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Abs t r ac t

We expand the mathematical apparatus for relaxation networks, which conventionally consists
of an objective function E and a dynamics given by a system of differential equations along whose
trajectories E is diminished. Instead we (1) retain the objective function E, in a standard neural
network form, as the measure of the network’s computational functionality; (2) derive the dynamics
from a Lagrangian function 1, which depends on both E and a measure of computational cost; and
(3) tune the form of the Lagrangian according to a meta-objective M which may involve measuring
cost and functionality over many runs of the network. ‘1’he key new features are the Lagrangian,
which specifies an objective function that depends on the neural network’s state over all times
(analogous to Lagrangians which play a similar fundamental role in physics), and its associated
greedy  functional derivative from which neural-net relaxation dynamics can be derived. It is the
greecly variation which requires the dissipation critical to optimization with neural dynamics.

With these methods we are able to analyze the approximate optimality of IIopfield/Grossberg
dynamics, the generic emergence of sub-problems involving learning and scheduling as aspects of
relaxation-based neural computation, the integration of relaxation-based and feed-forward neural
networks, and the control of computational attention wcchanisms  using priority queues, coarse-scale
blocks of neurons, clefault-valued  neurons, and other special-case optimization al~;orithnw. Some of
these applications are the subject of part II of this work.

In part II of this work we show that the combination of I,agrangian  and meta-objective sufilce to
derive and provide an interpretation for so-called clocked objective functions, a notation useful for
the algebraic formulation and design of rarnifled neural network applications. Clocked objectives
thus generalize the original static objective function I; and furnish a practical neural network
specification language.

1  INTRODUCTION

Optimization is a prominent way to bring rnathernatical  methods to bear on ttle design of neural
networks. Often the connection is made [I Iop84, C;ro88,  11’1’85] by specifying the attractors of a
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IIcllral  network’s  dyll:tlllit+ I)y [llralls of a stati( ot)jt’f’tive  flltlrtiolt  (or obyct~uf,)  (0 lx> 01)1 Iltliz{xt,
I)rovided that ttle o[)ti[tlixatioll  j)rotjlcrll can be [Jut ill a st:illdard  rleura-rlrt for]]l  (\vlli(’11 is II(]t  too
restrictive a rcq(lirelllcnt  [h’l(; !)()]).  In tliis w’ay it Ilas proven  Imssil)le to desig[l rlrural Iict\voriis for
applications in ir[lage processing [KM Y86], cot[lbi[latorial  optimization [I) W87], clustcritlg  [li(; F90,
111{!)  3], particle trackirlg in accelerators [YII1’9 1], object  rccogl~ition ~lkdll]  and otllcr  appliratio[ls.
It is also custorl)ary  (albeit Ii[llitillg) to i[ltroduce  a generic stec[wst-descent  clynat[lics  to opti[lliw or
‘(relax” the objective, without further regard to com[)utational  constraints. 1’IIc  rcsultitlg  equations
of lllotion  generally contain gradients of tllc stati(’ objective, but arc other;vis(  a(l hoc slid not
particularly suited to elaboration or refinclnent  in response to variecl computational constraiiits.  \\re
shall develop a more general approach, starting from basic principles, to formulating the dynamics
of a relaxatiorl-baseci  neural [Letwork.

IIere we start from fundamental conlputationol  considerations which, wc hypothesise, constrain
all dgnamicd systems that cou~pute.  Specifically, the cost and functionality (e[licacy)  of a conl-
putation are fundamental to its design, and in general each must be traded ofl’ against the other
in the course of optitnizing  that design. (llerc  the “design” is all the information which clirectly
specifies the structure or configuration of the clynall~ical system that performs a co~nputation.  ) In
the context of neural computations, we will find measures of cost and functionality and combine
them into dynamical objective functzons  from which one nlay derive the entire clyllanlics of a neural
network. This dynamics inclucles not only the (fixecl point) attractors but also the ec]uations of
motion governing convergence to an attractor, i.e. a mathematical rnoclel or specification of the
network itself.

Our dynamical objective functions can be specialized in many ways that correspond to the wide
variety of goals and constraints that may be imposed on a computation. We will also relate the
dynamical objective functions to a so-called Lagrangian  functional. Our I,agrangian  is analogous
to one which plays a similar and fundamental role in physics. A basic constraint which we impose
on our approach is that such a dynamical objective function or Lagrangian is optimized in a special
way, by means of greedy algorithms which don’t look af~ead in time. ‘1’his constraint allows our
algorithms to be implemented in physical hardware, and also allows us to derive nonconservative,
irreversible dynamics which can Ieacl to a desired fixed point. We will derive these algorithms by
means of a novel greedy variation applied to the Lagrangian functional.

Generally we will accept the limited type of optimization that results, but sometimes we can
do better by introducing another level of opti~oization:  a ~t~eta-opt~tt~tzation  proble~n in wltich the
(analytic) form of the dynamic objective (the I,agrangian  functional) is itself varied so as to optimize
another objective function. l’his  latter optimization may involve measuring cost and functionality
over many runs of the network. ‘l’his meta-optimization proble[n determines the choice of the exact
algebraic fortn of the Lagrangiall  and hence of the computational dynamics for a whole class of
applications. So for a meta-objective  function, cost and functionality are measured over a class of
computational problems rather than over a single instance of that class as would be the case for a
Lagrangian functional. In practice the computational cost or analytic effort required to perform the
rneta-optimization is to be amortized over many problem instances, One example of this approach
will be a (meta-)  optimality objective for IIopficld/C1rossberg dynamics [Hop84, Gro88], for which
we provide a proof that the associated Lagrangian is optimal in an approximate ser~se.
1.1 Cost and Functionality

Consicler a physical system capable of nontrivial co~nputation.  More abstractly, consider a discrete,
continuous c)r mixed dynamical system which computes, in the sense that it moclels a con~puta-
tional device or framework. Examples inclucle a general-purpose computer equipped with suitable
programs, a discrete data structure implemented by means of such a program, an individual sili-
con chip, or an animal brain. Such devices have cletailed dynamics, often approximable as large
sparsely coupled systems of ordinary differential equations, which have been designed (or evolved in
the case of a brain) to serve some set of computational purposes at feasible cost. So we refer to these
dynamical systems as computational systems and hypothesize very broadly that fundamentally, a
colnputcltlorlal Sy.stelll is dcs2gIied (or evolved) to ol)tilllizc two thtrlg,s: its cost and its fu)lctionality.
]hnctionality means what the systenl  can do, and cost means how clieaply or cluick]y it can do it.

For exan~plc, the clesign of silicon chips is largely coristraincd  by tile use of chip area  and cycle
time as the measures of cost, ancl the neccl to attain at least a nlininlal  level of functiol]ality  to make
the cllip generally  useful  (e.g. to i[nplcmcnt  an adequate instruction set in a CI’CJ chip); tradeofls



I)(,LwwII  fltilli[llizati<,ll of itli[j  area  a[]cl [[lax i[ilizat ion of (I(tiiil(’(1 Iutl[’tiona]ity are frequent in the
(Iwigtl  pro(ws.  For allottlcr  exalrI[)le  we refer to th( ir]l[)lcrrlcrrtatiorl of abstract clata structures
su(.tl iM I)riority qucllcs, for wtrictl a f~lrrctionality  sl)rcificatiorl rcqlrires  that a srrlall set of o[)erations

(such :~s adding  a l’rioriti~ed “lclrl~ut to a q~lf~re arid r~luoving  the clcnumt  with highest priority
froni the queue) Iuust bc suljported,  ancl cost is collverltiollally characterized by an asymptotic
scillirlg ru]c for the tirnf.-cost of performing a worst-case nlix of these operations on a very large
queue,

I~or a relaxatiorl-based  neural rlet which is programmed or designed to optimize a static ob-
jective function l;(x) frortl an arbitrary starting point x,n,tl~l,  typical expressions for cost C and
functionality 1’ might be

C = 4-Volume of the Net = Space x ‘1’ime (1)

and
1“ = k’(Xfin~l)  –  l;(X,*]it,~[). (2)

‘1’he sl]ace-time  product is familiar in computer science as an important measure of cost, in which
the Space term is a volumetric measure of harc]ware  usage such as chip area (including on-chip
wires) or me[nory  usage, and the l’irne  term is likewise a computational version of physical time
such as the number of clock cycles required to coruplete  a computation. (A specific volumetric
measure of wiring cost for circuit implementations of neural nets has been proposecl  in [Mjo85].)
As to functionality, the use of an objective function E is a common way to measure progress (hence
functionality) in a wicle variety of computational problems. For example, one can fit a piecewise-
constant nlodel  to a 2-d image given by the data {dij }, segmenting it into roughly constant regions,
with the objective function [1{ MY86]

where ~ij ~ 3? is a reconstructed version of the image, and s~’v E {O, 1 } represent cliscrete clecisions
concerning the probable presence or absence of horizontal and vertical edges. ~ and s together
constitute the vector x appearing in equation (2). This kincl of objective has been used to derive
functional neural networks for large-scale problenls  (105 neurons with 106 connections) as required
for image-processing [RC91,  KMY86].

1 .2  O u t l i n e

We (a) introduce a three-level optimization framework, concentrating on Lagrangians (of a type
relevant to computation) and their specialization to clocked objective functions (section 2); (b)
apply the framework to derive analog circuits such as those mocleled by the lIopfielcl/C~rossberg
dynamics for optimization (section 3); and (c) apply the framework to incorporate computational
attention mechanisms (similar to saccading  and foveatiou in biological vision) into various dynamical
systems which are clesigued to solve optimization problems (section 2 of Part II).

Section 2 introduces the three-level optimization framework, beginning with the general form of a
Lagrangiau suitable for use in attractor dynamics for optimization problems. The greecly  functional
clerivative  is defined arid calculated for sLlch Lagrangians  (scctious 2.1 and 2.2). ‘1’he strategy used
to clesign circuit-implementable I,agrangians  is ouc of mjinement  (section 2.3), in which cost aucl
functionality measures are first clefined  at a coarse temporal scale and then refined for use at finer
ti[ne scales, down to the infinitesimal time scale suitable for clynamicai  systems that moclel analog
circuits, ‘1’he  validity of the transformations requirecl cluring refinerneut  is ultimately specified by
a rneta-otrjective  function which measures network per forrnauce. One circuit-implementable form
of Lagrangiau  is introduced in sections 2.2 and 2.3, though not cornplcte]y  clerived until section
3,2, and it is illustrated by the concrete example of IIopfield/Grossberg  clynamics for a region-
srgrtlcrltatio~r neural network. A more general circllit-irtll~  ler~~cl~tablc forrrl of I,agrangian,  which
allows network dynaniics  to be controlled by a repeating cycle of objective functions rather than a
single ol).jective function, is introduced in section 2.1 of I’art 11.



where i t  is  ill~lstriited by arl algorillllii  si[llilar  to line IIli[ii[nizatioll, ‘1’llis tyl~r  ol’ [Jilgrallgi:i[l
gives rise to ttlr ~Jrac’tic’al cfac/tt’d o/,,/r’c/tLM j_urif’tJorJ  ii[](l c/ockcd SUIIL  notation of sr(liolls 2. i .2 and
2. 1.3 of [’art 11, wtlose ttleoretical  justificntio[l  requires all three  Icvels of opt i[llizatioli:  tile objective
f;, tile Lagra[lgian  1,, and ttle ~tleta-objective  M.

Section 3 is devoted to the study of circuit-level I,agr-angia[ls  with col)tinuo[ls ti[ne dy[la[[lics
.alld analog- valuccl ncu rolls. ‘Iwo novel possibilities for suctl I,agrangialls  arc discussed ill sections
3.1.1  and 3.1.2. In scc[ion 3.2 a si[[lple lllct:i-o~)tirllality criterion  for a Iirllitcd class of a[lalog circuit
I,agrangians  is presellteci.  Since this constrained meta-objective  fullctiorl Jb’f T is a function of ttle
fastest and slowest physical time scales in various circuits, it is invariant with respect to [llouotonic,
coordinatewisc  rcparameterizat ions (cha[lgcs  of variable) of the circuit.

In sections 3.2.1, 3.2.2, and 3.2,3 we prove ‘1’lleorc[n  1, which asserts that the I,agrang’ian  1,
corresponding to IIopfleld/G  rossberg dynamics yields a value of MT [1,] which is }vithin a f:ictor of
two of the opti[nal  value of MT. ‘1’his  nleans,  roughly, that the worst-case ti[lle constant for this
IJagrangian  L is at lllost  twice that of tile optil[lal  Lagrangiarl  I,*, whatever that is. l’he  proof
exploits a stlarp  global opt,  irtlality  result for IIopfrelcf/G  rossLmrg  clynalnics (I Jcrn[I]a 1 of sectior~
3.2.2). Unlike MT, the optirnizecf  functional of l,erllrna 1 cloes clepencl on tile coordinate system
chosen. A number of limitations of ‘1’hcorelI] 1 are discussecl.  ‘1’he resulting I,agrangian  for analog
circuits can be generalized to clocked objective functions, as discussed in section 2.1.5 of ~’art
II. Section 2.1.6 of Part 11 provides an instructive example: a clockecl objective function which
incorporates one or more general feed-forward neural networks (for which relatively efilcient  learning
algorithms are available) inside a general relaxation neural network.

In section 2 of Part 11 we show how simple cost cc)nstraints  can leacl to a variety of computational
attention mechanisms analogous to virtual memory protocols in present-day computers, and an
associated Lagrangian or clocked objective function to control each attention nlecllanism.  Examples
of possible foci of attention inclucle a subset of the n (out of N) neurons with nighest estimated
irnprovcnlcnt, in functionality IA F.’I, which may be tracked efhciently  by nlcarls of a priority queue
cfata structure (section 4.1 of Part 11 ); a subset of course-scale blocks in a minimal ~)artition of the
neurons, scheduled by their estimated individual ancl pairwise  contributions to IAL’I (section 4.2
of Part 11 ); a set of rectangular winclows in a two-cl irncnsional  network, each of which can either
“jump” or “roll” to a new location (section 4.3 of l’art II ); a subset of neurons in a sparsely active
network inducting all neurons which clon’t have prescribed default values ancl he[lce do require
storage space (section 4.4 of I’art  II ); and a subset of neurons determined as the Cartesian product
of several simpler foci of attention (section 4.5 of Part 11 ). The designs presented in section 2
of Part 11 are theoretically well-rnotivatecl but Inay need to be revisecl  in the light  of subsequent
experimentation, which is beyond the scope of the present paper.

Finally, a brief summary c)f our work is given in the concluding section 4.

2 DYNAMICAL OBJECTIVE FUNCTIONS AND
LAGRANGIANS

We have arguccl that funclarnentally,  a computing system is designecl by tracliug off two con~pet-
ing utilities: its cost of operation ancl its functionality. We may specify a fixed allowable cost and
seek to obtain rnaxirnal  functionality, or we rllay specify a flxecl functionality and seek to obtain a
minimal cost, or we may seek a specified tracle-off  between cost and functionality. W’e may specify
further dynamical constraints recluirecl for implementability.  With I,agrange  rncrltipliers and/or
penalty terms we may reduce all these cases to extremizing

(4)

where the systeln  is more functional for lower values of 1’, and where any clynamical  constraints
have been absorbccl into the C,O,t terr[l. Now tlie designer’s problem is to fincl functions C a[lcl F
(pcrha[)s  based on ccluations  (I) ancl (2)) which clepend orl the trajectory of son,e vector of state
variables x(t) over time, such that the global opt,  irrlization  of S can be reduced to a collection of
local decisions about how to change the individual colnponetlts  of tile state vector x at a given
snla}l time step from tin]c t — At to ti[tle t. (A local decision could be viewecl as the choice of the
value of a variable (e.g. a control v:lriable).  ) ‘1’hese decisions must however bc made by very simple



[,llysical  devi{cs  SII{II  a s  tra[lsistor  c i r c u i t s  colltaif,iflg  olIly (i I;,,, trar]sistors, SIICII  local decisions
will IJrove to lx’ atlalogous, ill a physical sysle[ll,  to a diffrrcntid or dif~crc[lcc  ecluatioll fort[luiation
of dy]la!lli~.’s that rolk)ws fro~ll tile principle of least  actiorl for tllc saltlc systcnl,

For exafll~)le, it woul(l  Iw adval]tagco[ls  iff~ i+ll(l  f’ }verc cacti sllrlls (or integrals) over a collection
ofdccisions  sl)rea(f out over space arid tilne. ‘1’0 cxl)rcss  this sullllllatio~l,  let us incfex the conlponents
of tile state vector x I)y an irldex s. Sillcc s i[ldcxes all tllc variables prcsc]lt at a fixecl titnc,  those
variables could be vic!ved as being cm bcddcd irl one fixed-tirllc slice of a space-ti[nc volume, in
which case s may also be viewed as indexing spatial locations in the system. So wc refer to s as
the spatzal  indrz ancl t as tllc temporal  inde.r; the entire trajectory of a computation is spccifiect by
{x(s,  t) }. ‘1’}len the sum over clecisions woufcl  be

S=A x C,,t({x(s’, t’)})  + B
decwions(s,  t)

~ ~\,t({*(s’,  t’)})

deci.ions(.,  t)

(5)

where each function L’., t or I’\, t ~nay depend on only a few of its arguments {.r(s’, t’)} and hence on
only a small part of the trajectory near (s, f). In ecluation (5) we may introduce a continuous time
axis by replacing the temporal sums by integrals; rve can do this by integrating over t and summing
over s. Following the analogy with physics, S is refcrrecf  to as the “actiorl”.  ‘1’he decomposition (5)
would bc a useful first step towards enforcing spatial and temporal locality on the dynamics of our
computation, since the decomposition distributes S over a sum of terms which pertain to particular
spatial and temporal locatiorls.  LJnlike space, time has an intrinsic clirectionality,  ancl we will also
need to enforce causality in the optimization of S. llcfore seeking sl~ecific forms for C,,t and l’~,  t,
we will discuss locality and especially causality.

A I)atterll  of communication is implicit in the dependence of C,,t  and I,\,t on z(s’,  t’). If C.,t
and ~’\,~ were each a function only of T$,t, rather than a functional of the entire State vector x(t’)
at matly  different times t’, then every clccision terln  coulcl be optilllizecl inclepcnclently,  and the
associated computation would proceed without arly cortlr~l~ltlicatio~l. ‘Ibis is a trivial case, however,
and generally we will have quite a bit of interaction (via specific C and F terms) between vari-
ables defined at different times and places. (For a llowtrivial example see the region-segmentation
I,agrangian  of section 2. I .2.) T’he pattern of communication is defined by a communication graph
whose nodes are space-time sites (s, t) and whose links record the presence or absence of functional
dependencies of C~,t or F\, t on trajectory variables z defined at other space-ti~nc sites  (s’, t’). We
want to keep this implicit pattern of communication relatively local, and we insist that it be causal.

l’hc  effect of causality on the co~nmunication  pattern is twofolcl. (i) Causality favors the adoption
of a conwmtton  in which i~lteractions  between variables indexecl by different times are entirely
incorporated in the C ancl 1’ terms indexed by the later of the two times, ancl do not enter into the
C and F tertns  clefinecl at the earlier of the two times. ‘1’hat way, every Ct or F\ terttl  clepends only
on variables indexecl by times t’ < t. l’his is callecl the retarded interaction form of S. (ii) If we
introduce computational dynamics by sequential optimization, at successive time steps t’ of sets of
variables indexed by t’, then causality denies a computation the possibility of optimizing all terms
of S with respect to any one variable r(s’, t’). Insteacl, each variable r(s’, t’) can only be varied
under an objective involving those terms of S all of W11OSC  variables x(s”, t“)  are optimized at the
same time ZM z(s’,  t’) or earlier. ‘1’he values of all other variables (those indexecl by t“ > t’) are as
yet undeterminecl.  Which terms of S are eligible to participate in the variation of z(s’, t’)? Any
C’t or l’t term for which t > t’ depends on variat)les  (such as z(s, t)) which have unknown values
at tilnc step t’ and are not being varied at that tirnc step. SUCII  a term is is ineligible; so we are
restricted to those terms of S indexecl by time t < t’.

Note that the eligible terms of S with t < t’ arc Inostly irrelevant to the optimization of z(s’, t’),
since point (i) imples  tl]at the t < t’ terms do not contain the variable z(s’, t’). ‘l’his leaves only
the t = t’ terms of S to determine T(s’, t’).

Of course, an acausal  optir[]izer could achieve a better value for S by being less “greecly”
(increasing  present C’, + fI\ ter[ns  to decrease future ones hy a greater amount), but as argued
a b o v e  causdtt~j  jorces our dryiar)lics to k grcdy. III other worcls,  the causality constraint only
lmrrnits  a partial or grced?y  o],tt~nization  of S, and tllc nature of the partial opti[nixation  depends
OIL tile deco[npositioll  of ,5’ into a sum over clecisions of callsally  constrained tcrnls.  ‘l’his basic
Iir[litation  to causal or gImdy dynonltcs  will Lc [l~orc or less severe depending on which of many
possible clworllpositions  of C al]d 1’ over ti[ne is ctlosen.



WC shall cfcfinc Ltle g~’ccd~  dc’1’~ljatlllf’ of ,5’ with rcw[mt to .r(.s’, /’) as king tlic OC<lillil  I’~ dcriviltivc
of the sum of such eligible (t < t’) tcrllls  of S’, and use that derivative to dcfiIIe o[)til[iality  of J(. s’, t’).

I)ut  tliis  greedy derivative ilnridiatcly silnplifics  due to tllf rftarcled  interaction f’orlll  off’ and If’:

I1ow can we find functions L’(x{t’}) arLd I“(x{t’}) that specify (via opti[nizatioll  of S) all clltire
colnputational task and yet break up into a su[tl over easily colllputed  dccisiol~s? ‘1’his is a statement
of the problcnl  of algorithm design, for which there is [1o general answer, but  we can still invcllt so~ne
fairly general techniques. l’hc  cost function can be regardccf  as some kind of space-ti[nc volume to
be minimized (e.g. circuit size times the duration of its use) and can be decomposed into a sum
of space-time volumes for the many elementary decisions or state changes, at iuclividual  locations
and times, that comprise the associated cornputatiori:

c = Vol = ~T C$vol,,  t. (7)
S,t

Also the functionality F(x{t’}) is often measured by some definite objective functic)n  I;(x), such
as total tour length in a traveling salesman proble[n [11185], and this can be decolnposecl over time
as (cf. equation (2))

For example, a standard form for analog  neural networks’ objectives E is [MG90]:

(8)

(9)

which encompasses many network designs including equation (3). IIcre v takes the place of Z, and
the indices i, j, and k take the place of s. In equation (9), vi is the output value of neuron i; Tij

and ~~jk  are connection weights between two and three neurons, respectively;  ~~i is a bias input to
neuron i; and @(vi) is the potential function for neuron i and determines the transfer function gi
(e.g. a sigmoid function) through

(lo)

Often equation (9) is further specialized by setting ~;jk = 0.
As a complete example of a dynamical objective function we present, in the following equation

(11 ), a dynamical objective for the IIopfield/Clrossberg  dynamics of an analog circuit. This dy-
namical objective will be derived in sections 2.1 and 3.2, using the fact (to be established in section
2.2) that, for a continuous-time analog circuit model,  a condition for the greedy optimization takes
the form of a (functional) derivative d/6v (where ii = dvi/dt). The dynamical objective is

‘)S’[V(t),  V(t)] = /dt~ (A’[i’:, vi] + ~~’i ,
i 1

(11)

where I([ti, v] is a cost-of-movement term to be clerived in section 3 (see ‘1’heorern  1). Varying with
respect to tii and making use of the form of E given by equation (9), we will find analog neural-net
equations of motion as expectcc]:

(12)

IIere Tff is a time constant. ‘1’hr clynamical  objective function S of ecluation ( 11 ) can be recognized
as an instance of (5) by identifying the neuron index i with the space index (i.e. co~tl~)oncnt
inclex) s and the time integral J dt with the tcrnporal  sun) ~t; also L’Sf —} II[i)i (t), tji (t)] and
F’~t ~ (dI;[V(t)]/tlL~l  )ti*(t).



!s = ~L(l)

=  ~ls,t({x(t’)})= ~((.:s,t+f;,t) (13)

(S,t) (,,t)

(Note that the sum over titne  IIlay beco[ne an integral when we consicler  time steps of infinitesimal
duration, since theextrafactor of At required to get an integral is just a constant that doesn’t affect
the solution to an optimizatic,n  problem.) For our neural network design pcrrposcs the Lagrangian L
is generally the most useful of these alternative notations, particularly for algebraic manipulation,
because the temporal su]n h,as the same algebraic form from one problem to the next (and hence
is uninformative), but the spatial sum cloes not.

F;xtrenlization  of sLIch  functions (or functional) provicles a foundation for the stucly of many
clynamical  systems including quantum field theories. 1’ and L’ might with lower confidence be
identified as classical kinetic energy and potential energy terms respectively, but  m we will see,
many details are different. ‘1’hese  differences prevent a literal-minded mapping of our ideas and
constructs onto the formalism of physics. In particular, causality is not built intc) physical theories
by means of the partial optimization of S, but in a completely clifferent  way that is inconvenenient
for treating irreversible dynamics sLIch  as our colnputations;  therefore neither the dynamics nor the
I,agrangians  of physics can be called “greedy” in the sense wc use the term.

l’here  are a number of other ways to derive clissipative dynamics frortl Lagrangians, as sunlrna-
rized in [VJ89]. Allowing explicit time dependence, such as an overall factor of et’f, in a conventional
Lagrangian  permits physically clamped second-orcler  dyna[nics  to be derived. The strategy of the
approach is to start with a differential equation, derive an associated I,agrangian  (this is called
the inverse problem of the calculus of variations, ancl it may have many solutions), and use that
I,agrangian  to analyse  or approximate the solutions of the differential equation. Our strategy and
methods differ, since the Lagrangians are obtained from cost and functionality considerations and
hence are known before the clifferential equations are known. Moreover these Lagrangians require
an unconventional variational principle (the greedy variation) to procluce  acceptable differential
equations. Nevertheless there may exist some deeper relationships between our greedy Lagrangians
and previous approaches cliscussed in [VJ89].

2. I Cost and Functionality Terms

Equation (8) for F is particularly appropriate for a net whose clynatnics is intended to converge to
fixed points that encode the answer to a static optimization problem, such a-s the standard neural
network form of (9). Equation (8) represents a substantial specialization from the general set of
functions Ft({ic(s’,  t’)}) = ~$ F.,t({~(s’, t’)}) that appears in (5). For in equation (8), Ft depends
on t only through its arguments and not through its subscript, so that the algebraic form of Ft is
independent of time (i.e. I’t is autonomous):

II; ({z(s’, t’)lt’ < t}) = E[x(t)]  - L’[x(t – At)]. (14)

Jn the simplest case of static special-purpose neural circuitry the computational cost is just a
constant N, reflecting the harclware committed (neurons and connections), times the length of time
it is usecl:

<1 = ANttoto[ (15)

for fixecl hardware, or the more general

JC’=  A  dLN(t) (16)

if the arllount  of hardware devoted to the network can vary over tirrle (a possibility we will consider
irl detail in section 2 of 1’art  II. Once N is allowecl to vary with time, it becomes relevant to consider
the cletails  of how [nllch nocle and wire volume is reqtlirecl to inlpleltlent  clynau]ically  a given pattern
of cotlncctio[ls,



Itquatiolls  ( 14) arid ( 15) go part of ttlc way towards dcfillillg a Colllputatiollal  sys(crll, I)llt they
arc not yc’t cfetailcd  enough to specify a parallel al,gorithln or analog circ-uit  th (at cj~)ti]llizcs 1>’. ()~lr
Illaill line of <lcvclo~J1llcnt will be frorll  tllcse equations towarcls  an analog circuit. IIut first Jve note
all alternative strategy for generating ~~arallel algorithrt]s  kvllich wilf be drvvlolml  it] s(v’tio!ls  ‘2. 1
and 2 of I)art [1.

2.1.1 Remarks on Some Generalizations

It is by no means necessary to specialize the expression for S’ ill (5) all tile way to tlte forlll irl ( 14),
if some other way to minimize the original action in (4) can be founcl.  Most alternative sets of F
functions would pertain only to one particular objective function A’, but there are also systematic
[nethods  for deriving F& from 11 in which F’t benefits from retaining an explicit tinle clependence.
For example, F’t might take the form of AEa(f)  for one of p possible objectives L’a, where tlic choice
of objective as a function of tin~e (given by a(t) E {1, 2, . . p}) is made in a cyclic fashio]i. l’hen
(14) is replacecl  by

I;({x(s’, t)lt’ < t}) = ~&(t) AEa[x(t),  x(t - At);  x(tO1d)], (17)
a

where @Q (t) = 1 if cr = cr(t) and O otherwise, and where

AEa[x(t), x(t - At);  x(tO1d)]  = &[x(t);  x(tO1d)]  – &[X(t - Ai); x(tO1d)]. (18)

liere we assurnecl  that t’ takes only the values t, t – At and t“’d, where t — At is the previous
time step in the current a phase of the cycle and i old is the firlal tinle step of the previous ph~~e
ct – 1 in the cycle. Dccause of its explicit dependence on a cyclic clock signed et(t), fi;a is called a
clocked obj’ectiw junction. It Inust be fundamentally connected to the original objective function E
if the resulting cyclic I,agrangian  is to have the correct functionality, but there are several ways of
making such a connection. l’his  possibility is explored further in section 2.1 of I’art  II ancl appliecl
extensively in section 2 of Part II.

It is troubling that there exists a wicle variety of different local and causal Lagrangians  (cf. (5))
each of whose dynamics will partially optimize the original dynamical objective function or action
given by (4). Ilow do we choose one over another, and what are the minimal criteria for any to
be acceptable? In other words, what are the rules of the game for proposing distributed cost and
functionality terms in (5)? ‘l’he answers must ultimately be related to algorithmic performance in
minimizing the action itself (see (4)). We begin our work on these questions in section 2.3.2.

2.1.2 Refinement to Continuous Dynamics

For the moment, let us assume that (14) and (15) describe an acceptable Lagrangian, which is a
decomposition of (1) and (2) to finite-sized time steps, and try to further refine them to a dynamics
with infinitesimal time steps, i.e. continuous time and continuous-valued (i.e. anZL]Og) variabies.

A stanclard  form for analog neural networks’ objectives E is given in (9). q’he corresponding
functionality term F’ may be derived with a series of three design transformations. Start ~vith an o1>-
jective  function J.’[v]  of continuous variables V1 v,,, ancl discrete O/1-valuecl  variables V,,, + ~ . . v,,,
with #i (vi) = O for the latter (where @ is defined in (9)). ‘1’he first transformation is to reformulate
the discrete variables as continuous variables each with the constraints that O < Ui < 1. ‘1’his step
may introduce new local minima at the intermediate values of u,; if this possibility can be analyzecl
away, or designed away by adding a “bump term” such as the penalty term ~~i ~itji ( 1 — ~ji) to
E, then we have a valid transformation. l’he scconcl transfor[natioll  is to replace the constraints
with penalty or barrier terms ~i (vi) addecl to F; for unconstrained, continuous-valuecl  optimization.
Steps 1 and 2 together may sornetitncs  be replaced by the one-step Mean Field ‘1’hcory  derivation of
continuous-valued objectives for discrete-valued variables (first discussed ill [I IopS4]  ar)d cxtendec]
by others inducting [Sir]190, 1’S89, G\’91]) with improvecl control over local rlli[lirlla. Ilut  ill section
2 of Part II we will have occasion to separate the two steps,

As an exanlple  of these first two steps, the i[nage region segmentation objective (3) can bc
refinecl to an analog neural  net with cliscrctc  variables s E {O, 1 } replaced by continuous variables



lE [0,1]:

(19)

Firlallyl wc must refine the global objective E irlto an arbitrarily large number c)f intlnitesimal-
step AE terms for use in the simplest cotltitlllo~ls-tillle dynarllics,  Using ‘1’aylor’s theorem for small
At,

F’coarse = Ah’ = At ~ E,itii = AtF~llC[v] (20)
i

(S0 that ~, IL0arw3 ~ J dtFfil,.), where

(21)

and v is a vector of variables comprised of all the f, 1“, and /h variables of (19). This third
transformation step does not yet specify the associated transformations of the fine-scale cost term
L’fine[{v,,t}]  which we will work out in section  3. ‘J’he result will be of the form G,,,[v1 = xi ~~[~i, vi]
(cf. (117) of section 3.2). l’ogether  with (20), this gives us the I,agrangian

(22)

and the action functional

s=
/

dtLfir,c. (23)

l’his action is in agreement with equation (1 1). For the region segmentation example, dFj/dt)i  is
given by (21).

In summary, we have tr-ansjormed  the problem three times along the way to the circuit-level
functionality term in (20) and an associated Lagrangian. ‘1’he transformations are intended to
preserve (approximately) the fixed points ofthc equations ofrnotion, while making the dynamics
progressively rtloreirllplenlerltable  manarlalog nelrralr~etwork.  I]oth thetransformations) validity
(as measured by the functionality term of the original coarse-scale action (4)) and their efficiency (as
measured by the cost term of (4)) must still be demonstrated, since the finer-scale versions of this
action functional are only partially optimized. T’he three transforrnations used to obtain equation
(20) were: (l)discrete variat>les +continuous  variables, corlstrairled  to intervals; (2) constraints
+ penalty or barrier terms in unconstrained, continous  optimization; and (3) tenlporal refinement:
F,= AE%sdtfi.  (rI'herefinerllent  of Cmuststill beworked out  before wehavea derivatiorlof
the fine-scale I.agrangian.  See section 3.)

2.2 Greedy Functional Derivatives

Based on the foregoing work, we seek to derive continuous-time dynamics from suitable I,agrangians.
This requires formulating the greedy derivative of (6) for use with continuous-time dynamics, hence
formulating it as a functional derivative.

Following equation (5), we argued that the local cost ancl functionality terms F$,t and C’,,t in
a Lagrangian shoulcl depend on variables z$,,t~ only for t’ < t, and that only variables with t’ = t
shoulcl be varied in the optimization of F,,t  + C~,t; all values of earlier variables are helcl fixed.
‘J’hen F ancl L’ are said to be in retorded intcructio)i  ~orw. ‘1’hese  constraints can be irnposecl on
any continuous-time Lagrangian in differential form,

I,(x(t), x(t), x(t),. .), (24)

as follows. First wc replace the clerivativcs by difference expressions (x(t) – x(t -. At))/At, and so
or], taicillg care that the largest time t’ to appear  is t. ‘1’his yields an approximate cliscrete-time



I,agrangian,  wllicl, we t,tlcn ol)tilllize  wittl reslwcl t o  x ( t )  l,y dilIerelltiatiIlg  to lilld tlic dyllallli,s,
‘1’licrl we take  tile linlit  as At ~ (). Ill tliat way ~vc ensure that t’ < ( (retarded iliteriutior)  forl)l)
slid that only variables for wllicli t’ = 1 arc actually o~)ti(tlimd at tirlle f, as requirml.

‘1’his procedure for finding tile co[lti[ltlo~is-ti[ll(’  dyualllics  for a I,agrangiafl  ill diflirclltial forlll
(24) may be forlllalized  by means  of the greedy ~u,ictio~lal dcc~uat,ue  i[ltrod(lccd i,, [hIG90,  hlhl!) I],
IIere we provide a ncw formal clcrivatiou of the greedy functional derivative 6G Jvliicll cxl)loits  tile
retarded interaction forln of a Lagrangiall,

I,ct N be a nornlal  forln operator 011 derivative expressions:

fv[z(t)] =  z(t),
N[i(t)] = (z(t) – x(t  –  A t ) )  /A t ,
A’[i(t)]  = (r(t) –  2z(t –  At)+ z(t –  2At))/(At)2, (25)

. and so on. Also
N[F[y(t)]]  =  F[N[y(t)]],  y  =  T(i), i(t), i(t), i f  1’ i s  autonor[tous.

So N serves to replace time clerivatives by temporal difference expressions for which t’ < t, which
we can differentiate with respect to x(t). In other w’ords, it suflices  to put  a Lagrangian  1, into
retarded interaction form, so that a greedy variation can be taken while preserving its value in the
At -+ O limit. (N is known in nu~uerical  analysis M the “bacfcwarcl divided difference operator”. )
Then thegrecdy functional derivative may redefined, evenon I,agrangians  L not yet in retarded
interaction form, so as to agree with (6): For any small At >0,

c$~
—~d@(&i(&...) s ~dh(~-t)

a
s~x(t)

—NL(f(~, ti’(i), . )
r%’(i)

—— &VL(2(t),i(t), . . .) (as in (6))

—— &l/(N[r(t)],  N[i(t)], . )

8
—L(z(t),

I(i) –r(t – At)——
dr(t) At ‘“”” ))

(26)

where the last step used (25). Continuing,

& 1 Cm(z(i),i( i),.. .) =
8 r(t) – x(t – At)——

c$~x(t)
—L(x(t), - At ,.. .)
(%(t)

m
—-  (L

—.
~=; (A:)n 8(dnz(t;/dtn)(t)

)L(r(t), i(t),...)

(by the chain rule)

= /cti,(t+(~ ‘ d )L(4H),...)
~=o (At)n  d(dnx(t)/dtn)(~

—— (5~=0 (At)’l 6(d’’z&/dt’’)(t) ) /
dtL(z(:), i(:), . . .).

(27)
IIere the functional derivatives 6/6(d’’r(t)/dt”)  are taken to be independent of one another as partial
functional derivatives (so for example c$i(~)/6x(t)  = O, rather than di(i)/r5r(t) = dd(~ – t)/d~ as
would be the case for total functional derivatives).

So the greedy functional derivative CfG/C5GZ(t)  is given by the operator equation

(28)

where At is infinitesimal, Again, the conventional functional derivatives are independent of one
another (they are partial functional clerivatives).  Necclless  to say, the highest powers of ( l/At) will
dominate all others in the limit At -) O. For exa[uple  if 1. depencls  on v ancl v, but not 011 hi,gller
tilne clerivatives,  then the greecly  functional clerivative will be (1/At )d/dv.  ‘rhis will generally be
the case for our circuit Lagrangians.



\Vt, CiLll (Ieriv<’ a[lalog, [;<jlltillllolls-ti[]lc network
{l(ri~,ativc to tllc collti[tous-tilnr  [Jagrallgiall ( 2 2 ) .

[Iy[lalllics  Ijy a[jl)lyil]g tllc ,grwdy functional
Sillcc tli(, Ilig,llcst t i l [ le-derivat ive irl ttle l,a-

gratlgiatl  is ij for oattl variable IJ,
tile equatiotls  of Inotion becor[ic

ttle grdy functional derivative is [Jro[)ortional to 8/6v. ‘1’heII

(29)

l~or fi[i~,  u] = (l/Z)T}[iJ~/g’(g-*  (l~i)), the circuit-level cost tcrlll  which will be derived in section
3.2.3, ancl for an objective function E given by actuations (9) ancl (10), the greedy variation equations
become IIopfielcl/G  rossberg dynaltlics:

‘1’his type of clynamical  systeltl  describes an analog rleural network, and we will make no clistinction
bct,ween such a c]ynamical system and the neural network itself.

As an example, we may work out the cfynamics  for the region segmentation I,agrangian  given
by (22) and (19). Specializing the dynamics of (30) to the region segmentation objective (19), we
can expand the first term of the objective to find a potential term (A/2)~,~ for the -f,j variables.
“1’hen we find the standard Hopfield/Grossberg  equations of motion for this analog network, which
are

Tf&lj  + e~j z A di j  – ll(~ij – -fi+l,j)(l – f~j) - -  lJ(-f,j – ~i,j+.r)(l  – ~~j), -fij =  (l/A)~ij,
r~k~j +  k~j = lJ/2~i~(\i+l,j –  \ij)z –  11, l;j = g(k:j),

hTk k~ + kij , = 19/2~i~(f1,j+l  –  fij)2 ‘/1, 1:. = g(qj).
(31)

2.3 Theory for Refinement to Circuit Lagrangians

We have found a path of argument from computational first principles to specific neural networks,
but the status of some of the steps along the path is still unclear. The basic problem is that
various transformations of the original action functional (4) are recluirecl to get an implementable
dynamical system, and limitations of causality and the simplicity of elementary processing devices
recluire  that the spatially and temporally distributed Lagrangian functional (such as (5) or (1 1))
be optilnizecl  only partially (as irI the discussion following (5)).

Our approach to this basic problem is to catalog a variety of useful transformations that lead
towards circuits or parallel algorithms, ancl to re-use the fundamental dynamical objective function
(4), or closely relatecl quantities, as a measure (i.e. a criterion) for judging the success of such
transformations. Such a criterion may be called a meta-objecttve  since it is an objective function
used to select a dynamical objective function for the neural network dynamics.

l’his approach may be thought of as a symbolic search procedure to be carried out by human
designers, who select the likely transformation secluences, with machine assistance in evaluating
them and perhaps also performing them. On occasion it may be possible to elirnirlate  the search
procedure by proving the (meta-)  optirnality  of a given Lagrangian, but we CIO not think that this
will be possible in most cases.

2 . 3 . 1  Transfornlations  of  Lagrangians

Itecall  the tl[ree transformations leading to circuit-level I,agrangians  in section 2.1.2:

T1. cliscrete variables -+ continuous variables constrained to intervals

T2. constraints + penalty or barrier terms in unconstrained continous  optimization

T3. refincmellt:  F’, = AE x ~ dt~;, (’1’he refinement,  of C; will be worked out ir~ section 3.)

Wc conlrnent  on each of these transformations.
‘1’1  arlcl ‘1’3 arc rcqllirecl to achicvc a circuit illll>lelllerltatioli,  but Inorc  generally they serve the

p(lrposc of nlakirlg  a parallel algorith~ll,  I)iscrctc-tirile  ul)clate schemes r[lay be introduced irlsteacl,
I)ut  SOIIIC care is required so that the ul)clates  of indelwrlderlt variables done irl parallel clon’t }Lavc



tiIC> joint  cf[r’ct  of itlcrt>asitlg  ratllcr  Ltlall  (Im-rcrrsi[lg  /’,’. [<’or  PXarIIIJ[C)  for SOIII(  [I[>tw’orks i[ is [xwsit]it)
(0 “color” tllr variablm  wittl il Sllliill IIul]ltwr of colors  SO  that  110  tlvo collllr?ctecl  Viirial)lPS  (J’, ILIICI

JJ Such ttiat ‘l~j #. 0) have tile sa[tle color; then cliff’crcllt colors CaII be upclatcd at, diflrrrllt  tinles
ill a clockrxl  objective functiorl, arid all the varial)lcs of tile sa[ne color  can be updatml  ,at ollcc
(cve,l by discrete  ju*ll[~s)  kvilllout i[)terferc]]ce  in 1;. (l[,tcrfcrc*Lcc  would *tlca*l tliat several variables
woulcl each, if updated alcrnc, dilnirlish  F.’, but if the sanle uldates  were dorle togrtllcr tltcll l; could
increase. ) Such (fairly standard) ~Jarallcl update scllclllcs are not so in]portant  fo[ c-c)liti[lc>~ls-tilll(:
and arlalog-valued  networks, whose descent clynan)ics  are explicitly parallel.

‘1’ransformations like ‘1’2,  which incorporate static collstraints  into the static optimization prob-
lem, may change the nature of the optimization problem significantly. Penalty arid barrier terms
on constraints that involve many variables destroy locality, unless they are further transfor[ned  to
a local form by methods sLIch  as those described in [M G90]. In this case a millir[lization  problem
is replacecl  by a saddle-point prob[e[n. Alternatively one can introduce Lagrange multipliers, but
that also changes the static optilrlization  into a sadclle point problem [1’1187], Either  way, the
dynamics associated with the La,grangian functional 10SCS its obvious convergence properties (be-
cause limit cycles arouncl  a saddle point beconle possible), and it may be necessary to engage in
TJ~eta-optin~zzatzoTI of some kind in orcler  to secure convergence for a local circuit implementation.
Another alternative, which recluires  clockecl objective functions but does not explicitly introduce
saddle points, is to use an algorithrrl  similar to the “gradient projection algorithm” or “scaled
gradient projection algorithms” [11”1’89] to repeatedly reestablish the constraints as the dynamics
proceed. Such an alternative will be employed in section 2.1.6 of Part II.

In previous work [MG90]  it has been clernonstratecl that static neural network objective functions
may be transformed in a variety of ways in orcler to acheive design goals such as reduced wiring
cost or attaining an implementable form while preserving the functionality (the f(xecl points) of an
optimizing neural network. Likewise, in this paper Tvc will introduce a number of transformations
from one Lagrangian to another that satisfy design constraints while preserving or improving the
functionality of a cornputatiorl.

A fundamental aspect of (5) is that, clue to its linearity, it naturally supports the hierarchical
decomposition of computational dynamics into large state changes (or decisions), each achievecl
through many smaller state changes or decisions. This is in analogy to multiscalc  or mrrltigrid
algorithms from numerical analysis, or to renormalization group ideas in statistical physics, or to
the idea of stepwise refinemerlt  in the desiga  of computer programs. As in (5), the action S can
be decomposed into a sum over state-change decisions. FJut if each of these decisions is in turn
made by a dynamical system consisting of a secluence of sub-decisions at a finer time scale (which
may also involve a finer spatial scale), then we can relate the two time scales (“big” decisions
and “sub-decisions” ) and reexpress the action in terms of the fine-scale decisions alone ( “small”
decisions):

S = A x Cj,~({X(t’)})  + 11 E Fj,~({X(t’)})

big Clecisions(;  ,i) big decisions(?,i)

r 1
=A

‘1
E C,,,({x(t’)})

big  deci.qior)s(jr~)  sub-decisions (s, ~) J.

+1{ ‘Jgde~@i,i) [S.b-d.Zon.($,t) F’’t({x(t’)})]
= A E C’,,t({x(t’)})  +  11 x I;,t(

s m a l l  d e c i s i o n s ) small decisions(s,  t)

X(t’

(32)

})

Notice that the step from eclrration (4) to equation (5), or more specifically to (7) ancl (8), can
be given a similar hierarchical interpretation: we arc expressing a single clrrantity,  optimized over
the entire circuit convergence time, as a su[n of quantities to be optimized [Iiore  locally in time or
space. ‘l’lie further refinement, to in finitesirllal  time steps, (23), is another example. ‘1’hcn ecluation
(32) subsunles  all these cxa[np]es of hierarchical dcsigrl.



2 . 3 . 2  M e t s - O p t i m i z a t i c ] n

Li’c lIave  discllsscd tllc nccrssity  for SOIIIC criterion or figure of ltlerit by which to c-ornparc alternative
I)agril[lgialls alIcf tile dyrlalllical  systcnls  to wllicll tllcy give rise. (;eueral]y  we start with some global
olj.jm-tivc  fuil(”tiou such as S in (4), t,tlcn transfor[n  it though a series of spatially arid temporally
localized I,agrangians  of the fc)rm (5) to a final circuit-level I,agrangian  t., which is only partially
o~jtimizcd (i.e. is grccclily optimized) by the dynaruics.  h’inally wc wish to quantify the performance
of the rcsulti[lg  dyuanlical  systerli,  i.e. to evaluate tile quality of the associated computation, for
cxalnplc  by computing the value of S at the end of a run. ‘1’he [nets-optimization problem is to
optimize the resulting evaluation, treating it as a functional of the exact fornl of 1,.

An obvious way to do that is by means of a retrospective (a posterior) evaluation of the original
. . .

ot)jectlve  S of (4). I)ut  optzmtzzng  with respect to this protocol of retrospective evalrzatlon of SCOarse
seems out, of the cluestion, since that involves many repeated tests of the zleural network dynamics
with clifferent  values of the parameters that specify the (transformed) I,agrangian  and is therefore
far more expensive than one relaxation run of the zletworlc. (rl’he pararneterization of 1. may involve
real-valued parameters or may simply be the discrete choice of a sequence of transformations to
derive L froln SCOa,,,. )

Fortunately the cost of optimizing S...,,, as a function of the form of L (i.e. the cost of meta-
optirnization)  may by amortized over many inputs h (cf. (9)) to one network, drawri according to
some probability distribution, or even over many network connection matrices T drawn according to
another probability distribution. Optitnizing  M may be very expensive but the expense is amortized
by using the resulting dynanlics  to improve the performance of many different ccunprrtations.  An
apparent obstacle is that different h vectors and 7’ matrices will in general have uz]related meta-
objectives M, so amortization may be difficult to accomplish.

Such amortization may still be achieved if the meta-objective function M[L]  is alterecl to become
an average-case measure of SCOarsd:

M[L]  =< S,.., s,[1.] >A,7’  . (33)

Just as in neural network learning procedures, the distribution average would be sampled by a
finite sum over a training set; this sum would be optimized, and then a further sampling could
bc made to test generalization from the training set to a testing set. If such generalization is
to be expected, either on experimental eviclence or according to theoretical criteria such as the
Vapnik-Chervonenkis dimension [Vap82, IlH89]) then arnortizationw  illbepossible. For the cost of
computing (hence of optimizing) MII,] is tnultipliecl  by the size of the training set, but that large
initial cost is then effectively divided tzy the nu[nber  of times that L is usecl subsequently, which
may be far larger tha]l the training set. Thisgi vesthe desired amortization.

Alternatively, one could amortize the cost of optimizizlg  M by taking M tc) be a worst-case
rneas~lre of Scoarse which can be wtimizcd anaMi CaW. The  worst case performance is very hard
to evaluate experimentally, but it may tzc more easily subject to analysis than the average-case
performance, at least if we are allowed to alter the form of Sco~,s, somewhat. ‘I’hat will be our
approach in section 3.2.

3 C I R C U I T  D Y N A M I C S

3.1 Refinenlent to a Circuit

Llpon refinement, the Lagrangian  L = C -11’ becomes

I, = ANAt + BAE. (34)

F$’c  woulcl like to take the limit At + O, refining to infinitcsin~atly  srtrall time steps in a continuous
analog circuit. We expect this to be both simpler than a discrete-tizne (finite At)  clyuamics,  and
also more relevant  to neural  z~etwork  irnpletnezltatiotls.  Ilut  performing the greedy optimization of
s[(cl  a I,agrangian  presents some surprising prohlerns.

For instance, a first-orcler expansion of AL’(At)  yields a I,agrangian  proportional to At: 1.[+, At] =
At((~-i 11 ~, ~~,i[v]i~i), which cannot be opti[nized  witt~ rcs[wct to At z O without going outsicle the



~~l)ii[isio[i’s  (loitiiiiti of valid ily. ‘[’<)  nvoi(l this [)rOl)i(>III  At tlliglll b(~ taken to I)(J a sIIIall (’()[ls\;\]lt , ~)(lt
ttlat W’OUI(I  [llak(’ tll(’ entire  (’os1 t(’r[ll f: = .’l NAt (’ollstallt ali(l therefore irr(l(,villlt to (11(’ dy[~a[llic
ol)ti[llizatiotl  I)rotjlet[l. More seriously, Imrtial  optirllizzrtiou  call oIIly affect + wl[icll  a[)l)CiLrS  Iillcarly
ill ttlis  I,agr:ingiall;  i~i = +x, will he tlic ol)tilnuln,  wllicll ~vould [lot only invalid iite tllc cxl)ansioll
of F,’(l) again, hilt would violate ~Jhysical limits on circuits as WXII.  A solnclvt[at  ]Ilorc  l)llysical
dynanlim would result if we arbitrarily followed tile arlalogy  frolll tllc I,agrallg, ia[ls of l)hysics and
cllarlged the cost tcrrn to a kinetic energy (1/2) ~~i r’~ ~, but we Ilavc no conll)utational  justification)
for doing so.

On the other hand, not expanding AE(At) at all leaves a fine-scale optirnixatio~l problcrll ~vhich
is equivalent to optinlizing  tl[e full coarse-scale objective E in much less time, This is simply not
possible. And even a seconcl-order finite l’aylor  expansion of AL’(At)  is problematic, since the
optimized values of At and i are likely to lie outsiclc  the expansion’s small Cfomaill of suitability as
an aproximatiou.

l’he  essential problem here is that each fine-scale optimization, to be irnple~ne[ltab]e  as a circuit,
must be more constrained than the coarse-scale optimization. We must stay within the domain of
convergence of a l’aylor  expansion of Aij(At), and we mwst not violate physical speccl Ii[llits (e.g.
for physical implementability we must prevent circuit ti[ne constants frorrl  becc)mirlg  too sr~lall),
ancl so on. Such constraints are either (a) direct physical limits on circuit implementations, or
(b) computational limits on what can be achieved with a small amount of physical computing
(computation which occurs irl a physical medium) in time At. These constraints are generally too
complex to state exactly in a simple Lagraugian.

We identify two general approaches to formulatingsuch  circuit constraints aucl the corresponding
fine-scale Lagrangiaus. In the “unclerconstrained’) approach, we irrlpose si[nplified,  loose versions
of the physical ancl computational constraints on the optimization of 1,,-Oa.8., in the hopes that the
resulting dynamics will be constrained enough for a genuine physical implementation (perhaps at
an even finer time scale). l’hese  loose constraints can be tightened up for analytic or computational
convenience, and then expressed as penalty or barrier furrctlons  whlcll are acldecl to 1, to forln l, Jine,
the fine-scale Lagrangian. By contrast, the “overcoustrained” approach stays within  the realm of
physical irnplementation by hypothesizing a pararneterized  class of fine-scale I,agrangians  kIIown  to
be irnplementable, which can be thought of as alternative strategies, and optimizing some measure
of their relationship to the original coarse-scale Lagrangian 1,. In particular, the cost terms of l~fin.s
xnay be optimized while the functionality term is taken to be AL’ x At~j  as iri the coarse-scale
Lagrangian.  Thus the underconstrained  approach applies looser constraints than implementability
may actually require, and the overconstrained approach applies tighter constraints than are actually
required. We give examples of each.

3 . 1 . 1  Underconstrained  R e f i n e m e n t  # 1

We will require Av be small enough so that AE[Av]  can be expanded to first (or seconcl) order in
a I’aylor  series, and that each /ii I be bounded by a physical speed limitation. So we must optimize

L[v, At] = AiVAt + BAE[Av] (35)

subject to
[[Vllm = tIl:X1’ill  < S (36)

(where v % Av/At) ancl
IIAv112  < r(u), (37)

where r(v)  is chosen to ensure that a first (or second) order expansion of AE[Av] is sufficiently
accurate. Also, there are two approaches to varying At. If we let At be optimized (subject to
At z O), the cost tertn  in the Lagrangian will keep it small but not necessarily drive it to the
continuum limit At a O. Or, we can let At = x7, where ,y E {O, 1 } is a discrete clynarnical  variable
which “stops” the neural network when x is optimized to zero, and where ~ is a srllall constant
which we earl analytically drive towards zero to extract continuum cly[la[nics.

Ill the latter case, IIAvIIZ  N ,yTlli’llz  < ~Tfi5’ is more restrictive ill the lin~it I- ~ O than
constraint (37) except when tile Iletwork  firlally stops, at which ti[rle bottl constraints become



ItxccI)t  for the new ~ variable, this  is the same for[n of [,agrangian  for neural [(et, works  ttlat we
t,ave pro~,oscd in [K1G90,  Mjo87]. ‘1’he  corresponding clynamics are (varying v, cf. (28))

i~i z ‘S9+1(}2’,:), (39)

and varying ~ to get the stopping criterion, we tl[ld the optimal values of ~ occur only at the
boundaries of the allowed donlain  of ,y:

(40)

Ilcre  @(r) is the Ileavisicle function (1 for x ~ O; O for x < O).

3 . 1 . 2  Underconstrained  R e f i n e m e n t  # 2

If, on the other hand, we let At be optimized freely, then we are taking a computational step that
requires a small but nonzero  amount of time to change the state by Av, which is constrained by
both (36) and (37), which in turn are related by v x Av/At. We will express constraint (36) as
IIAvIIK,  s sAt, which can be tightened to the more tractable

(l/s)~lA~il < At.
i

Also we can tighten constraint (37) to

r(v)

“A’’”m  s ‘F= ‘(”)

(41)

(42)

(which implies (37)). Optimizing L[v, At] of (35) with respect to At, which occurs linearly in (35),
as constrained by (41) just saturates the constraint: At = (l/s)~i lA~i 1.

l’he  remaining constrained optimization is with respect to Av. Using barrier functions, we find
an unconstrained I,agrangian

or

(43)

(44)

{

– 1  i f  E,i– AN/s>O
A~i/T(~)  = 0 if E,i – AN/s <0 and E’ i, i + AN/s >0 (45)

+1 i f  E,i+ AN/s < 0

A number of calculations of bounding expressions t(v) are possible, but we will not pursue this
approach further here.

3.1.3 Stopping Criterion

I,agrangians  (38)  and (43) each have intrinsic stoplji[lg criteria which compare the expected inl-
I)rovcmcnt in functionality AL’ with a cost of movement, ancl allow movement only when it is
sufficiently beneficial. Ilut l,’ may not always be the right function for this purpose. A monotonic
function 6( L’) may be used in place of E in (8) ancl may likewise be clccomposed into a sutn of
A6 terms. ‘l’l/e latter WOI]ICI alter the tracleoff’ with the cost term for incomplete optirnizations ancl



2.s

2 :

1.5

-1 -0.5

Figure 1: Potential ~+lOi_(Z) incorporates automatic stopping criterion. Whcll c)ther  terms fail to
alter the ordering among 4(– 1), @(O),  and @(l ), then Av = O is favored and neuron ~~i stops.

therefore the stopping criterion (the point at which a further decrease in F is smaller than the
expected cost of obtaining it).

One major drawback of using a monotonic function b(E) in place of E in a Lagrangian  is that if
E is of the standard neural network form (9), it is already a sum of local terms and therefore close
to neural implementation. By contrast, direct optimization of b(ll’) requires a global calculation
of E even to get the gradient, Vb = b’VE needed for the dynamics of every variable. One can
circumvent this problem by transforming the objective function with a particular type of Legendre
transformation [MC:90]:

~b(f;)  –> –al? + ,y’r + cd-l(T). (46)

In the resulting gradient dynamics, only the one variable a recluires comprrtatiori  of the objective
function E. Unfortunately this transformation replaces a static minimization objet-tivc with a static
saddle-point objective, since some of the new variables are to maximize rather than minimize the
transformed objective. To find a I,agrangian  which always converges, rather than cycling around
the saddle point ,  may then require  an appeal  to nleta-optinlization  (e.g. either experitllerlt  or cleeper

analysis) of the saddle-point-seeking Lagrangian.

3.2 Overconstrained Refinenlent: Mets-Optirrlization of A’

A second, more systematic way to overcome the probletns  with refining the I,agrarlgian  through
expansion of J?’(At)  is to define a class of I,agrangians  whicfl are known to be physically imple-
mentable ancl mathematically tractable, though they are not the only physically implementable
expressions for a circuit-level Lagrangian, and to pick the best member of the class basecl on a
meta-optimization criterion. So we overconstrain the set of allowed Lagrangians and optimize. We
will be able to do this theoretically for a meta-objective  that measures worst-case performance of
a Lagrangian for minimizing an especially simple CIZMS of neural network objective functions.

The allowable class of objective functions will be those of the form I~[v]  = –( 1/2)  ~ij  ~;j~ji~j  –

xi hi~:  + ~i @(ti),  in which the matrix 7’ is negative semi-definite ancl has eiger,values whose
absolute values are boundecl  above by some number t“,aX. An example of such an objective
function is the hysteresis-free version of the common winner-take-all network objective [11”1’85]
E = (A/2)(~i vi – 1)2 – ~i hivi +- ~i @(vi).  l’here  is a straightforward generalization to the
case in which different neurons ~fi have different potential functions ~i(~i),  but we won’t work
that out here. The negative-definite restriction on T is severe because it means that 1? must be
unimodal  (since each ~i is unimoclal  too), LJnin]odal objectives have sornc cortlputational  uses,
such as in the winner-take-all network or the “invisible haucl” algorithm for rllatching  [KY9  1], but
our meta-optimization results will not be widely applicable until they are generalized to multi-
modal objective functions. Nevertheless we earl present the unirnodal  analysis as an example of the
meta-optimization of a circuit-level Lagra[lgiau.

What rllatllerllatical  conditions woLIld  rnakc a I,agrallgiall  physically  illl~)lerllerltat]lc, so the as-
sociated dynamics can be irnplementccl  wittl a circuit, ant] also result in good per fornlaucc?  ‘1’he
essential limiting factors for circuit speed arc tile tinle constcrrlts (such as resist a[lcc-capacita[ice



I)roducts  in an cl(,ctrical  circuit) ttlat govcrll  ttic alj~)ro:icll to iill~  stable state of any one- or two-
clcl,iellt  sllbcircllit,  ‘1’  IICSC  t,il[le  co[lstants  must be Iiirgcr  tharl so~[ic I)hysical  lower bound, say Tfast.

\\re also want the stal)le  fixed poitlts  to bc lflinirila of solllc neural network objective F;. Subject to
tllme  constraints, we want to rrlinimize the slowest tirnc constarlt  for the full circuit (which as we

) Of course time constants arc only clefinccl for a local lineariza-\vill SIIOW is also Iargcr than ~ra~t
tioll of a dynamical system, so wc must con.strairl  thclll in tile neighborhood of each attainable
configuration, arid wc may optirllim  the worst case tirnc constant over all such configurations.

With these points irl rl~ind, we define a constrained optimization problem over a limited class of
I,agrallgians  of the forln

i i

where the objective takes the form

(47)

(48)

and h includes the input to the network. Note that the cost term in (47) is a sum over kinetic-energy
terms each pertaining to only one neuron; this is a form of locality. Also the equivalence of stable
fixed points and local minima of E can be ensured by silnple  constraints on l{. (47) together with
the time constant constraints and A’ constraints to be introduced specify the class of Lagrangians
that we will call “circuit-implementable”. ‘I’his class is paramcterized  by the kinetic-energy function
A’ from 3?2 to Y?, suitably constrained.

Onc important propert,y of equation (47) is that it retains its form under componentwise repa-
rameterizations  ~i = /i (xi), where fi is monotonically increasing, differentiable, and its inverse is
differerltiable.  (Note that such repararneterizations form a continuous group under composition.)
‘J’hat  is, under such a reparameterization the d&;/df term is invariant, and the 1{ term, while not
invariant, becomes another function l~[ii, xi] of the corresponding new variables. So the problem
of optimizing with respect to K can be solved equivalently in any such parameterization we choose,
if only the objective ant] constraints are also chosen to be parameterization-invariant in this sense.
We will insure that condition by deriving them from physical circuit time-constants for exponential
convergence to fixed points.

~’he greedy  f u n c t i o n a l  d e r i v a t i v e  w a s  clcrivccl  irl s e c t i o n  2 . 2 .  WC  u s e  t h a t  r e s u l t  t o  f i n d  t h e

greecly optimum of the action J dtL with respect to the trajectory v(t). ‘lhe dynamical system
that results from calculating the greedy variation of 1, with respect to v (i.e. t}~c regular variation
with respect to v) and setting it to zero is

where l~[u~, v] is the inverse of K[ti, V]U on its first argument. ‘1’his  forces us to constrain K to be
monotonic in its first argument. IIere we introduce the notation

“i[v] = ‘l;,l = x 7~j71j  +hi ‘@’(t):). (50)
3

For stable fixed points to correspond to local minima of E (for which w = O), it suffices to assume
that

1~[0, v] = O and ~[ul,z~],U, z O (51)

for all w ancl V, The linearization of this dynamical system at v is

(53)

Now we are in a position to derive the constrairlts  on the function Ii that result from considering
the tiil~e-constants  of the dynamics specified by A = (Aij ). We want the circuit elements and their



{.olltlcctiolls  to t)c ~)tlysically  illlljlc~]]lcllt;il)lc,  so we’ll constraill  onf>- and two-elerl]cllt s{llx:ir(.liits of
Ltlc linearizfxl systc[ll (52) to bc slower than ~fa.t. We do this by scttillg  all eler[lr[lts ot’ A to zero
e~[c[)t for A ii (for a olle-cle[[]e[lt  subcircuit)  or {)Iii, tlij, /lji, /tjl } (for a two-cl~[[l~[lt  sul)circuit),
to get a 1 x 1 or 2 x 2 nlatrix A(i) or A(il  j). Furttlcrinore,  we r[lay arbitrarily pick thr sulwircuit’s
fixed point v* by adjusting the input vector h; this does not alter  any ele[llellt of A or ,{, Iti
that case l~[llJ:, v,] = O, and the linearimd  dyna[nics  (52) co[lvcrgcs  exponentially to v ~vittl a tirlle
collsta[lt  cleterminecl  by the largest cigenvalue  {Ji} of the matrix A, i.e. by its rllatrix  [Iorltl  lli~llz.
So the physical constraint would be

nlaxllAl12 < l/~fast, (54)
ACA

where A c A means that A is variecl over all 1 x 1 ancl 2 x 2 submatrices of A ancl over all state
vectors v.

The constraint (54) is parameterization-invariant. Invariance follows for ally ~i by applying
‘1’aylor’s  theorem at a fixecl point  v* of y, to get the linearized clynamics in a new coordinate
system  {~i = -fi(~i )}. ~’he new lrlatrix  A is just a similarity transforln  JAJ-l  of ~~, where J
is the (nonsingular) Jacobian of the change of coordinates. Therefore A and A have the same
eigenvalues  (cf. [Ner70], l’heorenl  5.2or 5.3) and IIA112 isparameterizatiominvariant  as Iongas the
Jacobian J is not singular (which ours never are). Furthermore, the identity of the 1 x 1 and 2 x 2
submatrices of A are invariant under  our coordinate-wise reparameterizations {~i = -fi (vi) }. So
the whole constraint (54) is parameterization-invariant. This invariance confirms the intuition that
exponential convergence to a fixed point in one coordinate system {Vi} ( i.e. v – v* x c exp —At)
does not change its convergence exponent J in another coordinate system {~i = -fi (tji)}.

Note that because each ~i is assumed to be rtlonotonic,  differentiable, and to have a differentiable
inverse, constrai~its  (51) are also parameterization-invariant. That’s because each ~ji = —E, i i s
multiplied by ~~(~i) in reparameterization {~i = ji (t~i)}, where O < fj (~~i) < cm.

Constraint (54) is not a sufllciently  convenient form for all our subsequent analysis, so we will
relate the constraint to something more tractable. ‘I’he matrix norm of each A C A is bounded
above and below by multiples of rnaxab 1~.bl (cf. [G I,83],  p. 15):

(55)

whence
InaxlAijl < n~axllAllz ~ ‘2m:xlAi~l, (56)

~~ AcA

where as before A ranges over all 1 x 1 and 2 x 2 submatrices  of A. So a closely related but more
tractable constraint may be fornlulated:

max rnax lAij(V)  I < l/~fast.
v z.)

(57)

of course, the bounds of (56) hold regardless of what coordinate system is used tc, clerive A, so
long as A is expressed in the same coordinate syst,crn. Still, constraint (57) is not paranleterizatiorl-
invariant, since si[nilarity  transformations do not preserve the elelnents  of a matrix. We }vill have
occasion to use both (54) and (57) in what follows.

Since one A’ is to apply to many connection matrices 7’ and state vectors v, we will also constrain
a worst-case estimate of the circuit speed over all 7’ in some allowable class T in the formula for
A, and over all state vectors v for each connection matrix:

(58)

As previously mentionccl,  we take T to be the set of negative-se. rniclcfinite  connection Illatrices  7’,
suctl that the absolute values of the 7“s cigenvalum (i.e. 7“s singular values) are bouncled  above
by t“,~..  Constraint (58) is pararlleterizatiomi[ lvariant but not as analytically tractable as the
alternative,

(59)

which will enter into the following analysis even though it is not paranleterizat ion-invariant,



‘lIIc illvarlat]ce  of constraitit (WI) is OIIC rea.wll to [Jrefcr tlie ti[l]c-constmt  cotlstraint (58) o v e r
111(, “slxml lirl)it” inll)osed ill scctiolw (3. 1. 1) and (3. I .2), ~vhicll exl)licitly  dc]mnds on the choice
of variables, OIi tile other  Iiarid the slwed-lilllit  colwtraints  take i[lto account the entirety of each
trajectory, rattler  than just the behavior near (all possible) fixed points.

Next we must forlllulatc  the objective functiori, which will be a worst-case estilnate of tllc much
slower tinlc constalit  for convergence of tile full circuit (as opposed to 2 x 2 subcircuits).  We want
to rnini[]lizc ~,lOW, where

Ecluivalently  we want to maximize

(60)

(61)

Again, the objective (60) will be parameterization-invariant because the time-constants arc invariant
under similarity transformations.

Because the optimization of (60) with respect to K[ti, v] subject to (58) is invariant under
reparameterizations Zi = ~i(vi),  wc may change variables to ~i = ~~ (w),  calculate A for the
linearized u variables, restate the optimization problcm,  and find the optimizing K. “~he functions ~
are the single-variable potentials appearing in equation (48), so each cj~ is monotonic, differentiable,
and has a c]ifferentiable  inverse. ‘l’he variables ~li were introduced in equation ( 10). Using the u
variables, one may express the dynamics by means of the I,agrangian

whence the equation of motion

7 at:
L = ~i’[tii,lli] + ~ ‘Iii,

i 8U:
i

ail;~i=]l;l[——-,ui
13Ui

1

(62)

(63)

(where the function inverse concerns only the first argument, ii, of ~,u, ). This may be rewritten
in terms of ~)1 from equation (50):

(64)

which enables us to define
~{[~)i, hi]  = k,~l [U)ig’(Ui)  , Vi] (65)

and reexpress the tii clynamics  as
Iii = ~[111~,  rf.:]. (66)

‘1’hen  the linearized dynamics is

(68)

(We have defined T ~ -7’.)



So our optimization problctll  is to find f{ which solves the following optilllizatioil  problclll:

with respect to (w. r.t.  )
I;, subject to

and al (~’) is the largest singular value of ~’, i.e. the largest absolute value of any eigenvalue  of 7’.
By introducing new notation

p[w, u] =  i,ti, [w, r)]
–1;,” [w, t)] (70)

U[w, u] =

and translating the constraints appropriately, we can treat p and u as independent functions  except
for the constraint on the mixed partial derivatives. Then the problem (69) is equivalent to the
following optimization problem:

Maximize
t) = m i n  llA-l(tt,T)ll~]

u,ur, i’E7
w.r. t. (p, v),

subject to

(71)

and IL,” = --v,W, ancl p  ~ O  and u[O, u] =  O )

where
T = {Flol (~) < in,ax and 7 is positive senli-definite},  and

(
–Aij = p[~li, ~~i] ~~jg’(~~l) + dlj ) +  ‘[u1i21ils:j

In the next section we will establish an approximate solution to this optimization problem: a (p, v)
pair that satisfies all the constraints and comes within a factor of 2 of the globally optimal value
of 6. Here we simply make several observations about t}le optimization problem (71).

First, one of the most irnpc]rtant  questions about this problem, and our solution to it, is whether
the restriction to positive semi-definite ~’s can be removed. Connection matrices appearing in real
applications can have boundecl singular values, but rarely are all the eigenvalues  of the same sign.
Second, we note the close relation of this proble[n to a worst-case  minimization of the condition
number of A, K(A) = [I A11211A-1 112.  Since max,j  Iaij( ~ I[A112  and p and u can easily be rescalecl
by a constant while preserving their constraints, the two problems look quite sinlilar.  Incleed,
maximizing K(A) over all u, u), ~ E ‘T subject to the p and v constraints would yield an upper
bound of rra,t~~ax for O.,,x. But our problem is more difficult because the extremization over
u, w, ~ E ~ is performed separately for the constraint and the objective.



3 . 2 . 1  Optinlization  of  11 a n d  v

A useful allxiliary  problcrn  to (7 I ) is obtained by rci)lacing (54) with tllc rlon-i[lvariant  exl)ression
(!57):

Maxi[nim

w.r. t. (p, v),
subject to

C(c) = (c max nl?x  IAij(u, 1’)1 s l/~fiist
11, U!,7-’E7 I.r (72)

(Jnlike the original problem (71), we will be able to solve this auxiliary problem exactly.
To solve the constrained maximization problem (72) and others like it, we will use the following

proof strategy. Given objective 0 and constraints C, we will maximize some lower bound objective
C)_ such that 0-. [j~, v] s U[p, v], subject to tightened  constraints C_ such that C_ [p, v] ~ ([p, v].
In this way we ensure that nlax(O_  lC_ ) s n~ax(OIC). Likewise we will maximize some upper
bound objective 0+ such that Cr[IL, v] s 0+ [p, u], subject to loosened constraints C+ such that
C[p, u] a C+ [p, v]; this combination ensures that nlax(OIC) < nlax(O+  IC+). Having solved both
constrained optimization, we will see that both give the same value for the objective:

nlax(O+  IC+) = nlax(O- lC_ ) (73)

which implies that all the extremal values are the san]e:

max(OIC) = nlax((?_  IC- ) = nlax(O+  IC+). (74)

Furthermore, the extremal values PI and v: of n~ax(O_  [p, v] lC-[p, v]) all satisfy constraints C
(since they satisfy C-) ancl thus constitute extremal  values of max(L7[p,  v]) as well. Thus we will
have solved the original constrained optimization problem of maximizing O with respect to C, by
finding the maximal value and arguments jt”, v*) at which the maximum is attained.

In the next section we will use this proof strategy to solve the auxiliary optimization problem
(72). A variant of the same argument can then be used to conclucle  that the (p, v) pair for the
c = 2 auxiliary problem comes within a factor of two of solving the original optirnizatiorl  problem
(71).

In fact, using (56), we see that the c = 1 version of (72) is a upper bound for (71) and the c = 2
version is an lower bound. In other words,

nlax((?lC(c  = 2)) ~ max(~l[~)  ~ nlax(OIC(c  = l)). (75)

Rrrthermore, C(c = 2) ir~lplies  ~ so that the extremal  (p’ , u“) for max(OIC(c  = 2)) are in the
constraint set for nlax(OIC).  As it will turn out, nlax(OIC(c))  is proportional to I/c, so ~(p”, v*) =
~(p”, u“) is proven to be within a factor of two of its optimal value, nlax(UIC).  In other worclsl

O(p*,  v“) E nlax(OIC(c  = 2)) < max((51C)  = 2 nlax((91C(c = 2)) (76)

which implies
(1/2) rnax((~ld) ~ fl(p’,v”),  E nlax(OIC(c  = 2)) (77)

and (Ii=, v*) is an approximate solution (satisfying the constraints ancl optimizing the objective to
within a factor of two) of the meta-optimization problem (71) or ecluivalently  (69).

3.2.2 Solution of the Auxiliary Problem

We may solve the auxiliary problem for c = 1, then scale it to any other c by scaling Tra,t
ately.  So we’ll assume c = 1 in tlic following solution of (72), ‘1’he basic strategy will be

appropri-
to obtain



u~)pcr bounds  by rmtricti[lg  consi~lcratioli to diagotlal  conlle(’tion  [Ilat, riccs 1’, and to corill~are t 11(.sc
upper  bou]]ds  with lower houtids  that follow fro[ll  [Imtrix theory. III soll~e cases, we will fil~d it uscf[ll
to repeat the above reasoning to solve the bounding constrained olj~inlization  proble[tls  tllelllsclvm.
For cxanlple,  lnrLx(O- [[!-) will bc fou[ld by way of [llax(L9-_ lC__ ) and [l\ax(Cl_+ \C_+). f]ut first
we will treat the upper bouiLd [llax-(O+ IC+).

Dy simply restricting the class T ir~ problclll  (72) to the subset ?+ of ~’ [l~atrices \vl\icl\ arc also
diagonal, we simultaneously increase ttlc value of 0[~~, v] (since it’s a mininlunl  over a proper subset
of 7’ E T) and loosen the constraint C[p, u]. So onc lower bound opt, i[llizatiork problem is:

Maximize

w.r.t. (p, u),
subject to

C+l = ( m ax max lAij(tl, ~’)1 < l/~fast
U, UI,  iE7+  ij

and ~~,,, = –v,U, and p ~ O ancl vIO, u] = O
)

where
~+ = {~1~’ is diagonal and al (~’) ~ tn,ax and ~’ is positive semi-definite}, and

(
--Aij = ~~[~~ij vi] Ijg’(u:) + ~ij )  +U[ui,uildij

(78)
l’his will not be the sought-after 0+ and (?+, but it moves in the right direction since O < CJ~l
and C ~ C+].

If ~ is diagonal then so is A. For a cliagonal  matrix A = diag(ai), llA-lll-l == mitli Iail and
maxij  lAij I = maxi Iail. SO we can calculate more detailed bounds:

~ min min Pi(Fii9~ + 1) +- Vi
U,T67+ j U>=o

—— mill  n!n }li(~ilg$  + 1) ~,=0 (since vIO,  u] = O)
U,? ET+

Likewise we can bound the main constraint of C+l, which is that ~+1 < l/~f=t, where

(79)

(80)



(81)

S o  tll(~ []ljl)(,r ljc)llrIcl  ol)t.illlizatiotl”  l)rol)l(~ltl l)rxoIIIcs

Klaxitllizc
0+ ,:== 1[11[1 //[0, If]

w.r, t, (/f, v),
sut)jcct  to

c+ == (IIlax,l[o,u]~,l,ax,/(it)+ 1) < ,,T,a,,
u

ancl Ii,,, = —u,t~, a n d  ~~~0 and u[O, u]=O)

l’ottliso pti~tlizatiorl~  )roblel[lwc propose tllcsolutiou (p$,  u~):

~1~ [u, u] = l/Tfast  (tr!,axf70 +-1)

U:[w, u] = o, (82)

where go s nlax Ug’(u).  l’hesc  values for ii and u are constont,  i.e. indcpcndcut  of w and u, so the
mixed partial derivative constraint of problcm  (81) is trivially satisfied. Clearly also p} > 0 and

v~[O, u]= Oaresatisficd.  Theti+ ~l/~r~gt constraint carlalso reverified:

lllax. ~.a.l(”) + 1,t+[p~, u~]=lt~axP~[o,  ul~nla~9’(u)+ l)= ~fast(tn,axgo+l)

So (p;, v:) satsifies  the desired constraints. ‘1’hc objective is 0+ [p;, u:]

= l/Tfmt. (83)

= minu p: [0, u] =
1 /~f~t[t”,axgo  + 1). But  from the constraints we sec this value is also an”upper  bound for” O+ [p, v]
as follows:

1 /~fast 2 t+ [P , ~1
—— maxu p[O, u] ~n,axg’(u) + 1)

~ (rninv p[O, u]) (maxU(t”,aXg’(u)  + 1))
(84)

= o+[jt, v] (tn,axgo + 1),

which irnplics  0+ ~ 1 /m~st (t,,,axgo  + 1). So (p}, v:) in (82) solves problcm  (81).
Next, we use matrix theory to find and SOIVC a constrained optimization problem nlax(O- IC- )

which can serve as a lower bc)unci for max(OIC).
‘1’o  bouncl 0 below (in probletn  (72)), wc must simplify llA-lll~l. In matrix notation, llA-lll~l

is just an (A), the smallest singular value of A. Also A is given by the matrix expression

A = diag(p)(idiag(g’)  + 1) + diag(v). (85)

‘1’hc  smallest singular value an (M + N)  of a sunl of matrices M and N is bounded below by
o.(M) – O1(N), as shown for example in [GL83]  (Cor. 8.3-2, P.286). We will take A = M + N
with N = diag(v)  and use al (diag(v))  = n~axi l~il to find a lower bound O_ for 0:

(86)

We can also bound the nlain  constraint of C, which is that ~ s l/~r~st. We will use the fact
that al (A4 + N) ~ al (M) + al(N), which is also shown in [GL83]  (Cor. 8.3-2, p.286).  The bound
is as follows:

(![/L, u] == rllax - tl~,?x lAij I
ti, u,,7-’c T ‘J

< max. IIAIIZ
11,  UI,  TE7

(standard matrix rlorln bounds, e.g. [G1,83], 2.2-10, I). 15)
max . 01 (A) (87)-—_—

u,uI,76T

~ “:1::7  [~(diag(~~(~cliag(g’~+  I,) +Inax[utl]. -! i, )

:= L_ [ p ,  1/].



So tllr lower tmull[l crpl,illlizatiorl I)roblclli bccoltlcs

hlaxirnize
(’) _ = [Iii!) [a,, (Ciizlg(ll) (’;’cliag(g’)  + 1)) – m:x lf41 114,11 ),7-’67

w.r, t. (p, u),

and Il,t, = –u,u, and p ~ O and u[O, u] = O).

Consider the related optimization problem

Maximize

subject to

C-+ = (Uy~;T [al~iago)(~diag(g’)+1))  +m?x,vil] s I/~~..,1,, .

(88)

(89)

and p z O and uIO, u] = O),

which differs from (88) by removing the partial derivative constraint that relates p ancl v. Clearly if
we solve this problem and find a solution that also obeys the partial derivative constraint, then we
will have solved the original problem. l’hat is what we will do. But the new probleln  (89) can be
further simplified by observing that the optimal v~+l  must be identically zero; otherwise, an optimal
(/i:+l, v:+, # O) would have a lower value of the objective than (p:+,, O) Which equally  Well
satisfies the constraint C-+l; that would contradict the assumed optimality of (f~t. +l, V1+I # O).

So to solve max(O_  Id-), i.e. problem (88), it srrfLces to (a) solve problem (89) assuming u = O,
i.e. to solve:

Maximize

O_+  = “ :$7 a,, (diag(p)(~diag(g’) + 1))
,,

w.r. t. (p, u),
subject to (90)

c-+ =
(

( rnax - al diag(p)(~diag(g’)  +  1))  ~ l/~fast
u,lLI,~ET

)
and p > 0 ,

and then (b) verify that the mixed derivative constraint p,” = —v, U, —(– O) is satisfied by the solution
(p:+, O) to (90). lhrrthermore,  the optimizing values (j~~, v:) will just be (p:+, O).

We will solve max(O-+ IC-+) using the same strategy as for max(OIC) itself: by construct-
ing an upper bound prob]en]s by restricting to diagonal connection matrices ~ E ~+ = ~ (1
{diagonal matrices}, and a lower bound problem using more matrix theory, and showing that
they have a common solution.

The upper bound for 0-+ is calculated as follows:

c?_+ =

<

=

<

——

—

——
———

min - o,,(diag(p)(~diag(g’)  + 1))
u,w,  TGT

min .  a,,(diag(p)(~diag(g’)  + 1))
u,ut,2%T+

m-in - min ~ti(~llg~ + 1)
U, W, TE7-+  1

m i n  - [lliIl}ti([~~i]g~ + 1)
U, Ut,7-’ ET+ :

~~$rl!inPi(~~}~ li~i19; + ‘)

Illln 1111 I1/l[U~l,  tL1 1u,w i

[Ilirlp[u), u]
U,ul

C?-++.

(91)



‘1’IIc (mrrmlmlldillg  (Iomvr)  lx) IIrId for C!_+ is calr,llakl as follows:

c-+ = ,, :; I;:,f o, (cliag(~t)(~cliag( g’) -t 1))
,)

> rllax. 0, (diag(~t)(?cliag(  g’) + 1))
TL, tll,’icf+

—— max llI?X ~il(~llg~+  1)
11,11  I,FET+ 1

—— min. 111111 /l:(Tiig~+  1) (since T;l ~ O)
tI, UI, f’ET+ 1

—— Ula XIlli Upl
(

!ll?X~~ifJ~+ 1
td, uI i TET+ )

—— max min ~i[UJ~,  Itl]~n,axg’(it,) +1) (since nmxf,~+  fii = ~n,ax)
u,ul i

—— Irllxp[w, u] (tn,axg’(lL)  + 1)

= (:-++.

So the upper bound optimization problem becomes sinlilar  to problem (81):

Maximize
(9.++ = rnin p[w, u]

u ,U!
w.r. t. (p, v),

subject to

C-++  ~ (,llax/[~],~l~nax9’flJJ+l)<l/Tfa,tU,w

(92)

(93)

)a n d  ii z O

l'otllis optin~izatio~~  problerll  w'eagair~propose  thesolution  (cf. e q u a t i o n )

1~~++[~), ~] = l/~fa.5t(tn,a.90  + 1), (94)

where go ~ maxtig’(u).  The proof for this solution is the same as that of the solution of problem
(81) byequation  (82), except that nowwrnus tbeoptimizec  feverywhereuis.  ‘I’his establishes the
solution ofproblern (93) by equation (94).

We must now find a lower bound nlax(O-+-  lC_+-  ) for rnax(O_+  lC_+), and to do so, we require
another matrix theory result: that for positive senli-defiuite  tnatrices  A4 and A’, m~(~ + ~) ~
a,l(M) + Cr.(M) [sgs90].

(Note on the proof so far: We could not use this result earlier since diag(v)  was not positive
semi-definite. Also the use of this result and equation (92) are the only places in the proof that
depend on the assumption that ~ is positive sen~i-definite.)

Thus,

o_+ = ~ ;~n~ an (diag(p)idiag(g’)  + diag(p))

> ~’~;n; [ ( ( )an dlag 11 ~diag(g’)) +  an(c]iag(p))]

> ~’;~~;~  [a~(diag(~~))an(~’)a~  (diag(g’))  + an(diag(~~))]
,)

(since IIA4N112  s IIA411ZIIN112,  [GL83]  p.16)
= rn$ [an(diag(p))  (rm~} an(~) )an(diag(g’))  + un(diag(p))]

(95)

. .
= min rnin }t[~li, I/i 1u,uI i

(since rni~~~ an(~) = O)
= [nin p[w, u]

U,ul
:: 0-+-[}1].



IJilwwise,

—— nlax(rnax~t[wi,  If: 1) (tma.(1t1~x9’(ui) + 1,u,w i

(since nlax~~~  ~1 (~’) = fn,a.)
E C_+-[/l].

Wc can assemblethese boundsinto  theconstrainecl  opti[l~iTatiorlIJroblelll

hfaxirnize
0.+. = min p[w, u]

U,lu

w.r. t. (p, v),
subject to

C-+- =  (rtlax(rtl?x/[~:j~il)(~ nax(I1l?x~’(lli)+l)  < l/~fastU,w 1 a\

(96)

(97)

Tothisoptilnizatiorl  probletll  weol~ce agaiIlprolJose  ttlecorlstarlt soIutior~  (cf. e q u a t i o n )

~fl+_[W,lf]= l/~fast(~r,laxgO+ 1 ) , (98)

where go s nlaxU g’(u). Clearly the constraint pi+_ > 0 is satisfied. l’he t–+– < 1 /~fast constraint

can also be verified:

‘lax. ~...!(u)”)+ 1,
C-+- [p:+-] =  fn:xPl+_ [~, IJ] (tn,ax9’(4  +  1) = ~fa,t(tn,axgo + ~) = l/~fmt (99)

So pi+_ satsifies  the desired constraints. The objective is U_+_  [pi+_] = rnin~,,”  p:+- [w, u] =
l/~fa.t(tn,aXgo  + 1). But, once again, from the constraints we know this value is also an upper bound
for 0-+- [/6]:

1 /Tf&9t > (?_+_ [p]

= maxu,,u  p[w, u] @“,aXg’(rr)  + 1)

> (nlirIW,U p[w, u]) (rnakj,u (t”,aXg ‘(u) + 1))
(loo)

( )
== O_+_  [p, v] t“)axgo  +  1 ,

which implies 0-+- < l/~f~,t(t,,,~.gO + 1). SO equation PI+- in (98) SOIVCS problem  (97).
We have previously solved problem p:++ in (93) with equation (94). The  resultir~g rna~inlal  val-

ues of 0 are the same for the two problems (97) ancl (93) (nlax(O-+--  IC-. +- ) = nlax(O-++  IC–++ ) =
l/~fat(tm.Xgo  + l)), and they are attained by the same p“ = constaut  functions. SirIce these were
lower and upper bounds for nlax(O_+  lC_+), we conclude that the same p* and maximal value of (’l
also solve problem (90), namely the calculation of n~ax(O_+ lC_+ ). But  in the discussion of problem
(9o) we pointed out that, if pl+,U  = O (as it certainly is, since Ii:+ is a constant indeperlder~t  of both
u and w), then (p:+, u = O) is also a solution (P1,  vl) of problem (88). This  result  is ttle sought-
-after lower bound for the original problem (72), al]d may be joined with the solution of (81) (an up-
per bound for (72)) by (82) to finish the entire problem: nlax((~-  lC_) = n~ax(OIC) =. n~ax(O+lC+)
= l/m,t(t,,,~~gO  + 1); and the optimum is attained at (p”, u“) = (p:, u:) = (Jt\, v;), i.e.

p“ [711, “11] =  l/Tfm(~rl,axgo  +  I )
(101)v“ [w, ?f] =0



is  Sllowll to 1)(’ il sollll,  ion of (72)  for  c  = 1. otllcr  v:llll(~s of c lIl:~y I)(, :tt)sort~f~cl i[)to  tl]c  clcfirlitiol]

of ~fi,st, S(J WY, ltavc establisl]ed  J,rr[)rl)a 1:
I,clnllln  1. ‘1’IIc o~)tinlizatiou  problc[[l

Maxinlizc

C(c) = ( max clll~X lA:j(ll,  7’)1 < l/~fast
U, UI, T-’E~  ‘ J (102)

ancl ~l,ti = –u,U, and p z O and uIO, u] = O)

where
‘i- =: {7-’101(7)  < t rnax and ~ is positive senli-definite}, alld

(
‘A;j = ~i[’tr~l, Uj] fijg’(11:)  + dij ) +  ‘[t(ttl~j

has as one solution
p“ [w, u] = l/(cTf=, (tn,axgo + 1))
U*[W, U] = o. (103)

It remains only to translate this solution for p[uJ, u] and U[W, u] back into a function ~ (as called
for in (69)) and thence to the desired “kinetic energy” or “cost of movement” function K[ti,  u] or
its equivalent, I([ti,  v].

3.2.3 Approximate Solution of the Meta-Optimization Problem

~I~ron~ equation (77), we can apply l,emma 1 with c = 2 to find a (p”, u*) pair which comes within
a factor of 2 of solving the rneta-optitnization problem (71) or equivalently (69). (Note that (77)
was derived assuming that rr~ax(OIC(c))  is proportional to I/c, which has now been established in
I,emma  1.) Changing back to 1/ notation,

i{,u, = l/T1,, k,. = o, (104)

where
TH = 2Tfast(~n]axgtr  + 1) (105)

is a constant. (The factor of 2 comes from c = 2.) ‘1’lle general solution of these partial differential
equations is I?[u), u] = w/~H -t- c1, but from the statement of problem (69) we must take 1? [0, u] =
c 1 = O. Then

k[w, ~] =: ~1/~H. (106)

lJsing  (65),
R,u[i,,  u] = X--l[ri,  Il]g’(u)  = T,,rig’(rf). (107)

‘l’his has the solution ~[ti, u] = (~Ii/2)ri2g’(u)  + C2(U).  Hut the term C2(U)  h~~ no effect on the
dynamics, since its greedy derivative is zero, and without loss of generality we can take Cz(u) = O.
q’hen

fi[il, u] = :;il~g’(u). (108)

This is the sought-after kinetic energy or cost term for i~, ancl the associated equatic)rr of motion is
(from equation (63))

1
ill = —

(x )
Tij Vj + hi  - U: ,

TfI
j

Vi 2= g(Ui).

(109)

‘J’his 1: [nay also be translated back to a Lagrangian expressed directly in terms of ii, using
[([i), v] = I[it(v), u(v)]:

K[r!J,  v] = ~i~2/(g’(.q-  l(v)), (110)



or equivalently
/i[i),  v] = y~’’(l)). ( I l l )

If g(u)  is linear (i.e. if 4(v) is quadratic), Ll]is kinetic e[lcrgy expression i s  pro~~ortio[lal to tlic
conventional (rn/2)i)q expression cncoulltcred  in ~Jhysics, but for Ilonlillear  g this Cxl)ressioll is
different froni a kinetic energy ill physics, (1 10) is the circuit cost-of-n~ovclllcnt (or kinetic  ciicrgy)
term used elsewhere in this pa~mr, a[lcl a greedy variation of the associated action  fu[lctiollal  yields
equations of motion ecluivalent to the IIoI~fielcl/GrcJssberg dynalnirs  of ( 109).

Assembling Lemma 1 and (47), (48), (52), (58), (61), (77), (105), and (1 11), we have denlon-
strated the following theorem:

Thcorwn 1. The linearized clynamics determined by a greedy variation of the Lagrangian

may be computed to be

(113)

If wedeflne  the objective
M,(K) = n~rl~~:llA-1(v,7’)11~1, (114)

where
7-= {Tlr7, (7’) < i “,~X and 7’ is negative semi-definite}, (115)

and if we impose the constraints on K that

(a) nlEiXv  I[lZiX~~T r[~ax~c~  IIAI12  < l/~f&t,

(where A runs over 1 x 1 and 2 x 2 subrnatrices  of A), ancl
(b) K is continuous in its frrst and second derivatives, (116)
(c) fi[O, zI] = O, and
(d) Il[w, v],ti, <0,

then the function
K[i, v] = (~~//2)i~2~’’(v)  where

Tf[ = 2Tf=t(tn,axgo + 1)
(117)

satisfies the constraints and comes within a factor of two of the globally maximal value of AI(K)
subject to these constraints. Furthermore, the objective M. and the constraints (a) – (d) in
(1 16), with definitions of A, ~ and w as in (113) are invariant with respect to coordinatewise
reparameterizations ~i = ~i (vi) in which each -fi is monotonically increasing, differentiable, and has
a differentiable inverse.

3.2.4 Notes on the Solution

If @ differs from one neuron to the next, and is indexed by i as @i, then the optimal A’ term will
still have the above form if it too is allowed to depend on i. The proof in sectiorl 3.2.2 can easily
be altered to establish this generalization of the result.

Note that (105) relates the fastest physical time scale ~fa~t in a circuit to an optimal value of
the neural time scale r~f appearing in IIopfielcl’s version of the analog neural network [lJop84],  ancl
the two are not the same. ‘1’hc best value for the neural time constant is the slowest time constant
in the system. l’hc ratio of the latter to the fastest time constant is roughly tile product of the
neural gain gO and largest eigenvaluc  of ~’.



which is Slrpposf’(1  to be identical to i~l = –f3E/f3u , , t~i = ~(rri) (cf. (12)). This can be arranged by
choosing w:

~Uki~i = ~Fl du~
du , au, du,,

du, _ AL _ du, fdu,
+’ & —  dug,  —  

du,, /du, (119)

“%=m
i.e.

(120)

4 Discussion and Conclusions

We introduced a Lagrangian formulation of the relaxation dynamics of neural networks which
compute by optimizing an objective function in a standard neural network forln, This optimization
involves a trading-off cost and functionality in the formulation of optimization problems. ‘The
I,agraligian  formulation makes novel use of a greedy ~rrnctionrd dcriurrtioc, which we defined and
computed. With these tools we demonstrated the use of three levels of optimization in the design
of relaxation neural network dylLarnics: the original objective E, the I,agraugian  L, and a rneta-
objective M which measures cost and functionality over many trials of the network.

Applications of the Lagrangian fortnulation  were diviclecl into two broad groups: analog circuit
Lagrangians, and Lagrangians that require a hidden switching mechanism to implement as a circuit.
At the circuit level, we showed that a limited meta-optimality criterion is nearly optimized (within
a factor of two of t}le global optimum) by a Lagrangian corresponding to the conventional Hopfield-
Grossberg  continuous-time analog neural network dynamics; we also provided several alternative
I,agrangians  which might be preferable under  less analytically tractable rneta-optirnality  criteria.
In part 11 of this work we shall introduce a generalization of such relaxation Lagraugians  to cyclic
I,agrangians  with clockecl objective functions, which have a simple circuit implementation involving
external clock signals. We shall present suitable algebraic notation including a clocked sum and
clamped variables and use the notation concisely to express neural network dynamics for a variant
of line minimization and for relaxation networks that contain feed-forward netwc)rks.
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Abs t r ac t

In Part I of this work we showed how a tradeoff between measures of neural net cost (of
operation) and functionality (efiicacity)  could be used to derive the dynamics of the net, and
in particular, optimize thereby a class of objective functions. IIere we extend that methodology;
a I,agrangian  formulation and greedy variation to treat more ramified problenls.  We introduce
a notion of clocking and a class of clocked objective functions to CIO this. A kincl of switching
dynamics occurs which is suitable for many applications. This notational clocking calculus makes
for time-scaled computational techniques employing a “focus of attention” (similar to saccading,
foveation, and covert attention in biological vision). Experiments dealing with  applications are
referenced.

1 I N T R O D U C T I O N

In Part I of this work [MM] (to be referred to hereafter, simply as Part 1) we introduced a La-
grangian formulation of the dynamics of a class of relaxation-based analog neural networks. These
Lagrangians incorporate a trade-off between measures of the operational cost and the functionality
(efficacy) of neural networks employecl  to optimize a given objective function E. Because of the
need for nonconservative or clissipative  dynamics, our I,agrangians  are to be variecl in a nonstan-
dard  way using the so-called “greedy variation”. “1’his results in dissipative analog circuit dynamics
described by first-order systems of differential equations. Within a class of candidate I,agrangians,
we proved the near-optimality (under a suitable meta-objective  function) of a particular Lagrangian
corresponding to the IIopfielcl/Grossberg  analog circuit dynamics. IIowever, for efficiency, elabc-
rate computations may require tnore complex clynarnics specified at a coarser scale of temporal
resolution, and this is a theme of the present work.

}Iere (in Part II) we proceecl to consicler  more elaborate I,agrangians  which are capable of spec-
ifying [Ion autonomous dynamics. For example the clynaruics may clepend on which subset of the
probletn  variables is currently being optimized, as well as the subset next to be optimized. This
kincl of ‘[switching” dynamics occurs ill many ai)plicatioas  and requires a more general formula-
tion of the Lagrangiall  whictl we develop [n section 2 we introduce a ti[ne-varying  or switched
version of tllc problem objective function f~, called a “clocked objective functio~l”.  We relate it to

I



o u r  l,agrilllgiall  forllluiation  of dylla[lli(x,  l)ro(lll(.  ilig so-(,;  dl(,(l (.y(li(.  I,:igral)gi;ltis  \\”(~ tl(v(,lol) sllit-
al)lc Ilotatioll  for exl)ressi[lg  a ]Iullllwr of cxisti!l,q  ol~tiflliz,atioll IIICIIIO(IS  ill tcrllls  of” SI!(’!I  {’l(x’!ied
object ives.  l{efcrcllcf is IIIade  to a nuIIIl)cr  of rxperi[[lf[lts, a~)~)licatiot~ Mid collll)lltatioll,  Jvlti(ll
utilize t,tlis clocking calculus. in scctio[l 3 tvc stlow Ilow to specialize these ideas to tllr (’asc of a
coliiputationat “focus of attrrltion’)  (similar to saccading,  foveatiorl, and covert attrtltiou ill bio-
logical vision) which iteratively and opportunistically selects a subset  of the problelll’s  variables
for  optirnizatiou, arid optilnizes  thclll.  \Vc SIIOW  how to develop I,a,grangians 011 diffcrctlt problcn]
scales, CTrecdy variation then leads to tile dynamics relevant to each scale. ‘1’lle ivor-king of the
clocking or switching in the problem cleveloplnellt and its solution is worked out, In sectio[l 4 we
derive ancl relate various particular focus of atterltiou  mechanisms, inducting several which have
been tested in previously reported computer experilnents.  “1’hese include priority queue attention,
multiscale  attention, jumping and rolling windows of attention, spreading activatic~u (of neurons)
and orthogonal windows. Sectio~l 5 provides a sunl[nary,

2 DYNAMICS WITH SWITCHING: VIRTIJAL
NETWORKS

Suppose we have hardware capable of switching different sets of neuron output values from a
static (backup) memory into an active neural network, where they can bc updated. \Vith  such
hardware it is possible to implement a computation which would require a much larger neural
network if every neuron were to be actively updated at all times. This situation }VOLIIC1  be analogous
to the use of virtual rncmory in a conventional computer, in which one has a lirnitecl amount of
physical memory (Ranclo~n Access h4ernory)  augrtlcnted  by a much larger amount of secondary
storage (magnetic disks). Equally, it is analogous to the distinction between the small cache memory
associated with a central processing unit, and the larger physical memory (RAM). In either part
of the memory hierarchy a relatively small and fast memory, in concert with a relatively large and
slow memory, simulates a large fast memory (with occasional slowdowns due to page faults or cache
misses). In like manner, we seek to design a switching mechanism for obtaining the computational
power of a large neural network with a small neural network plus a large, slow and relatively
inexpensive memory. Furthermore, in some cases it will prove possible to disper~se  with the slow
memory entirely.

Such a system would be useful not only for making space-time tradeoffs in situations where
only a limited amount of spatial resources (neurons and connections) are available, but also for
formulating search algorithms (sLIch as binary search) which can’t be fully parallelized  due to their
unpredictable total resource requiremerlts.

What kind of cost and functionality terlns  WOUICI model this situation? l’his  is a hierarchical
design problem. At a coarse time scale, we have just two kinds of decisions to make: what the
active set of neurons (the $OCUS of attention) is to be at any given time, and what their new values
are to be after some period of active dynamics. (In the memory hierarchy analogy, one would like to
decide which part of slow memory to bring into fast memory as some computation progresses.) At
a fine time scale we must repeatedly make circuit-implementable state changes which move towarck
answering these two coarse-scale questions.

A strong constraint on the system is that, under reasonable cost metrics such as network space-
time volume, no savings will be realized unless the focus-of-attention decision has converged to a
definite answer by the time a switch of attention is to be made (i.e. by the ti[ne that clecision
is to be implemented); partial answers as to which neurons should be active woulcl just force all
the candidate neurons to be active. (An attentive neural network which unhapl)ily  violates this
constraint is described in [Mjo87]. ) of course one can contemplate clyuarnics in which by \vay of
exan~pIe a linear combination of neuron values is rnacle active, but such a system shoulc]  be designed
by introducing new variables for the linear combinations and a discrete switching circuit which still,
to be physically cost-ef~ective,  nlakes definite clecisions about the active set of neurons.

So, our problem is to find both coarse-scale ancl fine-scale cost and functionality ter~ns to moclel
a focus-of-attention nlecha]lisnl  which switches many storecl ucuron values into and out of a snlall
active network, where the ]Ieural values are updated. We will not consider all aslwcts  of this
prohle[n.  Rather wc shall stlow how the [,agrangiau  for[tlalisms  provide a trar-tal)lc  frar[lcwork for
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c}ur approach. This is illustrated through derivation of a few plausible Lagrangians  in the form of
clocked objective functions. Related work appears in [CO089, kfjo87, MM91, IISB+ 91].

2.1  Cyclic  Lagrangians

In discussing coarse-scale cost and functionality terms, the idea of a repeating cycle of a fixed
set of dissimilar coarse-scale decisions will be fundamental. This idea is analogous to a “loop” in
programming, or to the use of cyclic clock signals to control an electronic circuit. The idea may
be expressed in terms of Lagrangians  in several different contexts which we will discuss here. In
all cases we will fincl a simpIc formulation in terms of a “clockecl objective function” [MGM91]:  a
version of the AE functionality term of the Lagrangian in w}lich the structure of E is regarded
as time-dependent according to a temporal cycle corresponding to the fixed cycle of coarse-scale
decisions. The possibility of formulating a cyclic I,agrangian  in terms of a clocked objective function
was introduced in section 2.1.1 of Part 1, equations (17) and (18).

As an example, consider a line-minimization algorithm for local optimization. Repeatedly, one
calculates the gradient at a current location x, does a one-dimensional minimization of the objective
function along the gradient direction, ancl updates x. During the cycle it is necessary to store an
old configuration xold for use iI1 updating  X, and to reset to zero the scalar parameter s which

measures displacement in the gradient direction.
To express these ideas we recall the clocked objective function notation [M Gh191]:  Suppose

that we have a small set of objective functions { Eo } which are to be partially relaxed (i.e. par-
tially optimized) in a cycle. We define one nonoverlapping clock function, ~~~ (t) = O or 1 (with

~ad~(t) S l), foreacl~phaseo=  1 ,2 , . . . , A of the cycle. ‘l’he clocked objective function is written

mkl(d[x!~l = ~ia(t)~;a[x’’e’l.r:~’d],c1 (1)

. freewhere ,%0 and ,Ia‘fixec’ arc subsets of variables fro~n the entire set {~i].  During phase o (i.e. when
rjla(t) = 1), Ec,ocked = Fa . @- [ Tf’WIX~Xed]  is to be extrernized  with respect to all variables in %$,
while all variables i[~ A’~xed are to be held fixed or clamped. Figure 1 shows o~ie interpretation of
tile nonoverlapping  clock functions @n (t).

h’or  example, a simptc  clocked objective function for line minimization woulcl tm

h’,1~.k.,(  =

[

#, I(t); /lx’’’” - xll~ + ./)[xqx] (il)itialize  xO1’J and s)

++2(t) ~~[x + svqxo’~]])  [sIx, x~l~] (line minimization) (2)

+W);(llx – X“’<’  – Sv f;[x~’” ]11~) [X1.$, x’)l(i ]  (Itpdatc  x),

—..



Since tile ~1 = 1 at]cl n = 3  phases  are rs~x’cially  easy qliadratic  o~)till~izatio[ls, o[le Coul(l arratlgr
tliat these terlns  arc relaxed alllmst  to zero clurillg tile clock })lliiSe interval al)l)ro~)riatr to each.
‘J’hcn equation (2) is a Colltitl(lolls-titllc refille!netlt of tl)e coarsf-scale Lagrangiit[l’s {Imisioll  (y(’lc,
wtiicli partially relaxes 1’.’ill a gradient direction and tllcll resets tllc varial)!cs  for tile Ilr-xt partial
relaxation,  At the end of phase 2 in earl] cycle, tl~e clocked objective functiotl  takm ttlc val[]c of
1; at the new point. So the clocked ol)jective  function [nay be interpreted as a rcfillclllcl~t of the
functionality term of the coarse-scale decisiomcyclc  Lagrangian. ‘1’his interpretation also requires
that the appropriate variables be helcl fixccl at the correct ti[lles; this may be acl]ievcd  with a cost
term C’a which strongly penalizes any change in the clamped variables for the relevarit clock phase.

hlany  variations on equation (2) are possible; the clockecl objective could interpolate an extra
cycle for the calculation of the gradient vector, and the x used to calculate the ,graclient coulcl be
taken as the u=g–l (v) rather than v variables for F;, and soon.

2.1.1 l& ’kIkiOn  of ~;CIOC~,d to ~;

So far we have only argued that clocked objective functions proviclean  interesting special case of
the distributed I.agrangian  equation (5) in Part I; we have not shown how they can be related
to the static objective function E or the dynamicohjective function equation (4) in Part I with
functionality term F = EfinaI  – Einitial. Ilere we will discuss three different classes of clocked
objective functions, each of which can be used to make some progress on minimizing E in every
complete clock cycle so that AE ~ Ofor each cycle even though  the functionality terttl  is not simply
equal to AfII.  In this section we refer to such a clocked objective as “valid” for objective E.

Transient TermM For the first claw of clocked objective functions, of which the lilie minin~iza-
tion objective (2) is an example, F~C\O&cd  is valid if one of its components Ed is ectual to E itself,
perhaps with restricted arguments, and if the other components can each be expected to relax to
near-zero values within their own phase of the cycle. These other components will be referred to as
tmnsient terrnsof acloclced  objective function, since they approach zero quiclcly.  ‘1’hen  progress is
definitely made  during  phasep,  anclat least nohar~n  is done (i.e. no increase in A’fl is suffered) in
theother phases a. Gerlerally  these otller~~}lases are~lsed toerlsure thesuitability  of thearglin~ents

. .of F,p == F..
Subspace  Terms In the seconcl class of valid clocked objective  functions, E~ is equal to f?

during all clock phases, except that it is a function of different sets of variables (or more generally,
is a function c)n different submanifolds)  during different clock phmes.  We will refer to this type of
term a-s a subspace term  of acloclced  objective function. “l’here can be no significant calculation
required to decide what subset of variables L’ depends on during each phase (otherwise we’d neecl
a further phase to make that calculation). One simple arrangement is to partition all variables into
a few blocks ,1’a, with the variables in one block allowed to change during each phase of the clock.
Then equation (1) simplifies (since every Ea is just L’) to

‘;clocked[x,  ~1 = ~ @a(t)  B[~~elX~xed]. (3)
a

I’his  permits concise expression of blockwise coordinate descent algorithms.
I t  1 S  perhZipS  SUrPrlShWj  that k’clockd[x, t] is not nuI~lerjcally  equal ‘0 ~;[x(t)] ‘ o r  all t ‘r~ ‘llis

c~se, owing to the nonoverlappecl  clock factors @O (t) ● [0, 1] whose sum varies between O (between
phases) and 1 (during a clock phase). As we will see in the next section (2.1.2), this is necessary so
that the continuous-time Lagrangian will force all variables to completely stop ctlanging  between
clock phases, as they should.

We note that the second class of clocked objective functions can be used for the cliscrete par-
allelization  scheme mentioned at the beginning of scctiou 2.3.1 of Part I. l’here we postulated a
partition of the network variables into a s[nall number of “colorecl” blocks, with neighboring vari-
ables in the network having different colors. (Colors are in a corresponcleuce wittl phases. ) Such a
partition can he usecl to ensure noninterfererlce  of cliscretc-tirne  parallel u~)clate clynamics.  Clearly
ecluatic)u (3) is the correct (locked objective for tllis situation, and f“ would just be AfjCIOCk~C1.

~o~itrol TCIWIS  For ttle thir(l class of valid clockccl ol)jective  fllllctions which perform optinliza-
tion, onc constituent objective I;ti is a,gai I1 taken to be 11 with restricted arguillents  (a subspace
ter[ll,  as ill tl~c first and sem[ld classes), ancl ttle other  [)llases either  relax to nearly xero (being



(Y)II)IXMNI  of tra[lsirrlt  t,ertns :Ls irl tllc first c l a s s )  or s(>rve to (Icter[llinc tile c}loicc of  active  argw
]Ilents for [)hwe [j without directly changing  aIIy of ttlc origi[tal varial)lcs  x. Since this last type of
objwtivc is a SIIIII  of terltls  that ol)ly involve variat)les that control nlerntmrship  ill the active set
of arglll[lcnts  for /), its cotlstituent ter[ns  will be referred to as controf terms  in a clockccl objective
functioli.  (;lockecl objective functions with control terms arc tllc class of objective functiorls  most
rclevatlt  to ttlc atterltion  lllectlarlisrns of section 4. Irl ttlat section we will have occasion to usc
clocked ot)jectivm  colltainirlg  a variety of subspacc  terllls,  trarlsicnt  terms and control terms.

2.1.2 Lagrangians for Clocked Objective Functions

We have seen in equation ( 17) of Part I how clockecl objective functions may arise from coarse-scale
Lagrangians,  in which the the functionality term takes on a cyclic sequence of clifferent  forms. Our
purpose now is t,o relate  such clocked objective furlctions (M in (l)) to continuous-time Lagrangians.

The essential feature of a single term L’@[A’~c [~l’$xed]  in a clocked objective function E is that
it depends only on some of the variables, the rest being helcl constant at their earlier values. This
gives a property expressible in terms of derivatives:

(4)

where ~ai E {O, 1 } is a constant which indicates the presence (~ = 1) or absence (x = O) of xi
in A’&e. (For fixed cr, Xai is an indicatrix for A’~e).  Consequently, l;o[x&elx$xed]  is a low-
dirnensional  slice (restriction) of the higher-dimensional function EOIXa],  evaluated at values of the
fixed parameters which are dictated by the state vector x at the beginning of the a-th phase.

~From equations (3) and (4) we may now calculate d~jclOCked/d~l:

which is nonzero at any given time t only if ~i is in the free set of variables at that time.
We can take the final continuous-time I,agrangian  to be

(5)

(6)

where A’ is a cost-of-motion term (see section 1.1 of Part I). To see that this is consistent with the
desired pattern of fixed variables & a function of time, we examine the resultant
in equation (30) of Part 1, varying ii and using ~0 ~~oxai ~ {O, 1 }, and defining
inverse of ]{[i, z], ~ with respect to its first argument, the equations of motion are

dynamics. As
~[w, r] as the

(7)

Here we have used equation (5) and ~[0, z] = O to simplify the equations of motion. The factor  of
i~ct(f),yai ensures that the correct variables are clarnpec] at the correct times.

Ecluatiorl (6) is appealing because it has the same form as the continuous-time I,agrangian  for
unclockecl  objective functions, equation (22) of Part 1. This is the desired relationship between
continuous-time I.agrangians  and clocked objectives. Ilecause  of equation (6) it will often sufhce to
give the clocked objective alone, omitting the I,agrangian,  in order to specify a network’s dynamics.

2.1.3 Notation for Clocked Objective Functions

I;c[uations such as (4) can be expressed in a more convenient notation for algebraic calculations (by
human or computer). From an algebraic point of view, (4) may be regarded as the ~i derivative of
~~o, a version of L’a in which all fixed variables ~j ~ A’$xed are simply replaced by clcrmperi  uariccbjes
(or ‘{ flxecl variables”) ij for which

d.i’j
– () despite ttle fart that

L2J’j  ~,,
——

~J’i  – tlXi  — ‘3’
(8)



‘1’lIe  actLial  value of Jj i s  LIiKlat(d to tile current  value of J ‘, oIIly at tile (otllfrw’iw’  irr(l(’v:trit)
tilllc  intervals bctwccu ttle nollovcrlal)ped  clock p])ases, wheu LO @a(t)  = 0. Iklllatioll  (’l) lollo~ys

directly froltl this illterpretatioil of L’(, [41’c~Cl1’~x  C(l] in ternls  of ljo,
In fact,  we can design notation for tl)e substitutiotl that relates ~; to L’. Ikfrlle

Z{x}=xz+(l–y)i s o x{~a}=x,,  .x+(l–xn)’ x (!))

where ~ is a binary (zero- or oue-valuwl)  scalar (or can easily be roulldwl to zero or OIIC) and X(l is
just the constant array ~nl wbictl specifics with its mro-valuecl entries which variables are clarl)pecl
in each phase a. With this notation, fi~ is just f~a[x{xo}],  i.e.

Ea[x,pl.l’:’”q == Ea[x{xo }]. (lo)

We will use E@[x{XO  }] as the preferred notation. Furtherlllore  x need not be a constant; it can
be replacecl  with any vector-valued ex~)ressio~l  m(f) involving variables <. Equation (9) would still
define

x{7r(<)}  = @(7r(<)  – 1/2) x+ 0(1/2 – 7r(t)) x, (11)

where

{
c)(r) = :

ifz>O
otherwise.

(12)

@ is defined componentwise on vectors. ‘l’he purpose of the El function in (11) is to round m(~) to
zero or one, with a boundary at 1/2. Note that, in agreement with equation (9) in which x is a
constant, x is clamped in equation (1 1). ‘l’hat is because x’s focus of attention cannot shift cluring
the phase in which x is being relaxed without incurring excessive and uncontrolled switching costs.

As a further notational refinement, we may clrop the explicit r/~(t) functions from our notation
by defining a clocked SUITI,

@L= ~AwL (13)
a c1

which may be written out tern-by  -terrll as

( 1 4 )

(The  “~” symbol is evocative both of a rolling “+” sign, and of an analog clock face.) of course the
periodic functions ~~~ (t) still have to be specified before the clocked sum is a well-defined quantity.
The clocked sum is neither cc]mmutative  nor associative, but we may take it to associate over the
ordinary sum:

(15)
aa Cra

Moreover, parenthesized expressions such as h’l @ (J~2 @ h’s) may be used to denote nestecl loops
in which for example E2 and E3 are repeatedly relaxed in an inner loop, within one phase of an
outer loop, and h’l is relaxed once during the other phase of the outer loop. Again the timing
would be controlled by external functions ~~a (t), which must still be specified separately.

Note that the use of clocked objective functiorls  is reminiscent of time orderirlg of operators in
quantum physics. See also the so-callecl  Feynman  entangling calculus [MW66].

Perhaps the most important algebraic property of the clocked sum, for the purpose of forn]u-
lating descent algorithms, is its commutation with partial differentiation:

g+lm=q+”.
la

(16)

“1’his follows directly from the definition of the clocked SUIO  ‘1’he right hancl sicle of equation ( 16)
could be used as the time-dependent descent direction in a gradient-descent algorithm.

We may conventionally expect to find the a) sigrls outside the + signs in a clocked objective func-
tion, and accordingly we assigu @ a lower grammatical precedence than + in otherwise arllbiguous
expressiorls,  SO by convention, };l tl) 1;2 +- L’3 IIleans ~~1 @ (~~z -k ~;:)).



\\ri Ll] the a(ltliliotl  of clalillwd  variablcw J, (,oll(litic)lial  varial)le.s 7{ \ }, ;Ill(l [’lol’kf’d  sUIlls @<z I;n,
we are at)le to concisely express a wide variety of cloc’keel ot~jf’(”tivc functions. For cxal[lple  tl~e line
IIlillimization  ol)ject. ive (2) bccor[lcs

l(c)oc~t.d =  s~/2+llx0’d –x[[2/2 (initialize s, xo[d)
o) f’/’[x + SVE[X]] (Iitlc Illinimizatio[l)
6) Ilx–xol’l _sv~’  o l d[i ]]12/2 ( u p d a t e  x ) ,

(17)

or what may be easier to implement as a circuit,

~’/’c]ocke~  = “ s~/2 + I\x’”d – x\12/2 + IIw -- vE[x]]y/2
(initialize s, X“ld; find gradient w)

a) E[X + Sw] (Iille minimization)
(18)

@ [lx – X“’d – swl12/2 (update x).

Furthermore, clocked objective functions make new algebraic transformations possible. For ex-
ample, equation ( 11) Inay be implemented for X-expressions (assuming only that we can implement
it for O/l-valued variables) by introducing new variables q as follows:

.E[X{T(f)}]  + ~ [ -  rji(~i(i)  - 1/’2) +  #0/1(7)1)]  @ ‘;[x{’l}] (19)
i

IIere ~o/l  is a two-sided barrier function which limits its argument  to values between zero and one.

2.1.4 E x p e r i m e n t s

‘Jibe clocked objective function notation has been used to derive and express a number of experi-
mentally validated relaxation-based neural networks, including networks for multiscale  image seg-
mentation ~1’si97], visual pose estimation [LM94],  point matching [G I, R+95], and invariant learning
of point-set and graph moclels  of visual objects [RGM96].  In these applications, the problem vari-
ables were divided into an exhaustive collection of subsets each of which received an exclusive clock
phase. During the clock phase for any subset of the variables, all other variables were clamped and
the optimization of the free subset was relatively easy or even analytically solvable. l’his situation
is clescribed by equation (3), which may be rewritten as a clocked objective function using (13). It
occurs sufficiently often that we provide another notation for it:

(20)
o c1

2.1.5  Clocked Circuits

Clocked objective functions can also be used to specify circuits at the analog level. ‘1’he simplest
way to do this is to assign to each clock phase the dynamics of an analog neural network in which
some variables have been clalnped.  I’he clamping is under the control of the clock signals ancl/or
other variables. That is the effect of equation (6), either under the original definition of clocked
objective (5) or under the more powerful and convenient notation defined in equations (8), (11),
and (1 3); it is also a basic idea behind the design of clocked pipelines of cornbiriatorial  logic in the
data paths of si[tlple C}’U chips [MC80] where clamping is cleterminecl  only by the clock signals.
We take it as clear, then, that such clocked objective functions can be implemented as analog
circuits provided that each phase can be so implemented, and provided that the objective includes
i expressions (cf. (3)) but cloes not include  r{g}  expressions (cf. (8)). For example, the line
minimization clockecl objective of equation (18) can be implemented this way, as can the multiscale
optimization objective found in [MGM91].

In the next subsection wc show another such cxarnptc:  a clocked objective function which
incorporates one or lnore  general feed-forward neural  networks inside a relaxation-based neural
net, in a Ilybrid that may be of usc for colnbining  relatively efficient learning algorithms (from
feecl-forward  nets) wit Ii exr)rcssivc  power (frotn relaxation nets).

[,atcr,  we will discuss a set of applications that require the more powerful r {1/} llotation, without
speclllatlng  on the hidden circuit- lcvef irllI)lelllrl)tatio[l  of the switching mechanism. Thus the



IJrob]ell]  o f  elil!linati]lg  .r{y} exl)ressiotls  itl f a v o r  of J’ exl)rcssio~ls  rctllaills  f o r  f’uturc$ \vork;  il i s

related to the “llcural  nckwork routing l)roblc]ll>’ discussed in [hIG90], section 2.6. ,\ further OIN>I1
prol~lcl[l  i s  to rc~)lace g’lolml clock sigtlals ill a  I,agrangian  cir(uit forrt)u]atioll tvitl) a systcrrl of
self- tirl~cd subcircuits  in wllicll tile r/, ,t c’ont rol furlct ions arc replaced I)y rclat ivcly local variables
with indc~)endcnt  clynamics,  Solutions to analogous prot)lrltls  are i]nl)ticit irl tlic drsigrl of Iilarly
distributed computer systems but not wittlin a circuit-level l,agrangian  fral[lewwrk. ‘Illc J’{y}
notatiorl  represents a substantial escalation in expressive power, a n d  scctioil 4 is drvoted  (o soltle
of its uses in clesigning  computational attentior]  niechanisr[ls

2.1.6 F e e d - F o r w a r d  N e t w o r k s  a s  C o n s t r a i n t  P r o j e c t i o n

A feed-forward network inside of a relaxation network can be regardecl  as a set of consfraif)ts  on
the relaxation network:

Ih.’/rdax[x]  = E&[ax[x] -t ~ FF[V’, 7“, v’- 1] , (21)
I (layers)

where F1l  is the functional clependency constraint of a layer’s output neurons on its input neurons
(here taken to be in the previous layer, though neurons in any previous layer may be inputs
without causing problems for the following algorithm). Various methods are available for enforcing
constraints within a neural network optimization [PI187,  MG90,  PS89],  but the feed-forward network
constraints have a natural ordering cletermined  by the feed-forward pattern of corlnections.  So
in this special-case we can use a nonlinear projection method to enforce all the constraints. As
mentioned in section 2.3.1 of I’art  I, related algorithms are discussed in [BT$9],  for example, under
the name of “gradient projection algorithms” or “scaled gradient projection algorithms”.

Any incremental relaxation of the objective E,,laX is followed by a series of projections which
reestablish the feed-forward constraints, layer by layer (i.e. from earlier to later neurons in the
feed-forward neuron order), in preparation for further relaxation. l’he  clocked objective is

[ ] – @ {~{ –l)j~ljjip +di(v:)}}  a) Ert,ax[x].~~FF–projection  x, V – (22)
I (layers) i j

Note the especially simple form of each layer’s objective:

(23)

Every neuron vi in layer 1 is independent of every other in this objective, and the minimization of
this objective is best achieved just by assigning values to all layer-l variables in parallel:

This is the projection operation which immediately enforces the layer-i constrairits.  Later layers’
projection operations do not disrupt earlier ones. So, at the Legiuning of the relaxation phase of
every cycle, all the Fl” constraints will have been consistently satisfied.

3 FOCUS OF ATTENTION THEORY

A particular kind of clocked objective function formalizes the idea of a conlputational focus
of attention. We will derive this clocked objective by first considering the functionality ancl cost
terms of a coarse-scale greecly  I,agrangian,  and then developing the associated fine-scale greecly
I.agrangian  which specifies circuit-level dynamics,
3.1 Formulation of the I,agrangian  at the Coarse Scale

I/et x be a set ofdiscrete-valued  variables which determine, clirectly or indirectly, whic]l components
of the neuron vector v are actively updated at any given tirrle, In other words, x deterlnines  a



{

1 if l~i is active, i.e. ill tile focus of attention,
7r1(x) =

O ottlcrwisc, (25)

l~or example,  we could have as rllany conlponcnts  of x as of v and set ~: (x) = Xl. or instead, we
could introduce a partition of the cornponeuts  of v into blocks  i[ldexecl by cc, with a 0/1 partition
matrix Bia; this is a form of aggregation applied to y. (For now we will take n to be constant,
thougl) avariablen is sometimesuseful.  ) Then wewouldh  aveonecomponent  ofx to switch each
block of thepartitiou, and ~i(,x) = ~OBioXa. (That is, avariablevi isin the focus of attention if
andorlly ifits course-scale Lloclca isinthe focus of attention ascleterlniued  by~a.  ) Usually  fii(X)
can be macle linear in X.

Regardless of the actual formula for ni(x), there will be sorue sparseness constraint on x to
ensure that only a srna]l fraction of the neurons v are in the focus of attention at any one time.
For example one might itnpose~~iri(x)  = n, where n is the optirnalsize of the focus of attention
(and n<< N=thetotal  number ofneurons vi). Inthecase ofapartition matrix ~~with  blocks of
roughly equal size b (so ~iBia ~b), the sparseness constraint would become ~a,ya = n/b.

Whatever the sparseness constraint on x is, we will express it as a summand 6(x) in an
objective function. @ may be a penalty function, a barrier function, a Lagrange multiplier times
thccoustraint,  orsomecornbinatio nof these possibilities. Thus, we could choose froma variety of
``k-wir~rler'' objective furlctions  (kwirlners  allowedi rlacortl~)etitiveg  roup).  Assuming &(X)=@(e)
where e ~ xi ~i(x) –- 71, we can enforce or at least favor satisfaction of the constraint e s O with

O(e) =

(c/2)c’ (a penalty term), or
Ae + cue – (c/2)r72 (I,agrange  multiplier+ effective penalty [hIG90],

with o an appropriate auxiliary variable), or
Cf:mg(c)clz g monotonic and odd (a barrier term), or (27)

cm –  
Ling(y)  -Q(-l)(x)dz, (effective barrier, linear in e),

Stricter sparseness terms are also pertnissible,  such as a sum of nlany k-winner terms on different
sets of variables. And for a variable-size focus of attention, in which 71 k variable, one would also
need a cost term for n.

All components of v will be assumed to take continuous values, even if they are ultimately
supposed to converge to discrete values, Then the coarse-time-scale update rule implied by the
action S will be of the form

v’ = V’(v, x). (28)

For example
~~ –  ~~ = ~i(X)Gi(V), (29)

where G is the cumulative effect determined by the fine-scale clynamics within an active-v clock
phase. ‘l’his update rule is to be derived from the greedy variation of a multiphase  dynamical
objective of the form

E +O(t)[c’a(t)  + u(t)], (30)

coarse scale

“ a’{ =::;}tl~ f,e~o
decisiol] times t,

I/cycle >0
where @a is defined as in section 2.1. The principle  feature  of equcrtion
phases, one cluriug which the v variables are free to move and the x

(30) is that it has tulo C1OCIC

variables are clamped, and
orlr in which the roles are reversed, During the active-x  phase the focus of attention is determined
for the next active-v phase of the cycle.

Notice also that we have assumed a simple slopping  criterion, ZO 1,,, < 0, which means that
the coarse-scale dyuarnics continues only m long as its benefits (clecrease in F) outweigh the costs
(given by C’), nrld this decision is made at the etld of each coluplete  cycle. We must now find
suitable funct  lous CjCC, ar$e_v, I:oar,e-v  , c’ Icoarse– Y, all~ ~kmrsc-x.



3.2 C o a r s e - S c a l e  1’

‘1’0  find tile F’ tcr[lls, wc nlust
would Iikc I,~Oar.e to I]leasure
updating v accord i]lgly:

deconl pose li~~tal = A l; into a SLIIn of roars(~-scale (~ailsi~l Lertlls. IVC
tile irll~)ro~’(’[llc’llt  ill f; due to  choosi]lg  a col]figuratioll  X all(l tllell

(31)

IIOW can wc cfeconlpose  this combined effect of v arid x into separate II’ terms for each coarse-scale
clccision?  As previously mentioned, the difficulty is that the coarse-scale decision step which chooses
values for x cannot be made simultaneously with the decision of v values whose presence ill tile
focus of attention is determined by that particular X. One obvious way to accomplish this is to
stage alternating coarse-scale decision phases, updating the two sets of variables, each based on the
most recent value of the other:

x’ = X’(X, v)
v’ = V’(VI x’), (32)

‘1’hen, to decompose 11~ + J’y = E[v’]  – lJIv], we [nay interpose some especially low cost estimate.
i of v’ which could even be colnpute~  analytically given any candidate x’:

~coarsc ,y’ [X’ Iv] = I;[i(v, x’)] - E[v] +  @(x)
~COarSe  V’[v’lv, X ’ ]  =  ‘;[v’lX’]  -  ‘;[i(v, X’)IVJ  X’]

l’he  o~tima of these two expressions with respect to their free arguments then

(33)

determine the
functions in equation (32). Note that l&r~e”, v’“[ I . ..] is independent oft, though the constant
E[i(v, x’)] is subtracted off to satisfy equation (31).

The F functions of ecluation (33) may be understood in the terminology of section 2.1.1 as a com
trol term (A E)e~t[xlv]  = L’[i(v,  x’)] – JJ[V], a transient term @(x), and a subspace  term L’[v’lx’].
I1owever,  the subspace term is carefully norlnalizecl by subtracting the constant L’[C(V, x’)] in orcler
to apportion credit for a given AE (equation (31)) between the x and v phases of the dynamics.
Dy equations (9) and (25), the subspace  term F;[v’Ix’] may be written as h’[v’{z(x)}].  So the
objective function of equation (33) is equivalent to the clocked objective function

~!a,~en = (AE)cs,[xlv]  +  ~(x) @ ~~[v{n(x)}]. (34)

It remains to specify the parameterization n(,y)  of the focus of attention, the cost Q(x)  for a given
focus of attention, and the estimation formula for the AL’ that woulcl accrue from a given focus of
attention T(x).  Each can be specified in a variety of ways. @(x) may be a k-winner constraint.
Also the estimation formula (A E),~t may be meta-optimized  to provicle more accurate estimations
as judged by their effect on the performance of the attention algorithln.

In summary, once we are given the function V(v, x’) ancl the cost terms Ca,  there is a Lagrangian
(the sum of cost and functionality terms) ancl an associated optimization principle (6~1, = O, as in
section 2.2 of Part I) that determines the discrete-time dynamics of v and x. l’he  action is given
by (30) for S and (33) for F.

3.2.1 Criteria for Estimating the Effects of a Focus

It remains to find suitable expressions or dynamics for i(v, x’). l’hese  have tt,c function of es-
timating the influence of alternative x vectors (hence of different foci of attention) on v }vithout

[ I ]. ‘lhis  problem is closely analogous toactually performing the minimization of lI&arS~ v, v’ v, X’
the recta-optimization probletn  posed in section 3.2 of Part I . ‘l’here we sought a functional form
K(v, v) for the kinetic energy which resulted in tl~e “optimal” dynamical system, where optimality
was defined to depend on behavior in many different trials of the network. I,ikewise we must first
clefine rneta-optimality ancl then seek it, in the cletcrlnination  of a formula for i which will be usecl
in many different trials of the network.

For any such functional C, the required nct,work  computation must be very inelprnsiue  compared
to that of v’ for this reason: the cost of optitllizing  f’~oar$e,, is expected to be SOIIIC large number
of fine-scale iterations times the cost of finding Q and is to be added to (and ttlerefore  balanced
with) the cost of finding v’,



/\s alw’ays W’(’ 11111s1  wtigll fu[i(’lioltality agaillsl  cost. If’ll:lt  Illilkt% illl estitllator i’(v,  X’) cfrcctivc’?
I:or a sillglf’  l]eural IIetworli trajectory, the obvious clloicr is to consider the O functiol) cf~cctive to ttic
(’xtcll[  tl]at tl~e resulting v(f)  trajectory lniniltlizm  ttic actio(i .$’ ill (30). After all, lIIc [,agrangian
already collt,aills the correct  balance of cost arid benefit tcr[iis forju[lgiu,g tllc v dyual[lics,  co[nplcte
}vittl a stopping criterion. ‘1’lte olily relnaillili,g  clurwtion is how to aggregate over lnany  trials of
the nct,wor-k which share the same  formula for +, i.e. r[lany starting points, inputs, and possibly
connection matrices. O[ie could attenlpt a worst-case analysis as in the dcterminat ion of /i(v, v),
but we have not sLIcce.ecled  in that, Alternatively we consider an average case measure of action,
averaged just over sornc probability distribution on starting points.

We have already proposecl  a recta-objective, (35), for t,tiis type of problem, I[ere we are averaging
over starting points (and perhaps also over inputs h and connection matrices 1’):

where {VP(0)} are P starting points sampled from the same random  clistributiorl  over initial con-
ditions.

Generally, predictive accuracy in t is rewarded by this objective because of the term E[v’1#]
in (33): X’ is optimized for E[; (v, x)] and then usecl as a constraint in optimizing E[v’Ix’]  with
respect to v’.

l’he  sampling procedure converts the infinite sum into a computable and optimizab]e  quan-
tity MP at the expense of introducing a learning  and gmcrufi2ati011  Problenl.  AS irl theoretical
approaches to learning [Vap82,  IJJ189],  we must ensure a sample size sufficient not only to approxi-
mate the infinite sum, but to continue to do so even after the sampled objective has been optimized
(by tuning +) to that particular sample (so that it is no longer a random sample of the infinite
sum). In this way, a nontrivial predictive learning problem enters into the design of the switched
neural network dynamics.

Mm may also be regarded as an average over all configurations along a trajectory, rather than
just over the starting points, since every decision point along the trajectory contributes to the
summed action. But to do this we must define a suitable probability distribution of configurations,
and the distribution itself is a function of t. This may limit its usefulness for sirnptifying  the
objective.

The connection between the optimization of i and a learning problem demonstrates one ad-
vantage of the derivation in section 3.2 of I’art  I of optimal kinetic energy terms from a worst-case
meta-objective (equation (60) in Part I) rather than an average-case rneta-objective  (ecluation
(35)): by this means analysis could be substituted for a large and (in general) recurring training
computation.

3.2.2 Candidate i Estimators

We now present several possible forms for $(v, x), which are to be optimized and evaluated accord-
ing to the criteria of the previous section. In the simplest form, t is to be cornputccl by hypothesizing
a small, constant time At between course scale clecisions, during which i and therefore E[v] change
according to ‘1’aylor’s  formula:

dui
Gi =v, +At -

d Tv

(36)

(cf. (29)) where T v = f &(t)dt M in Figure 2.1.
We may also introduce, for each variable vi, a hypothetical time axis T; which increases linearly

with real time t when neuron vi is in the focus of attention (equivalently, when ~~v(t) = 1 and x
allows vi to bc actively updated, i.e. when ~v(t)~i(x) = 1 ) and stays constant otherwise. SO

T:(t) =
/

dl~jv(t)~l(x),  and drl/drv = T(X). (37)

d lJi (~ T2
tii=’rli+-~t  ——

(171 d r“
(38)



a[kd

where

I(.,,ar.c- ~([xlv] == E[v(v,  ~’)] – f;[v] + a’(x)
E (AE)AIXIV] + Q(x),

We introduce the useful quantity
19 P.’ d 111

~~;i [v] ~ ~ z ,

which for lIopfield/Grossberg  dynamics becomes (cf. equation (30) of I)art I)

(39)

(40)

(41)

first proposed as an objective function for driving a focus of attention in [hljo87].  With these
definitions, (All)est  becomes

and the associated t becomes, from (38),

where now tii ~ dvi/dri and ii will take boundecl  values determined by the v-phase L,agrangian.
‘l’he optimizing parameter here (for the prediction objective M) is At, which will also enter

into the coarse-scale cost term, since the cost of switching can be amortized only over the time
At. Note that the variablesxa  are still discrete, and the cost ofpartly orconlplctel  yn~inirnizing
Fcoar.e  ~f depends on the relation between fii(x)  and X. to be specified.

Naturally the partial relaxation cost associated with ~i (x) will only increase if we take the
natural step of expanding + and E to second order in At. One good reason for dcjing this second-
order expansion is that the optimal At will not be small if switching costs are sufficiently high,
so a second order approximation may be more accurate. ~’he second-order expansion proceeds as
before:

A t2

tii = vi + At~i(X)tji  + ‘7Ti(X)ti~
2

(45)

and

(A~j)est[xIv]  = At ~ ~i(z)~;;i[v]  + $ ~ ‘l(X) Tj(X)F;;ij[v]  + @(X), (46)
i 1.7

where E;i has been defined in equation (43) and where ~j;ij[v] is the quadratic form given bY

(47)

For example under Hopfield/Grossberg  dynamics, F;,ij can be calculated aS

( )9“(”i)(~1i)2~;{~;ij[v]  = 9’(~i)9’(~j)~;,i~,jE,ij + ‘ij9’(’’:)E,: ~g’(”k)F;,ik ~ ~ , (48)
k

l]ecausc  ~i(x)2 = ~i(x), any diagonal ter[l~s in the quadratic form ~ij ~j,ij~i(z)~j(z)  (~f (46)),
in particular all those ter[ns  with Jij factors as ill (48), can be absorbecl  into  the T-linear  parl of
P;oar,,: ~! For example, in a quadratic neural net objective ~~[1)]  = –( 1/2) ~i~ ~;,;~)t ~~j – ~] ‘~i ~’, +
~i @(vi),  the cocfficier]t  of tl)c quadratic form for x could be taken M



at~d a (’orrespondillg connection Illatrix  would have tlie ol)posite  sign.
‘l’lie essential ncw feat(lre  of objective (46) is tltat it involves quadratic infraction.s between the

x cxl)ressions  correspo[lding  to difrcrcrlt neurons ‘1’his  introduces a nontrivial scheduling  problem as
{mrt of the c~cternlination  of the next focus of attention: separate neurons must not only be capable
of makiilg  progress individually, but  also those neurons likely to cooperate shoulcl be scheduled into
the same focus of attention. ‘1’his point will be elaborated in section 4.2.

3.2.3 Cost  Terms

At the coarse scale, the cost of one cycle of computation is the cost of running the v network for
titne Atv, plus the cost of switching to the x network, plus the cost of running the x network for
a periocl  Atx, plus the cost of switching back to the v network to start the next cycle.

‘1’hese considerations may be expressed in the following cost terms for a coarse-scale clocked
],agrangian:

cc o a r s e - v  = C~Witctl  +  Nl(Tt)AtV  -t Clanlp(Ax, {A~il.,(x)=O}) (51)

and
Ccoar.e.x  = C~Witch + iV2(n)Atx  + C1amp(Av), (52)

where “Clan~p”  is a penalty or barrier function which enforces the constancy of v or x as needed.
I]oth  of the cost terms here are constant if we regard n, At”, and Atx = constant within a run,
although in that case the constant values of the n and the At’s probably should be chosen by a meta-
optimization procedure using the same action, averaged over many trials, as the rneta-objective.

Such a meta-optimization procedure coulci also be generalized to produce a simple rule, rather
than a constant value, for each At ancl for 71; wherl  such a rule produces the result At” = Atx = O,
the computation stops, In that way the cornrnon problem of choosing a stopping criterion, a-s well
as the more specialized problem of switching between optimization of v and of X, fall naturally in
the purview of meta-optirnizatiorl.  Of course such a rule could be given in the form of a Lagrangian
for Atti, or equivalently for ~o, but we will not pursue this case here.

3.3 1. at the Fine Scale

Since the v are analog variables, fincling fine-scale L’ and F terms which act to minimize the
coarse-scale ones is now easy. We proceed as in sections 2.1.2 of Part I and 3 of Part I, except
that the Lagrangian  functional of ecluation (22) in Part 1 is generalized to integrate each variable
I)i according to its own interrlal  time variable ~i = ~ ~~v (t)~i(x)(t)dt EM in Figure 1:

(53)

\Ve may convert this into an integral of a single Lagrangian over a single time variable by using
the formula for ~i and the fact that & (t) and ~i(x)(t ) are each approximately zero or one almost
all the time:

(54)



Illlt  this is [lot qllltc  t lIe N’lIf~lc fill(-s,al(’ I,:igrallgiarl  for tile act ive-v clcx-k  l)llilS(>,  1)((’allse  of t Ile
Coitrst’  cost, trr[lls  of equatiol)  (51 ), ‘1’llc “( ~lall]l)” tcr[lls lllay b e  refi[le<i  t~y adding  a[)[)r{)[)riilt(’
C(jst-of-lll[)vclllellt  terllls  A“[.i, .r] (!vllcre  A’ is IIli[lirlial  at j = 0) for CWII of tll(: cl;LIIIl)eLl  v:lri:il)l(~s:

Adcling S’( 1

(55)

and .$(z) togcttlcr,  we get the part of the action  that pertains to the active-v pl~asc:

sfife-v=/~@.(~) (a,,,~,,c,r~;[~l~l+  ~~i(x)+%) (56)
,’

~or[lpariilg  this  actiol~to  t~le I,agrarlgiarl  irlecll!atiorl (6), wesecthat the fine-scale cfynalnics is that
of a clocked objective function governed by the focus of attention characteristic function ~i(x),

Note that, as far as the Lagrangiau  is concerrled, this refinement amounts to an algebraic
substitution

7/b(t) [cv+F[v]]  + W( ~ C?fi’ )l{[i,l’]+~~:(x)~~)i , (57)
all variables T

I
i

which is justified since at the end of a coarse-scale step, F is just a constant starting value plus a
coarse-scale change Acoar$e F’, ar!d the coarse-scale change is equal to a sum of fine-scale changes
~ dt ~i(6’1’/dui)tii. Also, the A’ terms for the clamped variables (some ti ancl all other variables)
serve as penalty terms which, in the absence of other i terms, enforce ~ = O when &. = 1 and
thereby refille the “Clamp” terms of L’v.

lhel~ard  part ofrefinil~g afoc~ls-of-atterltiorl  l,agrarlgiar~ istofirld  fine-scale (~and~’ terms for
the variable-z phase, because our coarse-scale tcrln.s a.ssurne  discrete-valued x variables and the
previous refinement techniques don’t apply to that case. Indeecl, a general, N variable, cliscrete-
valued optimization may be the goal of the entire neural computation (at the coarsest time scale
of all) so we surely can’t assume that much capability at the tine time scale. On the other hand we
have already accepted an approxitnation  in t’c~~,sc.x  on the grounds that it is not global convergence
but merely the order of neural updates that is at stake. Additional simplifying approximations may
also be acceptable if optimized through training and verified through testing.

Unless E-oar.c.x  is linear in Xa, (for example by being linear in At with ~i(x) linear in x), this
F is a nonlinear objective which will require many steps of analog relaxation dynamics, implying an
uncertain time to convergence to a nearly discrete- valuecl X. Since we only have an intermediate,
fixed time At available for relaxation, some additional mechanism will be required to find discrete
values for x after a possibly inconlplete  analog optimization of F’[&],  w}lere <0 are continuous-valued
versions of Xa.

3.3.1 Two Phases of Switching

‘1’he con~putational savings we seek accrues througtl  the actual switching froln one active set of
neurons to the next,  For switching to occur, however, we neccl a “digital restoration phase” in
which the x variables are restored to definite 0/1 values. l’his  phase could be left implicit irl our
modeling, as part of the unspecified switching hardware, but then we would be unable to analyze
possible failures of the mechanism such as too little time to converge to discrete values, or too many
ni(z) = 1. Ily contrast it is easy to leave purely digital circuit switching details unspecified, since
accumulated experience makes it relatively easy to engineer such circuit nlcchanislns  outside of our
methodology. We will however explicitly rnoclel a third phase, in which analog variables ,t~ are
restored to nearly cliscrete values la, as close to O or 1 as any physical circuit cluantity  ever gets,

Then  we will have a global  cycle through o(~e phase that relaxes the analog v variables ancl two
phases that optinlize  the discrete 0/1 X variables by first optimizing analog variables ~ atlct tllcn
restoring thcrn to nearly discrete values x wliich can substitute for actual cliscrcte  values x ill any
circ’uit irllplcl[lcrl tatioll. Of course ill a cligital i[ll~)lerilerltatiorl rnediunl  (suc’11  as a geil~~rt~l-~)~lrl)os(:
software environ nlent,) wtlich exists  as an abstraction of sonle analog physical systerll,  o[ie slloulcl
ilwteacl move clircctly fror[l  ( to x,



\Vit}l this  adclition tl,c fillc’-s,ale I,agra[lgiali  twco[lles

[Tim  = x A-[i,.r]-t ~ f),,(t)
all varial,l(s  J ,,.”.12.s  x, (~x”)ptlaws  (t ,<

(f}3)

which, as we showed  with cquatioll  (6), is exactly tflc I,agrangiarl  correspond itlg to a clocked
objcchivc function

hm. = ~ !J,,(t)m?[xal  .] = &’a[xa,x/5#a]. (64)
a o

More particularly (substituting from equations (57) and (60)) we get the clockecl ol,jcctive  function
for three-phase attentive dynamics:

‘i:3-p}kase  =

~ni[t]~’;i[v]+o(?ni(()  -”) .

+ ~ ~o,l (<a  ) ( c o n t r o l  terrlls)

(65)
@’ – ~x.(<. –q + ~AJ/l(x J (transient terllls)

6) E[v~7r(x)}].  “ (subspace  term)

This clocked objective function for a focus of attention is a more elaborated version of equation
(34). Note that, from equation (57), we have

(66)

which is the essential feature of a clocked objective function, as derived in (5).
Various special case expressiotrs for ~i (x)  will be explorecl in the next sectio~l. In the result-

ing networks we will often omit the digital resetting phase for a simple kJVrl’A network, on the
understanding that it should be restored as part of an analog circuit design.

4 APPLICATIONS TO COMPUTATIONAL
ATTENTION

IIere we present several possible applications of the forgoing computational attention nlecha-
nisms and notation. The first two (sections 4.1 ancl 4.2) have been employed to good effect in ~1ki97]
where substantial savings in computational cost are clocumented.  ‘lhc  rest of the applications below
may be considered as design examples.

4.1 Priority Queue Attention
‘l’he simplest possible expression for ~i (z) is the identity function, in which each variable vi has its
own attention indicator ,yi:

~i(X) = Xi & {O, 1}, where XX’ = ?i << N. (67)
i

We have previously reported on this case in [hl M91]. “i’he objective function for x woulcl be
transformed into a clocked objective, m in (30) (again using the notation of section 2. 1.3):

E[v] ~ (kWrI’A(X,  ?L) +  ~ X: E,i[V])  @ E[v{x}]. (68)
i

Ibis representation of ~i (z) looks ex[mnsivc,  since ally savings obtained by leaving niost  t~i ‘S out of
the focus of attention could be lost by updating all the xi variables each iteration. l:ro~n equation
(65) this update would also require computitlg  I;,, for every Z,i n  the  fOCUS o r  not. I\Ut ill fact 1,’;
is unchanged unless v, is in the focus of attclltioll, or Ilcas a network neighbor ill the focus; so for
efficiency we can store this gradient itlfor[nation  in a variable 1{~: wliich is only updated in those



‘1’!1(%(’ (’{JllSl(!(’l’ilt  II}IIS (“all IX’ f_orIIlilll  ZCd  aS a S!l~llt lllO(llfiCatloll Of’ tll(’ l,a~rall~larl  trallSfC)rfllEitiOn

[)oillt ot’ view IIsml  ir~ sc{.tio[l 2.1 of I’art I to derive a fiIIwscale [,agra[lgiwl  for v. Now we arc rc{luircd
to )KI/tta/f!/  ol)t illlize all ot>jct’tivc l,~.,)ar~c.i[xlv], wllilc guaralttccing  tllc discrctc[lcss  of X. Wc wil l
a(la])t the salnc  tllrec transf’or[rlatious  a s  bf~forc. I:irst wv switch fro[n discrete to constrained
coIltinuous  optimization, acconl~)lishrd  in two successive l)tlascs using clocked objective fllnction
llotatio[)  (2. 1):

[
I’X(t)  ~;x +  ~“[X] +“ ‘(~ ‘i(X)  –  ‘t) 1 + o<(~)i

+r)~(t
Lali variables r a J

(58)
where <i E [0, 1], ~i ~ [0, 1], O is a threshold, and @ is a sparseness term such as those of equation
(27). SCcond, replace all constraints with penalty functions aclclecl to the objectives:

F’[&] + l“,y-o~~[~] ~ ~“[c] +  ‘(~: ~i(f)  -  ‘1)+  E. d(~(l),
x. i.(<a -  0) +  ~;restore[x]  = z. ia(<a -  0) +- z. #(i.).

(59)

IIere the threshold O is usually taken to be 1/2, but other values may be used if the analog x
dynamics would thereby be sped up without losing accuracy. Also ~(i) = ~i(~),  as in equation (25).
h’ote that the objective lj,,stO,c[X] is especially well-behavecl  among those wc have considered, since
the only way a large condition number or delay can arise is t,llrough the potential terms. The third
transformation is to refine these coarse-scale objectives, and the usual volumetric cost terms, into
fine-scale Lagrangians  (cf. (57)):

~~ + ~[tl + ~dw + ~ K[i, r]+v
n

~[~’[tl + ‘(~ni(~)  - ‘1) +~d(t.)]  “i
all variables r

Cx +  ~. i.(ta –  q - t  x. 4’(XC7) + x
K[i, x] + vx[~i. ((. - q +- ~d(x.)j’”x

all variables r a a

(60)
These two Lagrangians, along with the usual one for v, must be reassembled into a full three-phase
Lagrangian  by rnaltiplyin,g  by nonoverlapping  clocks d~e(t) and sutntning  over ct as in section 2.1;
that is the only way to express the action as a sum over algorithm time i (some J .dt or some ~t .)
rather than over the intra-phase  time variables ro.

3 . 3 . 2  C o m p l e t e  M u l t i p h a s e  D y n a m i c s

We now have a 3-phase dynamics: First, choose the focus of attention using analog x variables so
as to optimize their estimated effect on AE subject to resource limitations. Second, discretize X .
l’bird, relax EIvIx],  using the chosen focus of attention. The analog ,y phase includes a global k-
winner constraint for m(x).  We will assemble the previously derived fine-scale cost and functionality
terms for this net into an action functional and an associated clocked objective function.

Aclcling the partial I.agrarlgians  of equations (57) and (60), we get a preliminary Lagrangian

i,fine =:
{

~ da(~) ~ ~~[~!~] + Q
}

~ g.xa
(61)

phases o
c1

all variables T o-variables, x-

‘Ibis Lagrangian presents a problem for times t between a-phases, when ~0 #~(t) = O, because
at such times no clynamics is specificcl. ‘1’he clesirecl dynamics between phases is that all variables
should be clamped. ‘1’his can be ensured by adding a penalty term for movement of any variable
bctweea  phases, in the form of a kinetic energy term A’:

‘extra= (1-Fdo(t))allv21es1i’ix]
(62)

Note that in physics, a l,agrangiau  consisting only of a kinetic energy terln  corresponds to a particle
rlloving alo]lg a geodesic such as a straight line (~ = O), whereas here it corresponds to a variable
rlarnprcl  to a l)articular  value.



t.ir{’utllstanccs. Also, ttlr ?~-wi]lller  circuit call lx ililplcnlc[ltcd  digitally a.s aII i[l~.rclncntal
(111(’LIC  of tl~i vltlll(’s, SO Lll(’ clOcked objective futlction bccolllcs

priority

(transient terlns)

<1) F;[v{x}]. (subspace  terms)
(69)

IIere “start” is initialized to urlity and almost immediately changed to zero (in the second phase of
the first clock cycle), and Nbrij  is a constant 0/1 matrix recording whether neurons vi and vi are
adjacent in the network or not;

{

o
N b rij =

1

if max ] &[v]l = o,
i.e. ;f nlax”(ld~(v)f)  +  l~ijl +  ~k ]~;jk!  = 0;

otherwise.

(70)

Note that at the end of the first phase,  ~~i = –E;i[v].  l’hat’s  because (a) in the first cycle,
starti = 1, and every variable ~~i is initialized to —E)i; and (b) in subsequent cycles, either u)i is
again set to the proper value, or else Xi = O and ~~j N’brijxj = O. In the latter case we know that
UIi is ~lncharlged fronl the previolls  cycle (since it is only changed in the first phase  of any cycle),
and also that Ij;i is unchanged from the previous cycle because it is unchanged by the dynamics of
E[v{x}]’s relaxation:

(71)

c O (since Xi + ~ Nbrijxj ~ O).
j

SO throughout the seconci  phase when x is being determined, tii == –E;i[ti].
Also note that in accordance with the clefinition  in equation ( 11), the expression that controls the

clamping of a variable such m trli is implicitly held constant and need not be explicitly clamped.
Only the second phase of equation (69) above has O(N variables, and it can be replaced by

ia priority queue data structure with update cost O(rZ log N + cN),  where k c]epends  on digital
hardware cletails  and where c <<1 reflects the cost of storing u~i in inactive memory for future use,
presumed to be relatively small.

Equation (69) assun-res  that n is constant. ‘l’his assumption tnay be removed, if the coarse-scale
cost of each n is moclelec[ explicitly as mentioned in section 3.2.3. I’o a first approximation we
may take the cost of a focus of attention to be proportional to its size, n, and ignore the effects of
various different border shapes on the actual cost (these effects would tend to favor a focus with
a small-hounclary.)  Hut what should the proportionality factor be between cost and benefit (All)
terms? To get sensible results we’ll answer this question in an ad }toc way, not (yet) derived from
fundamental considerations. Suppose that the cost of updating a neuron is clorninated,  not by space
and time costs, but by the A E benefit foregone by not saving those same space-time resources to
u[xlate  some other neuron in the following iteration. ‘1’0  estimate that cost, per focal neuron, we
r[~u[tiply the average available AE per neuron by a constant f which must be meta-optimized.
‘1’lierl  we have the following functionality expression.

(72)



()~jtilllizing  ttlis /“ nlay be achieved by (a) soct211g i accordi[lg to F;,l, for exalIl[Jlc i[l(’r(lllt’llti illy with
a llriority  qllell(’ da t a  strllcture, illl(l  (b) tllr]ling on  all 11 for  wllicll [};,,[/(/V- ‘ >:, 11’.’,,  [v][) ~ j.
‘1’hc focus of attelltio[]  tllcil consists  of Ilrurolls wlIose sillglr-lleuro]l  estilllated colitributioil  to Al;
is tllore than j tinlcs  t,tle average; it CaII rzrtlge frolll none to all of tile ncurolis. ‘1’tlc Imtctlti:il
function #oiI(71/N)  CaII also be clioscu so ttlat the Iniuiltlulli  focus size is oIIe, rat Iler tlIa II IILJIIr,  of
the neuro~ls.

“J’he  focus ofattclltion  equat ion (67) prol’icles  llla~illlal  flc~i}~ility,  si[~ce atlysubwt  of It ollt of
N neurons in the network ca[l be ill Ltlc focus at one time. however, eflicic[lcy requires a Iliddrll
priority  queue representation  of fi(z))sotllat  Xcanberepresentecl  witllol~ly  atllargillal ill(-reIllellt
of space to encode this focus over that rcquirecl by the n actual neurons in ttle focus at any time.

Generally such a representation is based on the binary  aclcfressing  capabilities of a general-

purpose computer. In fact the nunlber  of bits requirecl in X tos~)ecify SUCII  a focus islogq
N

( )71 “
For large N and II << N, this is approxitnately  nlog2N bits. \Ve can easily e[lcocle x ivith this
many bits, for example using the bitlary  addresses of the n neurons in the unrestricted focus of
attention. (Other eflcient addressing schemes, such as Gray cocles, woulcl work tclo. ) III radix (e.g.
binary) notation for whictl i== il . ..i~.

1

x(i)  =  ~ ~ c$K(xa~  –  ib)

a b=l

(where X.6 are binary-valued and cfK is the Krouecker delta), or ecluivalent [y,

(73)

(74)

If such a representation is substituted directly into a neural network objective functio~~, rather
than used in a hidden digital implementation of a stereotyped objective function such as the priority
queue, then we get relatively intractable high-order objectives for x (see [MG90]  for an example
of a sorting network using a similar high-order representation). Until this probleru is solved by
expressing some special- or general-purpose acfclressiug  and conlrnunication  algorithms with simple
clocked objective functions, we must appeal to non-neural switching circuits as necessary, taking
care to estimate their costs. The clocked objective with brace notation v{,y} still specifies the use
we make of such switching hardware, and would remain a useful notation even if we knew how to
eliminate it in terms of clocked objectives without brace notation.

4.2 Multiscale  Attent ion

l’he  ~i (x) = Xi representation of a focus of attention has the disadvantages of reclrriring a hidden,
digital implementation (e.g. a priority queue) in order to be efficient, ancl of allowing foci without
any coherent structure that might decrease the nu[nber  of borcler neurons that are outside the
focus but involved in the computational decision to move the focus, Both of these problems may be
eliminated by restricting the focus of attention to a choice of one or several blocks of neurons, from
a fixecl partition of all the neurons i[lto equal-sized blocks with low connectivity between the Mocks.
An example of such a partition would be the clivision of the 2-d grid of the regior]-segrnentation
network (equation (19) in Part I) into A << N uuiform rectangular sub-grids. Any such partition
can be represented by a sparse, norl-square  0/1 matrix B for which ~. l~io := 1. Given such
a partition, only one focus indication neuron X. is needed for each block CL ~ {1, . . . . A << N},
rather than one per neuron index i E {1, . . . . N}. In return for increa.secl efficiency iri the attention
mechanism as compared with the previous case, one gives up flexibility in the shape of the focus of
attention. Some of that flexibility can be reacquired by generalizing ttle partition scher[le clescribecl
below to many levels in a recursive algorith[il

For a single level of partitioning, in whictl neuro[ls  u, are groupecl into fixecl blocks o which enter
or leave the focus together accorcliug  to indicator neurons la,



wllcrc 11 is tile colwtallt  pi~rtitioll [Ilatrix.
\Vc coul(l just, substitute this  expmsion for \l (or 7r, (X)) into eqllatio[i  (69) (or (65)), ill wl)icll

case tl]e tllost  active I)locks  of tlie partition ~) would be tl)e focus of attention. Attention W’OUld
Lx a very affordable co[nputation,  a k-wi[lncr-take-all (k\V’1’A) tletwork.  Ot)c clocked objective is

which can again be improved by storing F;,i as tr)i, to be recalculated only as necessary, and which
can be further improved by storing Wa = ~i Bio~~i.

Ilut here we will push the method a little farther, by choosing the L blocks not only based
on their internal gradients but also on their predicted synergies with each other. The synergy is
predicted by using the second order expansion for 1;, equation (46), which may be affordable now
that we have only A focus-control neurons:

(77)

Then the clocked objective analogous to (69) is

0

(78)
where we have introduced constant sparse matrices

ant]
(80)

1)

In (78), as in its prototype (46), the main departure from other clocked objective functions for
attention is the quadratic objective function for ~ which expresses a nontrivial scheduling problem:
which k neuron-blocks shoulcl be active simultaneously in order to maximize the expected sum of
single-block and block-pair contributions to IAEI? This quadratic optimization could be as hard M
the original optimization problem E, were it not for the fact that it involves far fewer variables fa.
So it is crucial to have a separate restoration phase for x in case the ~ analog schccfuling  optimization
does not finish within its clock ~Jhase. ln fact if the convergence time of the scheduling network
isn’t known well enough, we may need two restoration phases: one which restores ~ to an analog
kWTA solution ?~, and a subsequent phase to ensure discrete 0/1 values x for the attention control
variables. ‘Ibis  conservative approach to restoratioil  is incorporated in equation (78).



/ . /

l?igure2: A rolling window of attention.

The scheduling network isakinci ofauxiliary, coarse-scale network which controls attention at
the level of blocks. Its connection matrix is surprisingly similar to part of a previously studied
multiscale  optimizationneural  network [M GM91], which also had anauxiliary coarse-scale network
at the level of blocks of neurons. In that case the coarse-scale network was not for the purpose
of control, but rather to accelerate the convergence of the much more expensive fine-scale net~vork
(which was simulated without any attention mechanism). In this regard the coarse-scale attentiom
control connection matrix wa~ may be taken (as discussed in section 3.2.2) to be the negative
of equation (50)  after substituting (75) for ~i (x); then it becomes identical to the coarse-scale
acceleration connection matrix from [MGh191],

4.3 Jumping and Rolling Windows  of Attention
The block-attentive neural network algorithm of equation (78) is equipped with a focus of attention
that jumps from one block or combination of blocks to another in successive clock cycles. ‘1’hese
jumps are rather expensive, since they involve storirlg the values of whole blocks of neurons which
used to be in the focus of attention but no longer are, and retrieving from static memory the blocks
of neurons which are newly promoted to the focus. A more gradual migration of neurons to and
from the focus of attention is studied in this section, for networks with such a regular topology
that the focus of attention can roll (i.e. move incrementally) from one region to another as well as
jump.

A rolling focus of attention is one which moves incrementally, keeping most of its neurons
assigned to the same implementation harclware. For example, consider a two-cl imensional  mesh of
neurons with local connectivity, as occurs for example in the region-segmentation objective function
(19) of Part I. A small piece of such a mesh COUICI  be implemented by a two-dimensional VLSI chip
in which a fraction of the chip area is devoted to end-around connections, giving the circuit the
topology of a torus, together with so[ne form of secouclary  storage for the many neuron values which
are clamped and stored off-chip. ‘1’he torus can roll in any direction. l’he situation is illustrated in
figure 2. Consider also the a.ssignnlent of physical (chip-implemented) neurons to the much larger set
of virtual neurons comprising the neural network. A rolling motion allows this assig; nnlent  to remain
unchanged everywhere except at the boundaries of the chip, or equivalently the boundaries of the
focus of attention. This minimizes the need for off-chip communication and orl-chip analog shifting
circuitry everywhere in the chip, at the expense of requiring dynalnic  boundary circuitry (probably
digital) throughout tt(e chip, An alter-native would be to allow the focus of attention to “slide”
around the [Ieural net instead, ill wllictl case tile clynanlic boundary circuitry may be elinlinated
in favor of the analog shifting circuitry. Our clocked objective function can be inlplcll)ented  either
way. rror clarity we will discuss ttlc rolling’  case.



‘1’0  (Iestrilw  ttlc focus 01 altetltion rll:~ttl(:lll:itic?llly,  Yve jllst Ilced T(X).  tVc wa[lt to use a set
of IIICNIW of IIcurons  M ill section  4.2, so that ttley can jurllp  under the control c)f {y G}, cxcel)t
that tl)e tjlm-ks also roll (or slide) around the [rlcsll.  Itacti block’s position earl be characterized
I)y its center. Ijlock a has ccllter  cc + x~, ir) Whictl c~ is a honlc position for block a defined by
a I;xed coarst’-scalc grid, and X. is a dynalnical  displaccrlletlt  variable. ‘J’he reason for inclucliug
the holne l)ositions  is to allow urlusecl blocks to stay near ttlcir  ho[nc positions, providing coverage
of the alterIIative  locations that the focus of attention can jump to. (rl’his  capability would not
be rleccssary if blocks were only allowecl  to roll, but  that would introduce spurious local minima
into  the attent, io~l mcchanisrn,  for example when a rollirlg window encounters its own or arlother
winclow’s path. ) Then m(z) is as in section 4.2, with IJio = bi(ca + Xa):

(l

We may scale our two-dimensional coordinates so that a block is a unit square,
assign addresses ci ir[ this coordinate system to each neuron i. We take Ca and X. to
in this coordinate system also. ‘1’herr  the window boundary function b i becomes

bi(ca +Xa)  = b(~a+xa – ci) ,

where
d i m x

b ( x )  =  ~ 0(1/2–  Iral).
0=1

(82)

ancl we may
be measured

(83)

(84)

\Ve will also have occasion to use a soft (differentiable) version of this window boundary function,

where
dinl x

i(x) =  ~ 6(1/2–  I“al) (86)
a=l

and

{

o, 3 < – ul/2
0($) = z/u) + 1/2, – 1 1 1 / 2  < x < ul/2 (87)

1, x < ul/2

Then a clocked objective function for the rolling and jumping window of attention is

where as before

(88)

(89)



Figure 3: Spring function ~I(x) = C[x[ + cIp(/z/ – 1/2) + @*I (*), solid  curve. l)irst term restores

Ixl to zero when block is out of the focus of attention. Second term favors hand-off to a neighboring
block (neighboring block spring functions shown in dotted curves.) ‘1’he thircl  term is a barrier term,
limiting the number of blocks that can be attracted to an attractive focal region of the network.

A crucial ingredient is the spring potential function H which allows a block o to move freely
away from its home position until it is more than halfway into another block’s territory, then to
hanri off the rolling window to a neighboring block 6 by turning off X. ancl turning on ,yb, ancl then
to return to the borne positiorl  Xa = O to co[npute  its expected AE and compete for another chance
in the focus of attention.

A spring function that makes this possible is illustrated in figure 3. An explicit expression for
11 is

din) x

(90)
a=l

where
if(r) = Clzl-t Clg’([rl–  1/2)+ 4 * 1 (  r

1 – w/2)’
(91)

and where

J
1’

{

o ,  r<o
p(r) == E)(r)dr  =

—m a, O<a’ “
(92)

4.4 Sparse Networks and Spreading Activation

‘l’he attention mechanisms of the previous sections are designed to limit the number of active vari-
ables at any time, including both problem variables v and attention-control variables X. IIowever
there is no attempt to limit the number of inactive variables whose values must still be stored ancl
which therefore still occupy some harclware at all tilnes,  By imposing such a limit, we may be able
to achieve far greater efllciency for optimization problems whose solutions are constrained to be
sparse. What is required is that most of the variables outside the focus of attention shoulcl take on
default values, such as zero, which neecl not be stored at all. The strategy is to enforce sparseness
of v at every phase in every cycle, not just at the end of the computation. ‘1’0 achieve ttIis we will
allow mild expansions in the number of active neurons at some phases within a cycle, ancl enforce
counterbalancing contractions in the number of active neurons at other phases in the cycle.

Suppose v is a set of N variables, constrained to be sparse in the sense that all but n << N
of them take (possibly identical) default values default(i) at any valid configuration. ‘1’he clefault
values may be zero or any number easily computecl from the index r’ alone, wittlout  the use of a
large table of values (which would have to be stored). Let E(v) be an objective which inclucles
penalty terms for sufllcient  sparseness constraints on at least some of the variables v, a[lcl tv}lictl
h~s the property that at any sparse configuration in which cn variables are uncla[llped  in a focus of
attentic)rl,  all but n of the variables rtlust approxinlat,e  their clefault  values at any local minimum.
(lIere  c z 1 is a constant, ) Also suppose it is possible to initialize tile network so that ttlc focus of



at lent  iotl cotllaitls all Ilcr[l-defalllt variables (of wllicll  tllcre ar(’ < Tt) a[ld also all IIeigllbors  of suull
VitriaL)leS  (of wlli[.lL  lllcr-c  a rc  < cl~).

‘1’lIeII  at ttle Iwgillning of a relaxation phase for f~[v{X}],  all < n nomdefault  variables and all
ttleir  < cII neighbors are included in the focus of attention At the c[ld of the relaxation IJhase,
sor[lc new set of < IL variables have non-default values; the rest have Ilcar default values wtlich can
be reset to their clfault values without introducing IIluch error, and which therefore do not neecl to
be stored explicitly. In this way a limited front of activation relaxation, will propagate through the
network of possible neurons which we shall refer to as latent  neurons. ‘lhe cfynarnics  is renliniscent
spreading activation or “marker propagation” algorithms in artificial intelligence [Fah79,  ‘1ou86],
and could perhaps be developed in that direction by using objective functions proposed in [MGA89].
I,atent neurons are to be distinguished from the virtual neurons of previous sections (e.g. section
4.1 ), tile latter recluiring storage even when out of tile focus of attention.

A suitable clockecl objective function for such a spreading activation network, with many latent
neurons, is

1“~spread = ~X:{Xi}+  ~@o/l(Xi{xi})

a) -;~xi{.i +  ~br:j.j} +  ~4cr/~(Xi{Si  +  Nbr,jsj})
i

~ J;[;{x}; 71,  c]

@ --  ~si{xi}(~:  - default(i)  )2/~’ - 1) + ~ @o/l(sI{Xl}) (93)

l~@(~Sr’{xi} –  ?t) +~~Si{xi}I;,:(V;rI]

a) ‘-(1/’2) >j(V:{xi(Si -  1)} -  ;efault(i))’ +  ~40/l(t}i{Xi(si -  1)})
i i

Ilere  the first phase serves simply to find all nonzero  X’S and to set their values to zero. The
second phase  sets the focus of attention to include all nomdefault  ~)i’s (for which si = 1 ) and
their neighbors in the network topology. The thircl phase relaxes the network within the focus of
attention, which we assume procluces a new set of s n variables vi’s  which are not close to their
default values. The fourth phase finds these variables and updates si to record them. Optionally,
we can set ~ > 0 to ensure what is already supposed to be guaranteed by L’, that s =. 1 for nonzero
gradients and that xi si < n. The fifth phase truncates near default values to exact default values,
because neurons taking their default values do not need to be storecl.  (So in an implementation the
fifth phase would not, physically perfor[n  a truncation; it would simply de-allocate the hardware
used to support the affected Ileurons. ) l’he  five phases together constitute one iteration of sparsity  -
preserving dynamics.

As an example of a suitable objective function h’, we discuss a simple network fc~r finding roots
of a continuous function ~(x) of one variable r ~ [0, 1], by the bisection method. This network
dynamically constructs a tree of at most n nonzero indicator neurons ai} taken from an infinitely
large tree of latent neurons. ‘1’he  network seeks large negative values of f(z) f(x+c),  and then bisects
the interval [z, r + c]. Using multiple index notation i = il i2 il, the search tree consists of all the
latent 0/1 neurons ail.. i, which take a value close to orle if the search cllrrently  includes  that node
of the tree; also each node has a census neuron ?T~il.. it E [0, lt] which counts  the nun~ber  of rleurorls
(including a’s and Tn>s) active at or below that nocle  in the tree. ‘1’hese  sets of variables worrlcl include
the 1 = O versions, a aucl ?n without any indices, which are associated with the root of the search
tree. ‘1’he  bisection search ir~terval boundaries arc zo = O, rl = 1, .rOO = O, rol = xlo = .5, 211 = 1,
ancl in general, .C; ,.. i~b = ~ =1 ip2 ‘r’ + b2–1.

[“‘1’hen  a sparse objective unction for this problerll is



where g+ is au odd nlonotonic l’llllc’tioll with slow asylnptotic  growth, e.g.  Iogarittl[[lic  grolvll], ‘1’llc
network could be iriikializf’d  will)  al] a, T~/ at)d s Vilriat)les  taking near-zero (O(()  << [) values, Cxcf’})t
at the root  where s = 1. At illitializatio]l  all tlic non-zero gradients of ~; (}vhictl  arise froltl tile
k-winner-take-all terms) arc concentrated at tile root and its in~tl~cciiate childrc[l i == O aricl i = 1.

A noteworthy propci-ty  of the objective (94) is that the sparseness constraints are not global,
but rather distributed over tl)f:  topology of the network in sucti a way that, an actual ncuroll a is
involved in every ternl  of the sparseness constraint. ‘1’his prevents many census variables 711 froru
being given non-zero values ill an eflort to find one non-zero a variable. Instead, only as many
census variables will bc activated M needed. lhc ai + g+ 1 (?~~i ) su[nmand  in the k-winner term
serves to include both ai and ~~li in the count of activated variables: tit 1 (m) is a sigmoid  with
values w 771 for 7n << 1, and R 1 for m ~ 1. l’hc g+ 1 (?71) expression could be replacecl  by another
O/l-valued neuron whose sole connection is to 7n.

We speculate that it may be possible to give a similar treatment of the conventional objective
functions for inexact graph matching, such as [11’1’86]

+Il~A4:.(1 – 
kfia)+~@O/l(Mi.  ).

ia ia
(95)

IIowever it is again necessary to localize the winner-take-all constraints, for example by embedding
them in spanni[ig  trees for both G and g, in which each variable Nfia c~lters into each W’1’A constraint
at its own location in the spanning tree. An additional attraction of such a sparse graph-matching
network is that the E-relaxation ~]hase of the clocked obiective  could actually  t)e a rlestecl  IOOP
which performs deterministic annealing in order to avoid local minima, Since successive cycles
would have different foci of attention, the successive annealing procedures woulcl be different - the
high-temperature part of an annealing relaxation would not erase the progress towards a solution
encoclecl in the focus of attention. A related technique for accelerating the convergence of matching
networks by exploiting their sparseness was used in [I,h194,  GI,R+95].

4.5 Orthogonal  Windows

As suggested in [Mjo87], we can take advantage of the fact that some or all of the neurons in many
hand-designed neural nets fall into natural cross-products, e.g. vi E ~il ,i,. An example is the
graph-matching objective function of equation (95). In such cases we can greatly decrease the cost
term by decomposing x and hope to retain functionality since it is only X, not v, whose information
content is thereby reducecl.  An obvious decomposition to try is:

i.e.

where

( 1 )  ( 2 )
‘i(X) = Xil Xi2 1

( 1 ) (2)
‘(X)  =  Xil @Xi~ *

(96)

(97)

(98)

‘l’he last  may be ensured by constraining

For more than two terms in ttlc cross procluct, all this generalizes to

w h e r e

(101)
i~=l 1 b



i

+  ‘Do/l (d:))+ 4>ff$o,, (d:)). 12

(103)

i] 12

A major problem with this  scheme is that all the I;;i[v] clerivatives must be calculated, even though
we want a small window of attention. A simple solution is to window the control variables x also,
and only calculate the few that are necessary. ‘1’here  may be only O(N1 + N2) of those, rather than
O(iV). One possibility is the disjoint union focus of attention n(z) = (q(l),  7~(2J) for X. We will

(1) 12) for xi,  and then to Xapply transformation (68) twice: first to v, substituting ~:(x) = Xi, ~io
itself, using a straightforwarct  focus of attention:

- . .  .

7r(~,i&)  (T))  = q$~), where x~f:) ~ Cr’b
ib

~Fronl equations (41) and (42), we can calculate

.(1) _~\/l[Xlvl = l;x,i[X! ‘lXil –
–9j (9; 1 (x:: )) ( ~ X!~)~;,i[vl +

i2

and
-  . ( 2 ) _

‘;fj, [X,  ‘]  = l’;x,i[X,  ‘lX~,  –

(‘9~(g~l  (Xf~)))  ~ X\~)J;;i[vl  +
i2

l’hen  the doubly attentive clockecl objective function becomes

. . )

).

cnz)

(107)

(105)

(106)

The  first phase  may be traded in as before for a priority queue implementation; but the space
cost of the default circuit implementation is already so small (O(nl + n 2) for the kWTA  network)
that the priority queue is not necessary. In the second phase at most (c+ l)2rr2  gradients E;i must
be calculated, As in previous networks, one could make the efllcient calculation of all gradients
explicit by adding extra phases and variables.

‘1’hc  focus of attention introduced in this section applies when the neuron index i takes values in
some domain which is a cross procluct of other clornains,  domain(i) = domain(il  ) xdornain(i2). ‘I’his
is of interest for building complex network architectures by composing simpler elements. Another
natural operation on index domains is the disjoint union i = (b, ib). ‘1’he Ex example above showed
how to compose a focus of attention for this case a.s well (see equation (104), with ~~ Cm < the
number it of active neurons allowed), though that case is much simpler than for the cross procluct.

5 DISCUSSION AND CONCLUSIONS

In part 1 of tliis work wc introduced a I,agrangiall  formulation of the relaxation dynamics of
rlcural networks wllirll corn~)ute try optimizing an objective function in a standard neural network



forlll. ‘1’tle [Jagrailgiall foritllilitlioti II IakCS IIovel  usc of a  gr~’cdy fu/IctIoria~ dc)~w~ttuc,  wlli<.11 we
defilld a[icl co[[lputccl. \\ ’itll tlIHS  kmls vw CIe[llollstratc(l  tlIc  use of thin’ levels of ol)tilllization it)
ttlc desigrl of relaxation) Ileural [letwOrli  dyllalllics:  the  or ig ina l  objec t ive  11, tllc I,agr:ittgiali  /,, a n d
a I l lc ta-object ive  M wliictl  [Ilcasurcs cost and futlctiolldity over [Ilii[lj’  trials of tllu llctwwrk.

Ill part, 11 ller( wc cleal with a SCCOII<I groul~ of nlore ralllificd ap~)lications. For tllcsc \ve intro-
duced a clocked objective fullctioll  al)d all associate(l  llotation.  ‘1’llcse collstructs  have ttle czrljability
to clamp or unclalnp  [let variables depending  on tile values of other of the rlct variables. ‘1’llis  IIO-
tation and tile stcpwisc  rcfinelllellt  strategy for designing clocked objective fu[lctio~is  sufliccd to
obtain computational attention n~cc/iarlisnts. Analogous to virtual nle[nory or virtual processors
in digital computers, such computational attention ~nechanis~ns  have a focus of attention quality
which can take a variety of forms. ‘1’hese  include a priority queue, a set of coarse-scale blocks of
neurons which could be scheduled according to their expected synergies in optimization, a set of
jumping and rolling rectangular windows in a tw~dimensional network, a sparse set of active neu-
rons for which the excluded latent neurons recluire no memory, ancl ttle cartesiau  prociuct of several
simpler foci of attention. Itach of these cases was concisely expressed using simple analytic notation
with clockecl objective functions. Reference was nlade  to a number of experirneuts,  application aucl
computation, which e[nploy tile greedy variational ancl clocking calculus which we klave iutroclucecl
here.
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