retarded interaction form of S. (ii) If we
introduce computational dynamics by sequential optimization, at successive time steps t’ of sets of
variables indexed by t’, then causality denies a computation the possibility of optimizing al terms
of S with respect to any one variable z(s’, t'). Instead, each variable z(s’,’) can only be varied
under an objective involving those terms of S al of whose variables z(s"”,t"”) are optimized at the
same time asz(s’,t’) or earlier. The values of al other variables (those indexed by 1" > ¢') are as
yet undetermined. Which terms of S are eligible to participate in the variation of z(s’, t'}? Any
Ctor Fr term for which ¢ >t depends on variables (such as z(s, t)) which have unknown values
a time step ¢’ and are not being varied at that time step. Such a term is is ineligible; so we are
restricted to those terms of S indexed by timet < t'.

Note that the digible terms of S with ¢ < t"arc mostly irrelevant to the optimization of z(s’, t'),
since point (i) implesthat thet < t' terms do not contain the variable z(s’, t'). ‘I'his leaves only
thet = ¢’ terms of S to determine z(s’, t').

Of course, an acausal optimizer could achieve a better value for S by being less “greedy”
(increasing present C: + Fiterins to decrease future ones by a greater amount), but as argued
above causality forces our dynamics 10 be greedy. 111 other words, the causality constraint only
permits a partia or greedy optimization of S, and the nature of the partial optimization depends
on the decomnposition of S into a sum over decisions oOf causally constrained terms. This basic
linitation to causal or greedy dynamics will bemore or less severe depending on which of many
possible decompositions of C and F' over tine is chosen.



We shall define the greedy derivative of 5 withrespect to o(s',t') as being the ordinary derivative

of the sum of such eligible (t<t')terms of S, and use that derivative to define optinality of r(s',t').

But this greedy derivative imuediately simplifies due to the retarded interaction forin off’ and

AC, + BF, ? D (AC + BIY) 4 (ACy + By (6)
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How can we find functions L' (x{t'}) and I“(x{t'}) that specify (via optimization of S) anentire
computational task and yet break up into a sum over easily computed decisions? T'his is a statement
of the problem of algorithm design, for which there is no general answer, but we can still invent some
fairly general techniques. The cost function can be regarded as some kind of space-tiinc volume to
be minimized (e.g. circuit size times the duration of its use) and can be decomposed into a sum
of space-time volumes for the many elementary decisions or state changes, at individual locations
and times, that comprise the associated computation:

c=Vol = }:5\’01,,(. ()

st

Also the functionality F{x{#'}) is often measured by some definite objective function F(x), such
as total tour length in a traveling salesman problem [11185], and this can be decomposed over time
as (cf. eguation (2))

¢
F (xﬁnal) = 1’/(xﬁnal) - E(xinitial) = zA}‘/ o ar (8)
For example, a standard form for analog neural networks objectives  is{MG90]:
. 1 x—~,, 1 .
E(V) = -—g '}J_: J;jkv,-vjvk - -2~ %:7,'_7'1),‘1)_7' - Zi:h,'v,’ -+ Zd),‘(v,'), (9)

which encompasses many network designs including equation (3). Here v takes the place of x, and
the indices i, j, and & take the place of s. In equation (9), vi is the output value of neuron i;7T;;
and Tijx are connection weights between two and three neurons, respectively; fiisabias input to
neuron ¢; and ¢(v;) is the potential function for neuron ¢ and determines the transfer function gi
(e.g. a sigmoid function) through

vi = gi(u;) and w; = @'(v;). (lo)

Often equation (9) is further specialized vy setting Tijx=0.

As a complete example of a dynamical objective function we present, in the following equation
(11 ), a dynamical objective for the Hopfield/Grossberg dynamics of an analog circuit. This dy-
namical objective will be derived in sections 2.1 and 3.2, using the fact (to be established in section
2.2) that, for a continuous-time analog circuit model, a condition for the greedy optimization takes
the form of a (functional) derivative §/6v (where vi = dv;/dt). The dynamical objective is

Sv(t),vV(@)] = /‘“.Z (1\’[vi,v,']+ gﬁiz.‘, (112)

vi |

where K[v,v] is a cost-of-movement term to be derived in section 3 (see Theorem 1). Varying with
respect to vi and making use of the form of E given by equation (9), we will find analog neural-net
equations of motion as expected:

Tt = Z’j}j;\.vjvk + Zﬂjvj + h; and v; = gw;) . (12)
Jk 7

Here 757 is a time constant. The dynamical objective function S of equation ( 11 ) can be recognized
as an instance of (5) by identifying the neuron index i with the space index (i.e. component
index) s and the time integral [ d¢ with the temporalsumy.,; also C,r — N[i (1), vi(t)] and
Foo o (OE[v(1)]/0vi )vi(t).



There is a close analogy between equation () and standard ideas and terminology in physics.
The action, S, can be decomposed into the temporal sum (in physics, an integral) of a Lagrangian

L(t) which in turn is a spatial sum of a Lagrangian density Ly = Co o+ sy

S5 = Z[,([)
= DLl (X)) = Y (Cort Fun) (13)
(

s,t) (s,t)

(Note that the sum over timemay becorne an integral when we consider time steps of infinitesimal
duration, since the extra factor of At required to get an integral is just a constant that doesn’'t affect
the solution to an optimization problem.) For our neural network design purposes the Lagrangian L
is generaly the most useful of these aternative notations, particularly for algebraic manipulation,
because the temporal suinhas the same algebraic form from one problem to the next (and hence
is uninformative), but the spatial sum does not.

Extremization of such functions (or functional) provides a foundation for the study of many
dynamical systems including quantum field theories. I and C' might with lower confidence be
identified as classical kinetic energy and potential energy terms respectively, but as we will see,
many details are different. These differences prevent a literal-minded mapping of our ideas and
constructs onto the formalism of physics. In particular, causality is not built into physical theories
by means of the partia optimization of S, but in a completely different way that is inconvenenient
for treating irreversible dynamics such as our computations; therefore neither the dynamics nor the
Lagrangians of physics can be called “greedy” in the sense wc use the term.

There are a number of other ways to derive dissipative dynamics from Lagrangians, as summa-
rized in [VJ89]. Allowing explicit time dependence, such as an overall factor of e¢#!, in a conventional
Lagrangian permits physically clamped second-order dynamics to be derived. The strategy of the
approach is to start with a differential equation, derive an associated Lagrangian (this is called
the inverse problem of the calculus of variations, and it may have many solutions), and use that
L.agrangian to analyse or approximate the solutions of the differential equation. Our strategy and
methods differ, since the Lagrangians are obtained from cost and functionality considerations and
hence are known before the differential equations are known. Moreover these Lagrangians require
an unconventional variational principle (the greedy variation) to produce acceptable differential
equations. Nevertheless there may exist some deeper relationships between our greedy Lagrangians
and previous approaches discussed in [VJ89)].

2.1 Cost and Functionality Terms

Equation (8) for I’ is particularly appropriate for a net whose dynamics is intended to converge to
fixed points that encode the answer to a static optimization problem, such as the standard neural
network form of (9). Equation (8) represents a substantial specialization from the general set of
functions Fi({z(s', t')}) = 5, F,.({=(s',t')}) that appears in (5). For in equation (8), F: depends
on t only through its arguments and not through its subscript, so that the agebraic form of Fiis
independent of time (i.e. £t is autonomous):

Fo({a(s', 1)1t <1)) = Blx(0)] - Elx(t - A0, (14)

In the simplest case of dtatic specia-purpose neural circuitry the computational cost is just a
constant N, reflecting the hardware committed (neurons and connections), times the length of time

it is used:
C/' = ANttolal (15)

for fixed hardware, or the more genera
C= AJ AN (1) (16)

if the amount of hardware devoted to the network can vary over time (a possibility we will consider
in detail in section 2 of Part Il. Once N is allowed to vary with time, it becomes relevant to consider
the details of how muchnode and wire volume isrequired to implement dynamically a given pattern
of connections.



Equations ( 14) and (15) go part of the way towards defining a computational system, butthey
arc not yet detailed enough to specify a parallel algorithin or analog circuit th at optimizes £y, Qur
mainline of development will be fromthese eguations towards an analog circuit. But first we note
an alternative strategy for generating parallel algorithms which will be developed in sections ‘2.1
and 2 of Partll.

2.1.1 Remarks on Some Generalizations

It is by no means necessary to specialize the expression for Sin (5) al the way to the formin ( 14),
if some other way to minimize the origina action in (4) can be found. Most aternative sets of F
functions would pertain only to one particular objective function F, but there are also systematic
methods for deriving Ft from £ in which Ft benefits from retaining an explicit time dependence.
For example, £t might take the form of AFE,)for one of p possible objectives £, wherethe choice
of objective as a function of time (given by «(t)€ {1, 2, . . p}) is made in a cyclic fashion. Then
(14) is replaced by

Fe({z(s', )]0 <) = > dhalt) AFa[x(t), x(t - At);x(t7)], (17)

where ¢, (t)=1if a=«a(t) and O otherwise, and where
AEa[x(t), x(t - At); x(t°)] = Falx(t); x(t%9)] = Ba[x(t - At);x(t°)]. (18)

Here we assumed that ¢’ takes only the values ¢,t — At and ¢4, where t — At is the previous
time Step in the current o pham of the Cyc]e and told is thefmal time Step of the previous phase
a—1in the cycle. Because of its explicit dependence on a cyclic clock signed et(t), £, is caled a
clocked objective junction. It must be fundamentally connected to the original objective function F
if the resulting cyclic Lagrangian is to have the correct functionality, but there are several ways of
making such a connection. This possibility is explored further in section 2.1 of Part Il and applied
extensively in section 2 of Part II.

It is troubling that there exists a wide variety of different local and causal Lagrangians (cf. (5))
each of whose dynamics will partially optimize the original dynamical objective function or action
given by (4). How do we choose one over another, and what are the minima criteria for any to
be acceptable? In other words, what are the rules of the game for proposing distributed cost and
functionality terms in (5)? ‘I’he answers must ultimately be related to algorithmic performance in
minimizing the action itself (see (4)). We begin our work on these questions in section 2.3.2.

212 Refinement to Continuous Dynamics

For the moment, let us assume that (14) and (15) describe an acceptable Lagrangian, which is a
decomposition of (1) and (2) to finite-sized time steps, and try to further refine them to a dynamics
with infinitesimal time steps, i.e. continuous time and continuous-valued (i.e. analog)variables.

A standard form for analog neural networks objectives E is given in (9). The corresponding
functionality term £ may be derived with a series of three design transformations. Start with an ob-
jective function E[v] of continuous variables v1v,, ancl discrete 0/1-valued variables v, 4+1.. v,,
with ¢:(vi) = O for the latter (where ¢ is defined in (9)). The first transformation is to reformulate
the discrete variables as continuous variables each with the constraints that O <vi<1. This step
may introduce new local minima at the intermediate values of v;; if this possibility can be analyzed
away, or designed away by adding a “bump term” such as the pendty term 37, civi (1— vi) to
E, then we have a valid transformation. I’he second transforination is to replace the constraints
with penalty or barrier terms ¢i(vi) added to £ for unconstrained, continuous-valued optimization.
Steps 1 and 2 together may sometimes be replaced by the one-step Mean Field Theory derivation of
continuous-valued objectives for discrete-valued variables (first discussed in[flop84]andextended
by others inducting [Sim90,PS89, GY91]) with improved control over local minima.Butinsection
2 of Part Il we will nhave occasion to separate the two steps,

As an example of these first two steps, the image region segmentation objective (3) can be
refined to an analog ncural net with discrete variables s € {O, 1} replaced by continuous variables
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Finally, we must refine the global objective E into an arbitrarily large number of infinitesimal-

step AL terms for use in the simplest continuous-time dynamics. Using Taylor’s theorem for small
At,

Fooase= AE~ At Y Eivi= AtFgue[V) (20)

(so that Zt Feoarse & f dtFg,.), where

')1*
Bi= Z%kvﬂ’k - Z?m hi + ¢/ (v2), 1)

and v is a vector of variables comprised of al the f, 1*, and [* variables of (19). This third
transformation step does not yet specify the associated transformatlons of the fine-scale cost term
Crinel{vs ¢ }] which we will work out in section 3. The result will be of the form Crine[V] = 2o K [0, vi)
(cf. (127) of section 3.2). Together with (20), this gives us the L.agrangian

. ad
LFgnel(V,v] = Z (1\ [6i, vi] + Lv,) (22)
and the action functional
S = / dt Lgipe- (23)
This action is in agreement with equation (1 1). For the region segmentation example, 9F/0v; is

given by (21).

In summary, we have transformed the problem three times along the way to the circuit-level
functionality term in (20) and an associated Lagrangian. The transformations are intended to
preserve (approximately) the fixed points of the equations of motion, While making the dynamics
progressively more implementable as an analog neural network. Both thetransformations) validity
(as measured by the functionality term of the original coarse-scale action (4)) and their efficiency (as
measured by the cost term of (4)) must still be demonstrated, since the finer-scale versions of this
action functional are only partially optimized. The three transforrnations used to obtain equation
(20) were: (1) discrete variables — continuous variables, constrained to intervals; (2) constraints
—+ penalty or barrier terms in unconstrained, continous optimization; and (3) temporal refinement:

= AF ~ fth (The refinement of C' must still be worked out before we have a derivation of

the fine-scale Lagrangian. See section 3.)

22 Greedy Functional Derivatives

Based on the foregoing work, we seek to derive continuous-time dynamics from suitable Lagrangians.
This requires formulating the greedy derivative of (6) for use with continuous-time dynamics, hence
formulating it as a functional derivative.

Following equation (5), we argued that the local cost and functionality terms F,; and C, . in
a Lagrangian should depend on variables z,.+ only for ¢’ < ¢, and that only variables with ¢’ =1
should be varied in the optimization of Fs.¢+ C, 1, @l values of earlier variables are held fixed.
Then Fand ' are said to be in retarded interaction form. These constraints can be imposed on
any continuous-time Lagrangian in differential form,

L(x(1), x(®), x(®).. ), (24)

as follows. First we replace the derivatives by difference expressions (x(t) — x(¢-- At))/At, and so
on,taking care that the largest time ¢’ toappear ist. This yields an approximate discrete-time



Lagrangian, which we then optimize with respect to x(t) by differentiating to find the dynamies.
Then we take the limit as At — (). Inthat way we ensure that ¢ < t (retarded interactionform)
and that only variables for which ¢’ = tare actually optimized a time ¢, as required.

This procedure for finding the continuous-time dynamics for a Lagrangian in differential form
(24) may be formalized by means of the greedy functional derivative introduced in[MG90, MM9L1].
Ilere we provide a ncw formal derivation of the greedy functional derivative d; which exploits the
retarded interaction form of a Lagrangian.

Let N be anormal forimn operator on derivative expressions:

N[z(t)] = z(),
N[z(t)] = (z(t) — z(t — At)) /AL,
N[#(t)] = (z(t) — 2z(t — At) + z(t — 2At)) /(AL (25)

and so on. Also
N[F [y(t)]] = FIN[y®, y = ={t), z(t), 2(t), if F is autonouious.

So N serves to replace time derivatives by tempora difference expressions for which t' <¢, which
we can differentiate with respect to xz(¢). In other words, it suflices to put a Lagrangian [, into
retarded interaction form, so that a greedy variation can be taken while preserving its value in the
At— O limit. (N is known in numerical analysis as the “backward divided difference operator”. )
Then the greedy functional derivative may redefined, evenon Lagrangians L not yet in retarded
interaction form, so as to agree with (6): For any small At >0,

JG:(t)‘/dill(r({),i*(t‘),.‘.) /dlét—t TNI’ £(0), &
(,)Ja(t)NL( 2(t),2(1),..)  (asin (6)) "
et
B T A Y
where the last step used (25). Contining,
%f(t)/dfl,(x({), @),.. ) = ﬁﬁ[’(x(t)’aw )

— o~ 1 ) F) _ . .
| (Z;, (At) a(dnx(t)/dtn)(t))b( (1), (1), .. )
(by the chain rule)

/ dis(f - t)n(:%‘m)nl a(dnm(t;?/dtn)(t) ) L (®), (0

_ (e~ ] é S
= (g(m)n 5@ 20 0) (diL(z(@),2(D),. . ).

(27)
Here the functional derivatives §/4(d"z(t)/dt") are taken to be independent of one another as partia
functional derivatives (so for example §4(¢)/éz(t) = O, rather than 8z (f)/dxz(t) =ds(t —t)/dt as
would be the case for total functional derivatives).
So the greedy functional derivative és/dgx(t) is given by the operator equation

e > 1 )
For(®) = 2 (A7 @ =(0/d0) (1) @)

where At is infinitesimal, Again, the conventional functional derivatives are independent of one
another (they are partial functional derivatives).Needless to say, the highest powers of ( I/At) will
dominate al others in the limit At — O. For example if L depends on v and v, but not onhigher
titne derivatives, then the greedy functional derivative will be (1/At)é/év. This will generally be
the case for our circuit Lagrangians.



We can derive analog, continuous-time network dynamics by applying the greedy functional
derivative to the continous-time Lagrangian (22).  Since the highest til[le-derivative inthe La-
grangian is ¢; for each variable v; the greedy functional derivative is proportional to §/dv. Then
the equations of motion become

65 ar

é_—vl = ]\,{/ [‘U,‘,Ui] + (‘)U‘ ol

(29)

For N{i,v] = (1/2)ry 03 /¢’ (g~ 1 (vi)), the circuit-level cost term which will be derived in section
3.2.3, and for an objective function / given by actuations (9) and (10), the greedy variation equations
become Hopfield/G rossberg dynamics:

Tyl + u; = Z’I}jkvjvk + Z'I}jvj + h; and v; = g(u;). (30)

Jk J

This type of dynamical system describes an analog nieural network, and we will make no distinction
between such a dynamical system and the neura network itself.

As an example, we may work out the dynamics for the region segmentation lLagrangian given
by (22) and (19). Specializing the dynamics of (30) to the region segmentation objective (19), we
can expand the first term of the objective to find a potentia term (A/2) ,?J- for the fi; variables.
Then we find the standard Hopfield /Grossberg equations of motion for this analog network, which
are

Tfé,‘j + e; = A d,]—B(fij—fi+1,j)(1—l:'Jj) -- B(fij_fi,ji-l)(l'“l:'/j)’f"j = (I/A)Cij)

Tkl * kY = B/2 (S o fii)? By = g(ky),

ekl ek, = B2 (Nin  f)? -, By = glky).
(3)

2.3 Theory for Refinement to Circuit Lagrangians

We have found a path of argument from computational first principles to specific neural networks,

but the status of some of the steps along the path is still unclear. The basic problem is that
various transformations of the original action functional (4) are required to get an implementable

dynamical system, and limitations of causaity and the simplicity of elementary processing devices
require that the spatially and temporally distributed Lagrangian functional (such as (5) or (1 1))
be optirnized only partialy (as in the discussion following (5)).

Our approach to this basic problem is to catalog a variety of useful transformations that lead
towards circuits or paralel agorithms, and to re-use the fundamental dynamical objective function
(4), or closely related quantities, as a measure (i.e. a criterion) for judging the success of such
transformations. Such a criterion may be caled a meta-objective since it is an objective function
used to select a dynamica objective function for the neural network dynamics.

This approach may be thought of as a symbolic search procedure to be carried out by human
designers, who select the likely transformation sequences, with machine assistance in evaluating
them and perhaps aso performing them. On occasion it may be possible to eliminate the search
procedure by proving the (meta-)optimality of a given Lagrangian, but we do not think that this
will be possible in most cases.

2.3.1 Transformations of Lagrangians

Recall the three transformations leading to circuit-level Lagrangians in section 2.1.2:

T1. discrete variables — continuous variables constrained to intervals

T2. constraints — penalty or barrier terms in unconstrained continous optimization

T3. refinement: £} ::A]o‘zfdt[:}.(’l‘he refinement of ¢ will be worked out in section 3.)

We comment on each of these transformations.

T'land T3 are required to achicve a circuit implementation, but more generally they serve the
purpose of making a parale algorithm. Discrete-time update schemes may be introduced instead,
hutsome care is required so that the updates of independent variables done in paralel don’thave



the jointeftfect Of increasingrather than decreasing F. I'or example, fOr some networks ic iS possible
to “color” the variables with asmall number of colors sothatnotwo connected variables (o7, and
r; such that7;j # 0)have tile same color; thendifferent colors can be updated at different times
in aclocked objective function, and al the variables of the same color canbe updated at once
(even by discrete jumps)without interference in Iv. (Interference would mean that several variables
would each, if updated alone,diminish £, but if the same updates were done together then 5 could
increase. ) Such (fairly standard) parallel update schemes are not so important for continous-time
and analog-valued networks, whose descent dynamics are explicitly parallel.

Transformations like 'I'2, which incorporate static constraints into the static optimization prob-
lem, may change the nature of the optimization problem significantly. Penalty and barrier terms
on congtraints that involve many variables destroy locality, unless they are further transformed to
alocal form by methods such as those described in [M G90]. In this case a minimization problem
isreplaced by a saddle-point problem. Alternatively one can introduce Lagrange multipliers, but
that also changes the static optimnization into a saddle point problem [1'1187], Either way, the
dynamics associated with the Lagrangian functional loscs its obvious convergence properties (be-
cause limit cycles around a saddle point become possible), and it may be necessary to engage in
meta-optimization of some kind in order to secure convergence for a local circuit implementation.
Another alternative, which requires clocked objective functions but does not explicitly introduce
saddle points, is to use an algorithin similar to the “gradient projection agorithm” or “scaled
gradient projection algorithms” [B189] to repeatedly reestablish the constraints as the dynamics
proceed. Such an alternative will be employed in section 2.1.6 of Part Il.

In previous work [MG90] it has been demonstrated that static neural network objective functions
may be transformed in a variety of ways in order to acheive design goals such as reduced wiring
cost or attaining an implementable form while preserving the functionality (the fixed points) of an
optimizing neural network. Likewise, in this paper we will introduce a number of transformations
from one Lagrangian to another that satisfy design constraints while preserving or improving the
functionality of a computation.

A fundamental aspect of (5) is that, clue to its linearity, it naturally supports the hierarchical
decomposition of computational dynamics into large state changes (or decisions), each achieved
through many smaller state changes or decisions. This is in analogy to multiscale or multigrid
algorithms from numerical analysis, or to renormalization group ideas in statistical physics, or to
the idea of stepwise refinement in the design of computer programs. As in (5), the action S can
be decomposed into a sum over state-change decisions. But if each of these decisions is in turn
made by a dynamical system consisting of a sequence of sub-decisions at a finer time scale (which
may also involve a finer spatia scae), then we can relate the two time scales (“big” decisions
and “sub-decisions’ ) and reexpress the action in terms of the fine-scale decisions alone ( “small”
decisions):

S = A Y Caixhh4B Y, Fi{x())
big decisions(s f) big decisions(3,f)
= A )] ( 2. Cal{x())
big decisions(3,f) sub—decisj~-~ = *)

(32)

+1{ Z sub—de%ons(s,t) Fs,l({x(‘!’)})

big decisions(3, )
= A Y. Col{x(t)})) + B > Foe({x(1)))-

small decisions) small decisions(s,t)

Notice that the step from equation (4) to equation (5), or more specificaly to (7) and (8), can
be given a similar hierarchical interpretation: we arc expressing a single quantity, optimized over
the entire circuit convergence time, as a sumn of quantities to be optimized more localy in time or
space. The further refinement, to infinitesimal time steps, (23), is another example. Then equation
(32) subsumes al these examples of hierarchical design.



2.3.2 Mets-Optimizatic]n

Wehave discussed the necessity for some criterion or figure of meritby which to compare aternative
Lagrangians and tile dynamical systems to which they give rise. Generally we start with some global
objective function such a S in (4), thentransform it though a series of spatially and temporally
localized l.agrangians of theform(5) to a final circuit-level Lagrangian L, which is only partialy
optimized (i.e.is greedily optimized) by the dynamics.Finally we wish to quantify the performance
of the resulting dynamical system,1.e. to evaduate the quality of the associated computation, for
example by computing the value of S at the end of a run. The [nets-optimization problem is to
optimize the resulting evaluation, treating it as a functional of the exact form of L.

An obvious way to do that is by means of a retrospective (a posterior) evaluation of the original
objective S of (4). But optumizing with respect to this protocol of retrospective evaluation of Scoarse
seems out Of the question, since that involves many repeated tests of the neural network dynamics
with different values of the parameters that specify the (transformed) Lagrangian and is therefore
far more expensive than one relaxation run of the network. (The parameterization of I may involve
real-valued parameters or may simply be the discrete choice of a sequence of transformations to
derive L from Scoarse - )

Fortunately the cost of optimizing Sce.asrse 8 @ function of the form of L (i.e. the cost of meta-
optimization) may by amortized over many inputs h (cf. (9)) to one network, drawn according to
some probability distribution, or even over many network connection matrices T drawn according to
another probability distribution. Optimizing M may be very expensive but the expense is amortized
by using the resulting dynamics to improve the performance of many different computations. An
apparent obstacle is that different h vectors and 7" matrices will in genera have unrelated meta-
objectives M, so amortization may be difficult to accomplish.

Such amortization may still be achieved if the meta-objective function M[L}isaltered to become
an average-case measure of Scoarse:

M[L] =< Scoar se[L]>h,’I' . (33)

Just as in neural network learning procedures, the distribution average would be sampled by a
finite sum over a training set; this sum would be optimized, and then a further sampling could

bc made to test generalization from the training set to a testing set. If such generalization is
to be expected, either on experimental evidence or according to theoretical criteria such as the

V apnik-Chervonenkis dimension [Vap82, BH89],thenamortizationwill be possible. For the cost of
computing (hence of optimizing) AM[L]is multiplied by the size of the training set, but that large
initial cost is then effectively divided tzy the number of times that L is used subsequently, which
may be far larger than the training set. This gives the desired amortization.

Alternatively, one could amortize the cost of optimizing M by taking M to be a worst-case
measure Of Scoarse which can be optimized analy tically. The worst case performance is very hard
to evaluate experimentally, but it may be more easily subject to analysis than the average-case
performance, at least if we are alowed to alter the form of Secoarse SOmewhat. ‘I'hat will be our
approach in section 3.2.

3CIRCUIT DYNAMICS

3.1 Refinement to a Circuit

Upon refinement, the l.agrangian L = C + /' becomes
L = ANAt+ BAE. (34)

We would like to take the limit At— O, refining to infinitesimally small time steps in a continuous
analog circuit. We expect this to be both simpler than a discrete-tizne (finite At)dynamics, and
also more relevant to neural network implementations. But performing the greedy optimization of
such al.agrangian presents some surprising problems.

For instance, a first-orcler expansion of AFE(At)yields a l.agrangian proportiona to At: L[v,At] =
AU+ B, I i[v]vi), which cannot be optimized with respect to At > O without going outside the



expansion’s domain of validity. To avoid this problem At might be taken to be a small constant, but
that would inake the entire ("0sl term ¢/ = A NAt constant and therefore irrelevant to the dynamie
optimization problern. More seriously, partial optimization canonly affect v whichappears linearly
in this Lagrangian; i = 400 will be the optimum, which would not only invalid ate the expansion
of I(t) again, but would violate physical limits on circuits as well. A somewhat more physical
dynamics would result if we arbitrarily followed the analogy from the Lagrangians of physics and
changed the cost term to a kinetic energy (1/2) 5,02, but we have no computational justification)
for doing so.

On the other hand, not expanding AZ(At) at all leaves a fine-scale optimization problem which
is equivalent to optimizingthe full coarse-scale objective E in much less time, This is simply not
possible. And even a second-order finite Taylor expansion of AF/(At) is problematic, since the
optimized values of Atand v are likely to lie outside the expansion’s small dornain of suitability as
an aproximation.

The essential problem here is that each fine-scale optimization, to be imnplementable as a circuit,
must be more constrained than the coarse-scale optimization. We must stay within the domain of
convergence of a Taylor expansion of AF/(At), and we must not violate physical speedlimits (e.g.
for physical implementability we must prevent circuit tiine constants from becoming too small),
and so on. Such constraints are either (a) direct physical limits on circuit implementations, or
(b) computational limits on what can be achieved with a small amount of physical computing
(computation which occurs in a physica medium) in time At. These constraints are generally too
complex to state exactly in a simple Lagrangian.

We identify two general approaches to formulatingsuch circuit constraints and the corresponding
fine-scale Lagrangiaus. In the “underconstrained” approach, we impose simplified, loose versions
of the physical and computational constraints on the optimization of L sarse, in the hopes that the
resulting dynamics will be constrained enough for a genuine physical implementation (perhaps at
an even finer time scale). These loose constraints can be tightened up for analytic or computational
convenience, and then expressed as penalty or barrier functions which are added to L to forin L fine,
the fine-scale Lagrangian. By contrast, the “overconstrained” approach stays within the realm of
physical irnplementation by hypothesizing a parameterized class of fine-scale Lagrangians known to
be irnplementable, which can be thought of as alternative strategies, and optimizing some measure
of their relationship to the original coarse-scale Lagrangian L. In particular, the cost terms of L fine
may be optimized while the functionality term is taken to be AE ~ AtE asiu the coarse-scale
Lagrangian. Thus the underconstrained approach applies looser constraints than implementability
may actualy require, and the overconstrained approach applies tighter constraints than are actually
required. We give examples of each.

3.1.1 Underconstrained Refinement #1

We will require Av be small enough so that AE[Av] can be expanded to first (or second) order in
aTaylor series, and that each |%i| be bounded by a physical speed limitation. So we must optimize

L{v, At] = ANAt + BAE[AV] (35)
subject to
[[V]loo = max|t;]< s (36)
1
(where v =~ Av/At)and
lAv]|2 < r(v), (37)

where »(v) is chosen to ensure that a first (or second) order expansion of AE[Av] is sufficiently
accurate. Also, there are two approaches to varying At. If we let At be optimized (subject to
At> O), the cost term in the Lagrangian will keep it small but not necessarily drive it to the
continuum limit At-» O. Or, we can let At= x7, where xy € {O, 1} is a discrete dynamical variable
which “stops” the neural network when x is optimized to zero, and where risasmall constant
which we can analytically drive towards zero to extract continuum dynarnics.

In the latter case, ||Av|lz~ x7||v||]2<y7\/ns is more restrictive in the limit 7 — 0 than
constraint (37) except whenthe network finally stops, at which time both constraints become



irrelevant.  So we can drop constraint (37). If we express constraint (36) as a barrier function
2. Da1(vi/s), the fine-scale Lagraungian becomes unconstrained:

Lyine(¥.X] = D ¢x1(0i/s) + AT[AN + B Y 140]. (38)
i i
Except for thenew x variable, this is the same forin of Lagrangian for neural net worksthat we
have proposed in [MG90,Mjo87]. The corresponding dynamics are (varying v, cf. (28))
Ui = —sgx1(#,), (39)

and varying y to get the stopping criterion, we find the optimal values of y occur only at the
boundaries of the allowed domain of y:

X =0[s Y Eigs1(E:) — AN). (40)
Here ©(x) is the Heaviside function (1 for 2 > O; O for = < O).

3.1.2 Underconstrained Refinement #2

If, on the other hand, we let At be optimized freely, then we are taking a computational step that
requires a small but nonzero amount of time to change the state by Av, which is constrained by
both (36) and (37), which in turn are related by v ~Av/At. We will express constraint (36) as
[|Av||leo <sAt, which can be tightened to the more tractable

(1/5)) ] |Av]| < At (42)
i
Also we can tighten constraint (37) to
rv
1avller < - = 7(2) (42)

(which implies (37)). Optimizing L{v,At] of (35) with respect to At, which occurs linearly in (35),
as constrained by (41) just saturates the constraint: At = (1/s)d;|Awi].

The remaining constrained optimization is with respect to Av. Using barrier functions, we find
an unconstrained Lagrangian

LIAvV) = ”A{X Z [Avi| + Z E;Av; + Z d11 (?(—:))—3), (43)
o . AN7(v) Av;
LlAv] = Z Bibv + — Z $4/0/- (m) (44)

where ¢4 /0/-(2) = d11(x) + [z[. Also

1 if Ei—AN/s>0
Av; [i(v) = 0if £i— AN/s <0 and E’,+ AN/s >0 (45)

+1if E;+ AN/s <0

A number of calculations of bounding expressions 7(v} are possible, but we will not pursue this
approach further here.

3.1.3 Stopping Criterion

Lagrangians (38) and (43) each have intrinsic stopping criteria which compare the expected im-
provement in functionality AF with a cost of movement, and allow movement only when it is
sufficiently beneficial. But I may not always be the right function for this purpose. A monotonic
function 6( £) may be used in place of E in (8) ancl may likewise be decomposed into a sum of
Ab terms. The latter would alter the tradeoff with the cost term for incomplete optimizations and
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Figure 1. Potential ¢4 /o, () incorporates automatic stopping criterion. Whenother terms fail to
alter the ordering among ¢(— 1), ¢(0), and ¢(1 ), then Av = O is favored and neuron v: stops.

therefore the stopping criterion (the point at which a further decrease in F is smaller than the
expected cost of obtaining it).

One major drawback of using a monotonic function b(E) in place of F inaLagrangian is that if
E is of the standard neural network form (9), it is dready a sum of local terms and therefore close
to neural implementation. By contrast, direct optimization of &(F) requires a global calculation
of E even to get the gradient, Vb = 'V E needed for the dynamics of every variable. One can
circumvent this problem by transforming the objective function with a particular type of Legendre

transformation [MG90]:
Xb(E) = —0E + x7 + ab™ (7). (46)

In the resulting gradient dynamics, only the one variable ¢ requires computation of the objective
function E. Unfortunately this transformation replaces a static minimization objet-tive with a static
saddle-point objective, since some of the new variables are to maximize rather than minimize the
transformed objective. To find a Lagrangian which always converges, rather than cycling around
the saddle point, may then require an appeal to meta-optimization (e.g. either experiment or deeper

analysis) of the saddle-point-seeking Lagrangian.

3.2 Overconstrained Refinement: Mets-Optirrlization of I

A second, more systematic way to overcome the problems with refining the Lagrangian through
expansion of E(At) is to define a class of Lagrangians which are known to be physicaly imple-
mentable ancl mathematically tractable, though they are not the only physically implementable
expressions for a circuit-level Lagrangian, and to pick the best member of the class based on a
meta-optimization criterion. So we overconstrain the set of allowed Lagrangians and optimize. We
will be able to do this theoretically for a meta-objective that measures worst-case performance of
a Lagrangian for minimizing an especialy simple class of neural network objective functions.

The allowable class of objective functions will be those of the form E[v]:_(1/2)2.‘j7%jv.~vj_
22chiviw 2206(vi), in which the matrix 7' is negative semi-definite and has eigenvalues whose
absolute values are bounded above by some number ¢,.x. An example of such an objective
function is the hysteresis-free version of the common winner-take-all network objective [11"1'85]
E = (A/2)(3 v — 1)°= 3 hivi+ 3, 4(vi). There is a straightforward generalization to the
case in which different neurons v have different potential functions ¢:(v:), but we won't work
that out here. The negative-definite restriction on T is severe because it means that 1? must be
unimodal (since each i isunimodal too), Unimodal objectives have some computational uses,
such as in the winner-take-all network or the “invisible hand” algorithm for matching [KY9 1], but
our meta-optimization results will not be widely applicable until they are generalized to multi-
modal objective functions. Nevertheless we can present the unimodal analysis as an example of the
meta-optimization of a circuit-level Lagrangian.

What mathematical conditions would mnake a Lagrangian physically implementable, so the as-
sociated dynamics can be implemented with a circuit, ant] aso result in good per formance? The
essential limiting factors for circuit speed arc the time constants (such asresist ance-capacitance



products in an clectrical circuit) that governthe approachtoany stable state of any one- or two-
clement subceircuit. T'hesetime constants must be larger than some physical lower bound, say Trast.
We aso want the stable fixed points to be minima of someneural network objective F. Subject to
these constraints, we want to minimize the slowest timne constant for the full circuit (which as we
will show is also larger than Tray Of course time constants are only defined for a local lineariza-
tion of a dynamica system, so wc must constrainthem in the neighborhood of each attainable
configuration, and wc may optimize the worst case time constant over al such configurations.
With these points inmind, we define a constrained optimization problem over a limited class of

Lagrangians of the form
LIV = > Kl ]+ ) | B, (47)
i i
where the objective takes the form

v] == *% Z’];J-ij - Zhivi + Z‘ﬁ(“s‘)v (48)
ij i i

and h includes the input to the network. Note that the cost term in (47) is a sum over kinetic-energy
terms each pertaining to only one neuron; this is a form of locality. Also the equivalence of stable
fixed points and local minima of £ can be ensured by siinple constraints on K. (47) together with
the time constant constraints and K constraints to be introduced specify the class of Lagrangians
that we will call “circuit-implementable”’. ‘I’ his class is parameterized by the kinetic-energy function
K from %% to ®, suitably constrained.

Onc important property of equation (47) is that it retains its form under componentwise repa-
rameterizations Vi = fi(%i), where fi is monotonically increasing, differentiable, and its inverse is
differentiable. (Note that such repararneterizations form a continuous group under composition.)
That is, under such a reparameterization the dF/dt term is invariant, and the ' term, while not
invariant, becomes another function 1\"[1'"i,x,-] of the corresponding new variables. So the problem
of optimizing with respect to K can be solved equivalently in any such parameterization we choose,
if only the objective ant] constraints are also chosen to be parameterization-invariant in this sense.
We will insure that condition by deriving them from physical circuit time-constants for exponential

convergence to fixed points.
The greedy functional derivative was derivedin section 2.2. Wc use that result to find the

greedy optimum of the action [ dtL with respect to the trajectory v(t). The dynamical system
that results from calculating the greedy variation of L with respect to v (i.e. the regular variation
with respect to v) and setting it to zero is

b = K[—FE;, v, (49)

where K[w,v] is the inverse of K[v,v]; on its first argument. This forces us to constrain K to be
monotonic in its first argument. Here we introduce the notation

wilv) = — B = Zq,ﬂﬁh ¢ (vi). (50)

For stable fixed points to correspond to local minima of E (for which w = O), it suffices to assume
that

K[0,v] = O and K[w,v],> O (51)
for @l wandwv. The linearization of this dynamical system at v is
Av,- = 1{'[11),-, v,—] -+ Z A,‘jA‘Uj, (52)
J
where P
A,‘j = —,———f\'[w,-, U,‘]
dv; (53)

= 1;,,ur [u’h Ui] (,[;_] - 6ij¢”(‘U,')) -+ II'YUJ,-J‘.
Now we are in a position to derive the constraints on the function Ii that result from considering
the timne-constants of the dynamics specified by A = (A,). We want the circuit elements and their



connections t0 be physically implementable, SO we’ll constrain one- and two-element subeircuits of
the linearized system (52) to be slower than ... We do this by sctting al elements of Ato zero
except for A, (for a one-element subcircuit) or {AiivA,'j,AjivAjj } (for a two-elernent subcircuit),
toget a1l X 1or 2 x 2matrix A(s) or A(7, j). Furthermore, we may arbitrarily pick the subcircuit’s
fixed point v* by adjusting the input vector h; this does not alter any element of A or A.In
that case K[“’z‘,v,-] = O, and the linearized dynamics (52) couverges exponentially to v with atime
constant determined by the largest cigenvalue {Ai} of the matrix A, i.e. by its matrix norm{|A||.
So the physical constraint would be

max||Alls <1/7eas, (54)

where A ¢ A means that A is variedover al 1 x 1 and 2 x 2 submatrices of A and over all state
Vectors V. )

The constraint (54) is parameterization-invariant. Invariance follows for any Aby applying
Taylor’s theorem at a fixed point v* of v, to get the linearized dynamics in a new coordinate
system {2: = f;(v;)}- The new matrix A is just a similarity transform JAJ-! of A, where J
is the (nonsingular) Jacobian of the change of coordinates. Therefore A and A have the same
eigenvalues (cf. [Ner70], Theorem 5.20r 5.3) and |]Al|zis parameterization-invariant as long as the
Jacobian J is not singular (which ours never are). Furthermore, the identity of the 1 x 1and 2 x 2
submatrices of A are invariant under our coordinate-wise reparameterizations {zi= fi(vi)}. So
the whole constraint (54) is parameterization-invariant. This invariance confirms the intuition that
exponential convergence to a fixed point in one coordinate system {vi} (i.e v - v* ~ c exp —At)
does not change its convergence exponent A in another coordinate system {zi= fi(vi)}.

Note that because each fi is assumed to be monotonic, differentiable, and to have a differentiable
inverse, constraints (51) are also parameterization-invariant. That's because each wi=—F |is
multiplied by fi(vi)in reparameterization{zi= fi(v:i)}, where O < f{(l’i) < .

Constraint (54) is not a sufficiently convenient form for all our subsequent analysis, so we will
relate the constraint to something more tractable. ‘I’he matrix norm of each AC Ais bounded
above and below by multiples of maxgs|A4as] (cf. [G 1.83], p. 15):

m%x[/iﬂb| < [|All2 < dim(A) m%x|/iab|, (55)
a a
whence .
max [A;| < max||A}]z <2max|Aj;], (56)
ij ACA W

where as before A ranges over all 1 x 1 and 2 x 2 submatrices of A. So a closely related but more
tractable constraint may be formulated:

max max [Aij (V)| <1/ Trast. (57)
1

Of course, the bounds of (56) hold regardiess of what coordinate system is used tc, derive A, SO
long as A is expressed in the same coordinate systemn. Still, constraint (57) is not parameterization-
invariant, since similarity transformations do not preserve the elements of a matrix. We will have
occasion to use both (54) and (57) in what follows.

Since one K is to apply to many connection matrices 7' and state vectors v, we will also constrain
a worst-case estimate of the circuit speed over al 7' in some alowable class T in the formula for
A, and over al state vectors v for each connection matrix:

maxmaxmax HAll2 <1/ Trast. (58)

As previously mentioned, we take T to be the set of negative-se. midefinite connection matrices 7',

such that the absolute values of the 7"s cigenvalues (i.e. 77s singular values) are bounded above

by tmax- Constraint (58) is parameterization-invariant but not as analytically tractable as the

alternative,

max max max |A;; (v, )| < | /7as (59)
TeT 4

v

which will enter into the following analysis even though it is not parameterizat ion-invariant,



The invariance of constraint (58) iS one reason to prefer the time-constant constraint (58) over
the “speed Hmit” imposedinsections (3. 1. 1) and (3.1.2), which explicitly depends on the choice
of variables, Onthe other hand the speed-limit constraints take into account the entirety of each
trajectory, rather than just the behavior near (all possible) fixed points.

Next we must formulate the objective function, which will be a worst-case estiinate of the much
slower time constant for convergence of the full circuit (as opposed to 2 x 2subcircuits). We want
to minimize 50w, Where

Tslow = maxmaxmax1/{A;(A(v,T))|
v TeT 1 B
= maxmaxmax AN (A7 (v, 1) (60)

= AN, T o
mjxxg}eaﬁ;([[ (v, )2

Equivalently we want to maximize
inmin||A~Y(v,7)]]5 . 61
min min ||A™ (v, 7))l (61)

Again, the objective (60) will be parameterization-invariant because the time-constants arc invariant
under similarity transformations.

Because the optimization of (60) with respect to K{v,v] subject to (58) is invariant under
reparameterizations i = fi(v;), we may change variables to ui=¢!(v;), calculate A for the
linearized w variables, restate the optimization problem, and find the optimizing K. The functions ¢
are the single-variable potentials appearing in equation (48), so each ¢; is monotonic, differentiable,
and has a differentiable inverse. The variables u; were introduced in equation ( 10). Using the u
variables, one may express the dynamics by means of the L.agrangian

~ . —~ ak
L= Zl\ [’U,,‘U,] + La—u;“n (62)
1 13
whence the equation of motion 5
- E
S >—1 _ ot X
u = K Bu;’u'l (63)

(where the function inverse concerns only the first argument, i, of f&’,a, ). This may be rewritten
in terms of wi from equation (50):

8E 1 9E

ok _ 1 0K 64
i Jv; 9'(w;) Oy (64)
which enables us to define A )
K[w,-, ;] - K;.‘l [u),-g'(u,') ) U] (65)
and reexpress the tidynamics as i
4 = K[w;, uy]. (66)
Then the linearized dynamics is
Au; = 11"[11);, ) + Z Aj;Avyj, (67)
J
where A;; = OK [w;, u;)/0u;, i.e.
—Aij = [;"u,[ulg, v,*] <j}jg'(1t;) + 5,'_,') — 1'\’,u[w|-,u,-]6,<j. (68)

(We have defined 7'=-1".)



So our optimization problem isto find A which solves the following optimization problem:

Maximize
0 = min _ JJA" u, 7))
u,w,TeT
with respect to (w. r.t.)
I, subject to
c = ( max_max|]Al]s < 1/Trast (69)

uw,7¢T ACA
and K yy = Ky and K4 >0 and K[0,u] = 0)
where )
T = {T)o1(T) < tmax and T’ is positive semi-definite}, and

—Aij = K ulw;, ) (ﬂjﬂ'(%) + 6.’]’) — KK o [wi, )05

and 01(7‘) is the largest singular value of T, i.e the largest absolute value of any eigenvalue of 7°.
By introducing new notation

plw, u] = K4 [w, v]
viw, ¥l = -K, [W’ 1] (70)

and trandating the constraints appropriately, we can treat pand v as independent functions except
for the constraint on the mixed partial derivatives. Then the problem (69) is equivalent to the
following optimization problem:

Maximize _
O = min {47 (u, D)3
u,w,TeT
w.r. t. (g, v),
subject to
¢ = ( max max||A 2 < 1/ 7ga
u,u',’l-'éi’ACA” “ / ast (71)
and gty = —vy and P > 0 and u[O,“] = 0)
where

T = {71 (T) <tmaxand 7" is positive semi-definite}, and

—Aij = ;t[w,-,v,-]g}jg'(ug) + J;j)+ viw;, u;)i;.

In the next section we will establish an approximate solution to this optimization problem: a (u,v)
pair that satisfies all the constraints and comes within a factor of 2 of the globaly optima vaue
of @. Here we simply make several observations about the optimization problem (71).

First, one of the most important questions about this problem, and our solution to it, is whether
the restriction to positive semi-definite 7”s can be removed. Connection matrices appearing in rea
applications can have bounded singular values, but rarely are all the eigenvalues of the same sign.
Second, we note the close relation of this problem to a worst-case minimization of the condition
number of A, K(A) = [[ Ajf2|[A~ 2 Since max;;laij| <[|Allz and ; and v can easily be rescaled
by a constant while preserving their constraints, the two problems look quite similar.Indeed,
maximizing K(A) over allu,w,7' €7 subject to the p and v constraints would yield an upper
bound of 7rastkmax fOr Omax- But our problem is more difficult because the extremization over
u,w,T €T is performed separately for the constraint and the objective.



3.2.1 Optimization of ;¢ and v

A useful auxiliary problem to (7 | ) is obtained by replacing (54) with the non-invariant expression
(57):

Maximize
0 = min _||A™ u, T)))5!
u,w,TeT
w.r. t. (p, v),
subject to
C(c) = (c max max|Ai(u, 7)< 1/7ras (72)
u, w,TeT Y

and iy = —v, and >0 and v[0,u] = 0)

where

T = {j‘|01(j') < tmax and 7' is positive semi-definite}, and
—-—A,'j = /L[w,', v,-] (’j‘.‘jgl(u,‘) -+ 51'_7') + U[ul,‘, u,‘](s,'j.

Unlike the original problem (71), we will be able to solve this auxiliary problem exactly.

To solve the constrained maximization problem (72) and others like it, we will use the following
proof strategy. Given objective @ and constraints C, we will maximize some lower bound objective
O_ such that O_[u,v)<Olu,v)], subject to tightened constraints C- such that C_[u,v]= Cly,v).
In this way we ensure that max(Q-|C-) <max(Q|C). Likewise we will maximize some upper
bound objective O, such that O[u,v] <O, [w,v], subject to loosened constraints C,such that
Clu,v]=> C[p,v]; this combination ensures that max(Q[C)< max(O4|C4+). Having solved both
constrained optimization, we will see that both give the same value for the objective:

max(Q4|C4) = max(O_|C-) (73)
which implies that al the extremal values are the same:
max(Q|C) = max(O_|C- ) = max(Q4|C4). (74)

Furthermore, the extremal values p* and v* of max(O_{u,v]|C_[i,v]) all satisfy constraints C
(since they satisfy C_)and thus constitute extremal values of max(Q[g,v])aswell. Thus we will
have solved the original constrained optimization problem of maximizing O with respect to C, by
finding the maximal value and arguments p*,v*) a which the maximum is attained.

In the next section we will use this proof strategy to solve the auxiliary optimization problem
(72). A variant of the same argument can then be used to conclude that the (u,v) pair for the
¢ = 2 auxiliary problem comes within a factor of two of solving the original optimization problem
(72).

In fact, using (56), we see that the ¢ = 1 version of (72) is a upper bound for (71) and the ¢ = 2
version is an lower bound. In other words,

max(O[C(c = 2)) <max(Q[C) < max(O[C(c = I)). (75)

Furthermore, C(c = 2) implies ¢ so that the extremal (p’, ") for max(O|C(c= 2)) are in the

congtraint set for max((J|C). As it will turn out, max(Q|C(c)) is proportiona to l/c, so O(u*, v*) =
O(p*,v*) is proven to be within a factor of two of its optimal value, max(Q|C). In other words,

O(p*,v")=max(0|C(c = 2)) <max(O|C) = 2 max(Q|C(c = 2)) (76)

which implies o
(1/2) max(OC) <O, v*), =max(O|C(c = 2)) (77)

and (p*,v*) is an approximate solution (satisfying the constraints and optimizing the objective to
within a factor of two) of the meta-optimization problem (71) or equivalently (69).

3.2.2 Solution of the Auxiliary Problem

We may solve the auxiliary problem for ¢ = 1, then scale it to any other ¢ by scaling Trast appr0pr_i-
ately. SO we'll assume c=1in the following solution of (72), The basic strategy will be to obtain



upper bounds by restricting consideration to diagonal connection mat rices 7', and to compare t hese
upper bounds with lower bounds that follow fromnatrix theory. [nsome cases, we will find it useful
to repeat the above reasoning to solve the bounding constrained optimization problems themselves.
For example, max(O_ [[!-) will befound by way of max((__|C-_) and max{O_;|C_4).But first

we will treat the upper bound max(QO4 |[Cy).

By simply restricting the class T inproblem (72) to the subset ’f+ of 7' matrices whichare also
diagonal, we simultaneously increase the value of [y, v] (since it's aminimum over a proper subset
of 7'€T') and loosen the constraint C[u, u]. So one lower bound opt itmization problem is:

Maximize
0, = min_ [|A"Yu, T)||5"
u,w,TET,
w.r.t. (g, v),
subject to
Cy1 = ( max _max !A,‘j(ll,j‘)'sl/Tfast
u, w, T€ET, ij
and g =—v, and p > O and v[0,u] = O)
where

T+=1{T|T is diagonal and al (7)) <tmax and 7' is positive semi-definite}, and
~Aij = pluwi, vi](’f%jy'(ux') + 8y w6

(78)

This will not be the sought-after (4 and €4, but it moves in the right direction since O <,

and C:>C+1.

If 7" is diagona then so is A. For adiagonal matrix A = diag(a;),||A~!||~! == min;|a;| and
max;;|A;ij| = max;|a;|. Sowe can calculate more detailed bounds:

04 = min_ min ,;tg(j};g,{ + 1)+ u;l
uwTeTy 4

< min min /t,-(j}.'g," +1) vy

wieT, w=0

= min min |t (Tigl + 1)
u,TETy ¥ w=0

=  min ming(|Thlgl+1)
uTeET,y ¢

= minminy; (( min |Ti])g) + ])l
uo TeTy

w=

= minminu[0, u]
u 1

min 1[0, ]

0+ [l‘! V]'

n

w=

(sincev[0, U] = O)
(79)
(since p > 0 and g} > 0)

(since minge 7 75| = 0)

Likewise we can bound the main constraint of C41, which is that (?Hgl/rfw, where

wi(Liigh + 1) + u.-l

Cyy = max_ max
uwTeTy

max max | (Thgh + 1) + v
uTeTy 4

= max max|u;(Tiig) + 1)
u,TeTy

v

w=0

w=

=  max rn,aX/t.‘(|7~;‘i|!I:' + 1)
uTeTy
= maxmaxf (( max ITiil).‘l:‘ + 1)~
u ) TeT, w=

j=

)=

= maxmax g0, u;] (tmaxgl(ui) + 1)
u 1

= max 1[0, ] (tnmxgl(") + l)
(?4- [llv V]‘

I

(since v[0,u] = 0)

(60)

(since ¢ > 0 and g} > 0)

(since maxjez, |T5i| = tuax)



S0 theupperbound optimization problem becormes

Maximize
Oy =mmigf0, If]
w.r. t. (g, v), ‘
subject to (81)
¢y= (Ilax,l[o,u]~,1,ax,/(it)+ 1)51/%

ancl py=-v, and >0 and v[0,u] = 0)
To this optimization problem we propose the solution (u%,v}):

/tl [w,u] = 1/Trast (tmaxgo + 1)
il <) @)

where go =max, g’(u). These vaues for p and v are constant,i.e.independent of w and u, so the
mixed partial derivative constraint of problem (81) is trivialy satisfied. Clearly aso s3> 0 and

v3 [0, u] = 0 are satisfied. The C; < 1/Trase constraint can also be verified:

™axy (tnma’(u) + 1)

("\+ [l‘ll—.{ﬂ 1/_’;_] = I]]{ua,)(#j‘|> [0, U] (tnlaxgl(u) + 1) I:_Tfast(tmaxg() + l)— = l/Tfast- (83)

So (i, v1)satsifies the desired constraints. The objective is Oy [;t';,u_;] = ming p} [0, U] =
1 /7tast(tmaxgo + 1). But from the constraints we sce this value is aso an upper bound for” Q4 [u, V]

as follows: .
1 /Tfast > C+ [/‘ , V]
= max, [0, ] (tmaxgl(u) +1)

> (miny g[0, u]) (maxu(tmaxg’(u) + 1))
= 0+ [[l, V] (tmaxgo +1),

(84)

which implies O4 <1/7rast (fmaxgo + 1). S0 (u%,v}) in (82) solves problem (81).

Next, we use matrix theory to find and solve a constrained optimization problem max{O_{C_)
which can serve as a lower bound for max(Q|C).

To bound @ below (in problein (72)), we must simplify {|A=!||;". In matrix notation, [|A~!]|;"
isjust o, (A), the smallest singular value of A. Also Ais given by the matrix expression

A = diag(p)(T'diag(g’) + 1) + diag(v). (85)

The smallest singular value o, (M + N) of asum of matrices M and N is bounded below by
on(M)—01(N), as shown for example in [GL83](Cor. 8.3-2, p.286). We will take A = M + N
with N = diag(v) and use o1(diag(r)) = max; |V to find a lower bound O_ for O:

O>0_= min _ [an (diag(p)('f'diag(g') + ])) - maxlu,—|]. (86)
u,w,TET i

We can also bound the main constraint of C, which is that (?Sl/'rfast- We will use the fact
that oy (M + N) <01 (M) + o1(N), which is aso shown in [GL83](Cor. 8.3-2, p.286). The bound
is as follows:

Cl, Y] =  max_max A

u, w,TeT W
< max_||All2

u,w,TET

(standard matrix norm bounds, eg. [GL83], 2.2-10, p. 15)

= max . o1(A)

u,w,TET
< max i Feliaala’) 4 1 . ’_]
< max o (diag() (Tdiagly’) + 1) + wpx v

87

=C_ [p, V]



So the lower bound optimization problem becomes

Maximize
O _ = 14,ﬁl)37l-l'67 [(r,, ((liag(/t)(’['diag(g’) + 1) - m'gxxlu,-ll
w.r. t. (g, v),
subject to (8%8)
. = ( nax [01 (diag(u)(j'diag(g') + 1)) + maxluil] < 1/ Trast
u,w, T€T i .
and gty = ~v, and p> O and v[0,u] = O).
Consider the related optimization problem
Maximize
O_41 = min_ [(rn (diag(;t)(f'diag(g’) + 1)) - m_ax[u,»l]
uw TET 1
w.r.t. (p,v),
subject to (89)
Copr = (U.T.%}:'f [01 (diag(;t)(’f'diag(g')+l)) +m'a,>c|wl] < 1/ Trast

and x> O and v[0,u] = O),

which differs from (88) by removing the partial derivative constraint that relates pand v. Clearly if
we solve this problem and find a solution that also obeys the partial derivative constraint, then we
will have solved the origina problem. That is what we will do. But the new problemn (89) can be
further simplified by observing that the optimal »? |, must be identically zero; otherwise, an optimal
(#2 41, v2 41 # 0) would have a lower value of the objective than (1241, O) which equally well
satisfies the constraint C-,; that would contradict the assumed optimality of (12 ,,,v; # O).

So to solve max(Q@_|C_}, i.e. problem (88), it suffices to (a) solve problem (89) assuming u = O,
i.e. to solve:

Maximize
O-;y = min_oy (diag(/t)(j'diag(g') + 1))
u,w T'€7T
wr. t. (1, V),
subject to (90)
C-y = ( max_ 01diag(u)(7Tdiag(g’) + 1)) <1/Tast
u,w,TeT \
and > 0,
)

and then (b) verify that the mixed derivative constraint u.=-v,, {— O) is satisfied by the solution
(124, O) to (90). Furthermore, the optimizing vaues (x-,v”) will just be (2, , O).

We will solve max(O_|C. ) using the same strategy as for max(O|C) itself: by construct-
ing an upper bound problems by restricting to diagonal connection matrices 7€ 7, =T N
{diagonal matrices}, and a lower bound problem using more matrix theory, and showing that
they have a common solution.

The upper bound for O_, is caculated as follows:

O_, = U’S,l;ré%an(diag(;z)(’f‘diag(g') + 1))
< min. o, (diag(u)(Tdiag(y’) + )
u,w,TeTy N
= min _ min #i(Thgi+ 1)
u, w, TET4? -
< min mingg(|7i)g: + 1
<, Min_ming (ITiilgi + 1) (91)

. . . g !
mmmm;t;( min |T5|g; + ])
u,w i 'fveﬂf_"
minmin gefw;,u; since ming 5, (15| = 0
minmin s, i ( jer, | Tiil = 0)
minp[ur,“]

u,u

O_4s.



The corresponding (lower)bound for €_ 4 is calculated as follows:

Cy = max_a(ding(u)(Tding 4') 4 D)
uwwe I'eT

> max oy(diag(p)(Tding( ') +1)
ww, TeTy

= max max w(Tigl+ 1)
uu [ TeTy ? . R
= min_min p(Ziigi + 1) (since 7ii> O)
u, w, T€T4 1 (92)

= maxming , max ;¢ + 1
u,w o (7eTy )

tmax)

= max min #{wi, ui]~naxg (it,) +1) (since maxgg, Ti

u.w I

= maxpfw, ul (tmaxgl(u) +1)

u.w

Coty

n

So the upper bound optimization problem becomes similar to problem (81):

Maximize
O_4+4+ = rmingfw,u]
U,w
w.r. t (g, v),
subject to (93)

C44 = (m‘%xp[w,u] (tmaxg’(u) + ]) < 1/Tfast

To this optimization problem we again propose the solution (cf. equation)

ll:++[w; u] = l/Tfast(tmaxgo + 1), (94)

where go = max, ¢'{(u). The proof for this solution is the same as that of the solution of problem
(81) by equation (82), except that now w must be optimized everywhere u is. This establishes the
solution of problem (93) by equation (94).

We must now find a lower bound max(Q- 4 _1C_4-) for max(Q-4]C-4), and to do so, we require
another matrix theory result: that for positive semi-definite matrices M and N,on(M + N)2>
on(M) + a,(M) [SgS90].

(Note on the proof so far: We could not use this result earlier since diag(v) was not positive
semi-definite. Also the use of this result and equation (92) are the only places in the proof that
depend on the assumption that 7" is positive sen~i-definite.)

Thus,

o_,

min _ o, (diag(;t)’i‘diag(g') + diag(u))
uw,TET

min o, diagpu ’f‘diag(g’)) + a,,(diag(,u))]
uw,TeT - N

min [on (diag()on (T)on (diag(¢')) + on(diag(1))
*(since ||MN|lo<||M|[2l[Nll2, [GL83] p.16)

min o (diag(u)) min on(T) ) on(diag(s’)) + on(diag(u) |

v

v

(95)

i

= minrnin #{wi, ui)
ww | -
(since ming 7 on(1) = 0)

= minpufw,u]
u,w

O 4-[u].

i



Likewise,

.4y = max_og (diag(;t)’i’diag(y’) + diag(/t))
u,w,T€7
max _ [m ((liag(/t)T(liag(g')) + (rl(diag(/t))]
u,w,T€T ]
(since [|M + N{lo < ||M]l2+ |IN ||z, [GL83] Cor 8.3-2)
max [01((liag(/t))al(’f’)al(diag(g')) + al(diag‘(u))]
u,w,TET N
(since || M N||2 < [IM|12{[N (|2, [GL83] p.16) (96)

= r:}ifcal(diag(p)) ((gpeaT_xal(j‘))al(diag(g')) + l)

IA

IN

= max(maxpfwi, 1) (tar(maxg(u) + 1)
»w - i
(Si nce n]anvej— (o1 (YY) = tmax)
C__ +- [/t] .

We can assemble these bounds into the constrained optimization problem

m

Maximize
O-4- = min pfw,y
u,w
w.r. t. (p, V),
subject to &)
Coy. = (rnax(rnax;t[U’f,ui]) (tmax(xnﬁxg’(ui)-kl) < 1/ Trast

Ut w b
and gt > O>.
To this optimization problem we once again propose the constant solution (cf. equation)
/‘1+— [wv u] = I/Tt‘ast.(tmaxgo + 1), (98)

where go=max, g (u). Clearly the constraint u*,_>0is satisfied. The C_ 4~ <1/Trast constraint
can aso be verified:

. ‘Ixx. _(tmaxg'(u) + 1)
* — * ! \ =
Covm ] = ety o) (s () 4 P20 T = e (99

So pt , _satsifies the desired constraints. The objective is O_y_[u*, _]= ming ,#24- [w, ] =
1/7tast(tmaxgo + 1). But, once again, from the constraints we know this value is also an upper bound
for O_ 4 _{u):

Cot- [H]

maXw u /l[w, U] (tmaxgl(u) + 1)

1 /szmt

v

(loo)

v

(n]inw'u /4[u), U]) (maxw,u (tmaxgl(u) + l))
=0_4- [/l, l/] tkmaxgo + 1),

which implies O_¢_ <1/Tst(tmaxgo + 1). So equation 2 4 _in (98)solves problem (97).

We have previoudy solved problem u* , . in (93) with equation (94). The resulting maximal val-
ues of O are the same for the two problems (97) and (93) (max(Q-4+-1C- 4 ) = max(O- 44 1C-++) =
1/Ttast (tmaxgo + 1)), and they are attained by the same u* = constant functions. Since these were
lower and upper bounds for max((-+|C-4), we conclude that the same p* and maximal value of O
also solve problem (90), namely the calculation of max(®.4+|C_4). But in the discussion of problem
(90) we pointed out that, if u*, , = O (as it certainly is, since /2 4 is a constant independent of both
u and w), then (u=,, u = O) is also a solution (12 ,v2) of problem (88). Thisresult is the sought-
-after lower bound for the original problem (72), and may be joined with the solution of (81) (an up-
per bound for (72)) by (82) to finish the entire problem: max(Q_|C-)= max(Q|C)=max(+|C4)
= 1/7rast(tmaxgo + 1); and the optimum is attained at (p”, v*)= (u2.,v2)=(1j,v}) le.

L1 = L/ Trast(naxgo + 1 )
V‘[w,“] = 0

(101)



is shown to beasolutionof (72) for ¢ =1.0thervalues of ciaybe absorbedintothe definition
Of 7rast. S0 we have established Lemma 1:
Lemma 1. The optimization problem

Maximize )
O = min_ [jJA7u, D"
u,w,Te€T
wor.t (s, v),
subject to
C(c = vax cmax |A(w, 7Y < 1/7as
© ((max_emax|idis(a, 1) S 1/ (102
ancl p1=-v, and > O and v[0, U] = O)
where

T = {T101(T) < tuaxand T is positive senli-definite}, and
— Ay = pfwi, vi] 331'.‘7/(“:‘) + 6i5) + vlw, )b
has as one solution
o w, ul
v [w, u]

= tmax
5 1/(¢Trast (tmaxgo + 1)) (103)
= 0.

It remains only to translate this solution for y[w,u]and v{w,u] back into a function A (as called
for in (69)) and thence to the desired “kinetic energy” or “cost of movement” function K[u,u] or

its equivalent, K[v, v].

3.23 Approximate Solution of the Meta-Optimization Problem

iFrom equation (77), we can apply Lemma 1 with ¢ = 2 to find a (p”, ¥*) pair which comes within
a factor of 2 of solving the meta-optimization problem (71) or equivalently (69). (Note that (77)
was derived assuming that max(Q|C(c)) is proportional to I/c, which has now been established in
Lemma 1) Changing back to K notation,

Kuw=1/my, K,=0, (104)

where
TH = 2Tfast(tn1axg0 + 1) (105)

is a constant. (The factor of 2 comes from ¢ = 2.) The general solution of these partial differential
equations is K[w,u]=w/Ty -t- ¢, but from the statement of problem (69) we must take K [0, u] =
c,= O. Then )

K [w, u] =z ‘U)/TH. (106)

Using (65),
fi',g,[it, ul = 1;"1[1'1,11]g'(u) = ryug’(u). (207)

This has the solution K[u, u] = (74 /2)u2g'(u) + c2(u). But the term co(u)has no effect on the
dynamics, since its greedy derivative is zero, and without loss of generality we can take ca(u) = O.
Then

K, u) = Tguﬁg'(u). (108)

This is the sought-after kinetic energy or cost term for i,and the associated equation of motion is
(from equation (63))

. 1
u; = - Tis i+ hiu ,

- (ZJ: %R (109)
vi = g{uw).

This K may aso be translated back to a Lagrangian expressed directly in terms of ii, using
K[v,v] = K[i(v), u(v)]:
Kfo,v] = %’ilz/y’(g"(v)), (110)



or equivaently ,
INIEE #aﬁw”(p). (1)

If g(u) is linear (i.e. if ¢(v) is quadratic), this kinetic energy expression is proportional to the
conventional (m/2)9* expression encountered in physics, but for nonlinear g this expression is
different from a kinetic energy in physics, (110) is the circuit cost-of-movement (or kinetic energy)
term used elsewhere in this paper,anda greedy variation of the associated actionfunctional yields
equations of motion equivalent to the Hopfield/Grossberg dynamics of ( 109).

Assembling Lemma 1 and (47), (48), (52), (58), (61), (77), (105), and (1 11), we have demon-
strated the following theorem:

Theorem 1. The linearized dynamics determined by a greedy variation of the Lagrangian

L[V] = 2:' IX’[I.),', v,'] + E,- E,,'l-),‘, with
Elv] = - % Eij Ti5viv; — > hivi + > #(vi), and {112)
¢'(v) = g7} (v) and go = maxy |g'(u)|
may be computed to be
A"U,' = f\"[w,-, v,-] + Zj A,-J-Avj
where 13
Aij = f(’w [w,-,v,'] (T,-j - (5,'_,'45”(1),')) + 1(.‘,(5,']', and ( )
w; = —FE;, and K[K[¢,v},v] = 9.
If we define the objective
M, (K) = minmin ||A™ (v, T)|)57, (114)
v TeT
where
7-= {T|oy (T") < tmax and T' is negative semi-definite}, (115)
and if we impose the constraints on K that
(a) maxy max?-eT Max e 4 ||/il|2 <1/ 7ast,
(where A runs over 1x 1 and 2 x 2 submatrices of A), and
(b) K is continuous in its first and second derivatives, (116)
(c) 1}’[0,11] =0, ad
(d  Kfw,v,.<0,
then the function
Ko, v] = (ru/2)9%¢"(v) where (117)
TH = 2‘rt'ast(tmaxgo + l)

satisfies the constraints and comes within a factor of two of the globaly maximal value of M{X)
subject to these constraints. Furthermore, the objective M, and the congtraints (a) — (d) in
(1 16), with definitions of A, K and w as in (113) are invariant with respect to coordinatewise
reparameterizations i = fi (vi) in which each fi is monotonically increasing, differentiable, and has
a differentiable inverse.

3.2.4 Notes on the Solution

If ¢ differs from one neuron to the next, and is indexed by i as ¢:, then the optimal & term will
still have the above form if it too is alowed to depend on . The proof in section 3.2.2 can easily
be altered to establish this generalization of the result.

Note that (105) relates the fastest physical time scale 7r.er in a circuit to an optimal value of
the neural time scale 74 appearing in Hopfield’s version of the analog neural network [Hopg4], ancl
the two are not the same. The best value for the neura time constant is the slowest time constant
in the system. The ratio of the latter to the fastest time constant is roughly the product of the
neural gain go and largest eigenvalue of 7'.



We note a change of variable which sitnplifies the kinetic energy termm in the above dynamics,
for use in the next section:

LW = 37, g + 375 gu- i,
AL/ () =0 = w4+ 0 /0w; =0, i.e. (118)
w; = —0F [0w;

which is supposedtobe identical to wi=—9F/0v,, vi= g(ui)(cf. (12)). This can be arranged by
choosing w:

dw, . _ 8E d
—(uf,:{li =l du. a&.d
AL dv,  dv, /du,
= 'JU.‘ _dwlj* —dw, dl?.' (119)
= %.l = 9'(u)

uw

w; :/ Idu\/g’(u) and v; :/" dw\/_(-]’(u(w)). (120)

4Discussion and Conclusions

We introduced a Lagrangian formulation of the relaxation dynamics of neural networks which
compute by optimizing an objective function in a standard neural network form. This optimization
involves a trading-off cost and functionality in the formulation of optimization problems. ‘The
Lagrangian formulation makes novel use of a greedy functional derivative, which we defined and
computed. With these tools we demonstrated the use of three levels of optimization in the design
of relaxation neural network dyunamics: the original objective ¥, the Lagrangian L, and a meta-
objective M which measures cost and functionality over many trials of the network.

Applications of the Lagrangian forinulation were divided into two broad groups: analog circuit
Lagrangians, and Lagrangians that require a hidden switching mechanism to implement as a circuit.
At the circuit level, we showed that a limited meta-optimality criterion is nearly optimized (within
a factor of two of the global optimum) by a Lagrangian corresponding to the conventional Hopfield-
Grossberg continuous-time analog neural network dynamics, we aso provided severa alternative
Lagrangians which might be preferable under less andytically tractable meta-optimality criteria
In part 11 of this work we shall introduce a generalization of such relaxation Lagrangians to cyclic
Lagrangians with clocked objective functions, which have a simple circuit implementation involving
external clock signals. We shall present suitable agebraic notation including a clocked sum and
clamped variables and use the notation concisely to express neural network dynamics for a variant
of line minimization and for relaxation networks that contain feed-forward networks.
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