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Abstract

We expand the mathematical apparatus for relaxation networks, which conventionally consists
of an objective function E and a dynamics given by a system of differential equations along whose
trgjectories E is diminished. Instead we (1) retain the objective function E, in a standard neural
network form, as the measure of the network’s computational functionality; (2) derive the dynamics
from a Lagrangian function 1. which depends on both £ and a measure of computational cost; and
(3) tune the form of the Lagrangian according to a meta-objective M which may involve measuring
cost and functionality over many runs of the network. The key new features are the Lagrangian,
which specifies an objective function that depends on the neural network’s state over al times
(analogous to Lagrangians which play a similar fundamental role in physics), and its associated
greedy functional derivative from which neural-net relaxation dynamics can be derived. It is the
greedy variation which requires the dissipation critical to optimization with neural dynamics.

With these methods we are able to analyze the approximate optimality of Hopfield/Grossberg
dynamics, the generic emergence of sub-problems involving learning and scheduling as aspects of
relaxation-based neural computation, the integration of relaxation-based and feed-forward neural
networks, and the control of computational attention mechanisms using priority queues, coarse-scale
blocks of neurons, default-valued neurons, and other specia-case optimization algorithms. Some of
these applications are the subject of part 1l of this work.

In part 1l of this work we show that the combination of Lagrangian and meta-objective suffice to
derive and provide an interpretation for so-called clocked objective functions, a notation useful for
the agebraic formulation and design of ramified neural network applications. Clocked objectives
thus generalize the original static objective function /' and furnish a practical neural network
specification language.

1 INTRODUCTION

Optimization is a prominent way to bring mathematical methods to bear on the design of neural
networks. Often the connection is made [Flop84, Gro88, 11'1'85] by specifying the attractors of a



neural network’s dynawmics by means of a static objective function (Or objective) to be optimized,
provided that the optimization problem can be putin a standard neural-net form (which is not too
restrictive a requiretnent [MG90]). In this way it has proven possible to design neural networks for
applications in image processing [KMY86], combinatorial optimization [I> W87, clustering [RGF90,
BK93), particle tracking in accelerators [YHPY1], object recognition [Tre91] and other applications.
It is also customary (albeit limiting) to introduce a generic steepest-descent dynatnics to optimize or
‘(relax” the objective, without further regard to computational constraints. The resulting equations
of motion generaly contain gradients of thestatic objective, but arc otherwise ad hoc slid not
particularly suited to elaboration or refinement in response to varied computational constraints. We
shall develop a more genera approach, starting from basic principles, to formulating the dynamics
of arelaxation-based neural network.

Here we start from fundamental computational considerations which, wc hypothesise, constrain
all dynamical systems that compute. Specifically, the cost and functionality (efficacy) of a com-
putation are fundamental to its design, and in genera each must be traded oft against the other
in the course of optimizing that design. (llere the “design” is all the information which directly
specifies the structure or configuration of the dynamical system that performs a computation.) In
the context of neural computations, we will find measures of cost and functionality and combine
them into dynamical objective functions from which one may derive the entire dynamics of a neural
network. This dynamics includes not only the (fixed point) attractors but also the equations of
motion governing convergence to an attractor, i.e. a mathematical model or specification of the
network itself.

Our dynamical objective functions can be specialized in many ways that correspond to the wide
variety of goals and constraints that may be imposed on a computation. We will also relate the
dynamical objective functions to a so-called Lagrangian functional. Our Lagrangian is analogous
to one which plays a similar and fundamental role in physics. A basic constraint which we impose
on our approach is that such a dynamical objective function or Lagrangian is optimized in a special
way, by means of greedy algorithms which don’'t look ahead in time. This constraint alows our
algorithms to be implemented in physical hardware, and aso alows us to derive nonconservative,
irreversible dynamics which can lead to a desired fixed point. We will derive these algorithms by
means of a novel greedy variation applied to the Lagrangian functional.

Generally we will accept the limited type of optimization that results, but sometimes we can
do better by introducing another level of optimization: & meta-optimization problem in which the
(analytic) form of the dynamic objective (the Lagrangian functional) is itself varied so as to optimize
another objective function. This latter optimization may involve measuring cost and functionality
over many runs of the network. ‘I’his meta-optimization problem determines the choice of the exact
algebraic form of the Lagrangian and hence of the computational dynamics for a whole class of
applications. So for a meta-objective function, cost and functionality are measured over a class of
computational problems rather than over a single instance of that class as would be the case for a
Lagrangian functional. In practice the computational cost or analytic effort required to perform the
rneta-optimization is to be amortized over many problem instances, One example of this approach
will be a (meta-) optimality objective for Hopfield/Grossberg dynamics [Hop84, Gro88], for which
we provide a proof that the associated Lagrangian is optimal in an approximate sense.

1.1 Cost and Functionality

Consider a physical system capable of nontrivial computation. More abstractly, consider a discrete,
continuous or mixed dynamical system which computes, in the sense that it models a computa-
tional device or framework. Examples include a general-purpose computer equipped with suitable
programs, a discrete data structure implemented by means of such a program, an individua sili-
con chip, or an anima brain. Such devices have detailed dynamics, often approximable as large
sparsely coupled systems of ordinary differential equations, which have been designed (or evolved in
the case of a brain) to serve some set of computational purposes at feasible cost. So we refer to these
dynamical systems as computational systems and hypothesize very broadly that fundamentally, a
computational system is designed (or evolved) tooptimize tWO things: its cost and its functionality.
Functionality means what the system can do, and cost means how cheaply or quickly it can do it.

For examiple, the design of silicon chips is largely coustrained by the use of chip area and cycle
time as the measures of cost, and the need to attain at least a minimallevel of functionality to make
the chip generally useful (eg. to implement an adequate instruction set in a CPU chip); tradeofTs



between minimization of chip area and max trmization of detailed functionality are frequent in the
design process. For another example we refer to the implementation of abstract data structures
suchas priority queues, for which a functionality specification requires that a small set of operations
(such as adding a prioritized element to & queue and removing the element with highest priority
from the queue) must be supported, ancl cost is conventionally characterized by an asymptotic
scaling rule for the time-cost of performing a worst-case mix of these operations on a very large
queue.

For arelaxation-based neural net which is programmed or designed to optimize a static ob-
jective function f/(x)from an arbitrary starting point Xinitial, typical expressions for cost ¢ and
functionality F' might be

C' = 4-Volume of the Net = Space x Time (1)

and
F = E(Xﬁnal) : 19'(xinitial)- (2)

The space-time product is familiar in computer science as an important measure of cost, in which
the Space term is a volumetric measure of hardware usage such as chip area (including on-chip
wires) or memory usage, and the Time term is likewise a computational version of physical time
such as the number of clock cycles required to comnplete a computation. (A specific volumetric
measure of wiring cost for circuit implementations of neural nets has been proposedin [Mjo85].)
As to functionality, the use of an objective function £ is a common way to measure progress (hence
functionality) in a wide variety of computational problems. For example, one can fit a piecewise-
constant model to a 2-d image given by the data {d,}, segmenting it into roughly constant regions,
with the objective function [KMY86]

B

E(f,s"s") = 5 Z(fij —dis) + 5 Z(fm,j = fi3)*(1 = s33)
];J 2 'J h h v (3)
+’2‘ a (fij41 = fi;)°(1 = s35) +NZ(5£J' + s7;),
1] 1

where fi; € R is a reconstructed version of the image, and sf‘j'” € {0, 1} represent discrete decisions
concerning the probable presence or absence of horizontal and vertical edges. f and s together
constitute the vector x appearing in equation (2). This kind of objective has been used to derive
functional neural networks for large-scale problems (10°neurons with 10°connections) as required

for image-processing [RC91, KMY86).

1.2 Outline

We (@) introduce a three-level optimization framework, concentrating on Lagrangians (of a type
relevant to computation) and their specialization to clocked objective functions (section 2); (b)
apply the framework to derive analog circuits such as those modeled by the Hopfield /Grossberg
dynamics for optimization (section 3); and (c) apply the framework to incorporate computational
attention mechanisms (similar to saccading and foveatiou in biological vision) into various dynamical
systems which are designed to solve optimization problems (section 2 of Part II).

Section 2 introduces the three-level optimization framework, beginning with the general form of a
Lagrangiau suitable for use in attractor dynamics for optimization problems. The greedy functional
derivative is defined and calculated for suchLagrangians(scctions 2.1 and 2.2). The strategy used
to design circuit-implementable Lagrangians is one oOf refinement (section 2.3), in which cost and
functionality measures are first defined at a coarse temporal scale and then refined for use at finer
time scales, down to the infinitesimal time scale suitable for dynamical systems that model anaog
circuits, The validity of the transformations required during refinement is ultimately specified by
ameta-objective function which measures network per formance. One circuit-implementable form
of Lagrangian is introduced in sections 2.2 and 2.3, though not completely derived until section
3.2, and it is illustrated by the concrete example of lHopfield/Grossberg dynamics for a region-
segmentation neural network. A more general circuit-imp lementable form of Lagrangian, which
allows network dynamics to be controlled by a repeating cycle of objective functions rather than a
single objective function, is introduced in section 2.1 of Part 11.



where it is illustrated by an algorithun simnilar to line minimization. T'his type of Lagrangian
gives rise to the practical clocked objective function and clocked sum notation of sections2.1.2 and
2.1.3 of Part 11, whose theoretical justification requires all three levels of opt imization:the objective
IY, the Lagrangian L, and the meta-objective M.

Section 3 is devoted to the study of circuit-level Lagrangians with continuoustime dynamics
and analog- valuedneurons. T'wo novel possibilities for suchlLagrangians are discussedin sections
J.L.land 3.1.2. In section 3.2 a siinple meta-optimality criterion for a limited class of analog circuit
Lagrangians is presented. Since this constrained meta-objective function M, is a function of the
fastest and slowest physical time scales in various circuits, it is invariant with respect to monotonic,
coordinatewise reparameterizat ions (changes of variable) of the circuit.

In sections 3.2.1, 3.2.2, and 3.2,3 we prove Theorem 1, which asserts that the Lagrangian 1,
corresponding to Hopfield/G rossberg dynamics yields a value of M [/.] which is within afactor of
two of the optimal value of MT. Thismeans, roughly, that the worst-case time constant for this
Lagrangian L is a most twice that of theoptimal Lagrangian 1,*, whatever that is. The proof
exploits a sharp global optimality result for Hopfield/G rossberg dynamics (1.einma 1 of section
3.2.2). Unlike MT, the optimized functional of Lemma 1 doesdepend on the coordinate system
chosen. A number of limitations of Theorem 1 are discussed. The resulting Lagrangian for analog
circuits can be generalized to clocked objective functions, as discussed in section 2.1.5 of Part
[l. Section 2.1.6 of Part 11 provides an instructive example: a clocked objective function which
incorporates one or more general feed-forward neural networks (for which relatively eflicient learning
algorithms are available) inside a general relaxation neural network.

In section 2 of Part 11 we show how simple cost constraints can lead to a variety of computational
attention mechanisms analogous to virtual memory protocols in present-day computers, and an
associated Lagrangian or clocked objective function to control each attention mechanism. Examples
of possible foci of attention include a subset of the n (out of N) neurons with nighest estimated
improvement in functionality |A F|, which may be tracked efliciently by means of a priority queue
data structure (section 4.1 of Part II ); a subset of course-scale blocks in a minimal partition of the
neurons, scheduled by their estimated individual and pairwise contributions to JAZ| (section 4.2
of Part 11 ); a set of rectangular windows in a two-cl imensional network, each of which can either
“jump” or “roll” to a new location (section 4.3 of Part Il ); a subset of neurons in a sparsely active
network inducting all neurons which don’t have prescribed default values and hence do require
storage space (section 4.4 of Part Il ); and a subset of neurons determined as the Cartesian product
of several simpler foci of attention (section 4.5 of Part 11 ). The designs presented in section 2
of Part 11 are theoretically well-rnotivatecl but may need to berevised in the light of subsequent
experimentation, which is beyond the scope of the present paper.

Finaly, a brief summary of our work is given in the concluding section 4.

2DYNAMICAL OBJECTIVE FUNCTIONS AND
LAGRANGIANS

We have argued that fundamentally, a computing system is designed by trading off two compet-
ing utilities: its cost of operation and its functionality. We may specify a fixed alowable cost and
seek to obtain maximal functiondity, or we may specify a fixed functionality and seek to obtain a
minimal cost, or we may seek a specified trade-off between cost and functionality. W’'e may specify
further dynamical constraints required for implementability. With Lagrange multipliers and/or
penalty terms we may reduce all these cases to extremizing

S = A(/vcost + B}"functionality; (4)

where the systemn is more functional for lower values of F, and where any dynamical constraints
have been absorbed into the C.ose term. Now the designer’s problem is to find functions C and F
(perhaps based on equations (1) and (2)) which dependon the trgjectory of some vector of state
variables x(t) over time, such that the globa optimization of S can be reduced to a collection of
local decisions about how to changethe individual components of the state vector x at a given
small time step from timet — Atto timet. (A loca decision could be viewed as the choice of the
value of a variable (e.g. a control variable).) T'hese decisions must however be made by very smple



physical devices such as transistor circuits containing only afew transistors.  Suchlocal decisions
will prove to be analogous, ina physical system, to a differential or difference equation formulation
of dynamics that follows fromthe principle of least action for the same system.

For example, it would be advantageousif ("and /" were eachsums (or integrals) over a collection
of decisions spread out over space and time. To express this sumnmation, let us index the components
of the state vector X by an index s. Since Sindexes dl the variables present a a fixed time, those
variables could be viewed as being cm beddedin one fixed-tirllc slice of a space-tiinc volume, in
which case s may aso be viewed as indexing spatial locations in the system. So wc refer to s as
the spatial inder and as the temporal inder; the entire trgjectory of a computation is specified by
{z(s,t)}. Then the sum over decisions would be

S=4 3 Culzs,O+8 Y Foles, oy 5

decisions(s,t) decisions(s,t)

where each function (s ,or F; ;may depend on only a few of its arguments {x(s’,¢')} and hence on
only a small part of the trajectory near (s, t).In equation (5) we may introduce a continuous time
axis by replacing the temporal sums by integrals, we can do this by integrating over ¢ and summing
over s. Following the analogy with physics, S is referred to as the “action”. The decomposition (5)
would be a useful first step towards enforcing spatial and tempora locality on the dynamics of our
computation, since the decomposition distributes S over a sum of terms which pertain to particular
spatial and temporal locations. Unlike space, time has an intrinsic directionality, and we will aso
need to enforce causality in the optimization of S. Before seeking specific forms for C,  and Fy ,,
we will discuss locality and especialy causdlity.

A pattern of communication is implicit in the dependence of C, . and Fs:on (s, t). If Cy .
and F,, were each a function only of x, ., rather than a functional of the entire State vector x(¢')
at many different times t', then every decision terin could be optimnized independently, and the
associated computation would proceed without any communication. This is a trivia case, however,
and generally we will have quite a bit of interaction (via specific C and F' terms) between vari-
ables defined at different times and places. (For a non-trivial example see the region-segmentation
Lagrangian of section 2. | .2.) The pattern of communication is defined by a communication graph
whose nodes are space-time sites (s, ¢) and whose links record the presence or absence of functional
dependencies of C,.or F,, on trajectory variables = defined at other space-timesites (S, t'). We
want to keep this implicit pattern of communication relatively local, and we insist that it be causal.

The effect of causality on the communication pattern is twofold. (i) Causality favors the adoption
of a convention in which interactions between variables indexed by different times are entirely
incorporated in the C and /' terms indexed by the later of the two times, and do not enter into the
C and F terms defined at the earlier of the two times. That way, every C,or I;termdepends only
on variables iudexed by times ¢ < ¢.Thisis called the retarded interaction form of S. (ii) If we
introduce computational dynamics by sequential optimization, at successive time steps t’ of sets of
variables indexed by t’, then causality denies a computation the possibility of optimizing al terms
of S with respect to any one variable z(s’, t'). Instead, each variable z(s’,’) can only be varied
under an objective involving those terms of S al of whose variables z(s",t"”) are optimized at the
same time asz(s’,t’) or earlier. The values of al other variables (those indexed by 1" > ¢') are as
yet undetermined. Which terms of S are eligible to participate in the variation of z(s’, t'}? Any
Ctor Fr term for which ¢ >t depends on variables (such as z(s, t)) which have unknown values
a time step ¢’ and are not being varied at that time step. Such a term is is ineligible; so we are
restricted to those terms of S indexed by timet < t'.

Note that the digible terms of S with ¢ < t"arc mostly irrelevant to the optimization of z(s’, t'),
since point (i) implesthat thet < t' terms do not contain the variable z(s’, t'). ‘I'his leaves only
thet = ¢’ terms of S to determine z(s’, t').

Of course, an acausal optimizer could achieve a better value for S by being less “greedy”
(increasing present C: + Fiterins to decrease future ones by a greater amount), but as argued
above causality forces our dynamics 10 be greedy. 111 other words, the causality constraint only
permits a partia or greedy optimization of S, and the nature of the partial optimization depends
on the decomnposition of S into a sum over decisions oOf causally constrained terms. This basic
linitation to causal or greedy dynamics will bemore or less severe depending on which of many
possible decompositions of C and F' over timne is chosen.



We shall define the greedy derivative of 5 withrespect to o(s',t') as being the ordinary derivative
of the sum of such eligible (t<t’)terms of S, and use that derivative to define optimality of +(s' ¢').
But this greedy derivative imuediately simplifies due to the retarded interaction forin off’ and /7
Z AC, + BF, ? D (AC + BE) ? (ACy + BFy) (6)

. W= W) = (A ). 3
. ( t + l) 0‘1"(5(,[/) t<“(/ t t (‘).L'(S’,l’) t t

0(;__
dax(s', 1)

How can we find functions L' (x{t'}) and I“(x{t'}) that specify (via optimization of S) anentire
computational task and yet break up into a sum over easily computed decisions? T'his is a statement
of the problem of algorithm design, for which there is no general answer, but we can still invent some
fairly general techniques. The cost function can be regarded as some kind of space-ti[nc volume to
be minimized (e.g. circuit size times the duration of its use) and can be decomposed into a sum
of space-time volumes for the many elementary decisions or state changes, at individual locations
and times, that comprise the associated computation:

c = Vol = ZJ\’ol,,z. (7)
st
Also the functionality F{x{#'}) is often measured by some definite objective function F(x), such

as total tour length in a traveling salesman problem [11185], and this can be decomposed over time
as (cf. egquation (2))

¢
F(%gnat) = F(Xfinat) = F(Xinitial) = ; AB| ©)
For example, a standard form for analog neural networks objectives £ is{MG90]:
: 1<~ 1 ,
E(V) = -—g '}]'f J;jkv,-vjvk — -2~ %:7,'_7'1),“0]' - Z h,'v,' + 2,: QS,‘(U,’), (9)

which encompasses many network designs including equation (3). Here v takes the place of x, and
the indices i, j, and k take the place of s. In equation (9), vi is the output value of neuron i;7T;;
and Tijx are connection weights between two and three neurons, respectively; ki isabias input to
neuron ¢; and ¢(v;) is the potential function for neuron i and determines the transfer function gi
(e.g. a sigmoid function) through

vi = gi(u;) and w; = @'(v;). (lo)

Often equation (9) is further specialized vy setting Tijx=0.

As a complete example of a dynamical objective function we present, in the following equation
(11 ), a dynamical objective for the Hopfield/Grossberg dynamics of an analog circuit. This dy-
namical objective will be derived in sections 2.1 and 3.2, using the fact (to be established in section
2.2) that, for a continuous-time analog circuit model, a condition for the greedy optimization takes
the form of a (functional) derivative §/6v (where vi = dv;/dt). The dynamica objective is

Sv(t),vV(@)] = /‘“.Z (1\’[vi,v,']+ gﬁiz.‘, (112)

vi |

where K[v,v] is a cost-of-movement term to be derived in section 3 (see Theorem 1). Varying with
respect to vi and making use of the form of E given by equation (9), we will find analog neural-net
equations of motion as expected:

Tuli = Z’J}jkvjvk + Z?}jl/j + h; and v; = glu;) . (12)
Jk J

Here 757 is a time constant. The dynamical objective function S of equation ( 11 ) can be recognized
as an instance of (5) by identifying the neuron index i with the space index (i.e. component
index) s and the time integral [ d¢ with the temporalsumy.,; also C,r — N[i (1), vi(t)] and
Foo o (OE[v(1)]/0vi )vi(t).



There is a close analogy between equation () and standard ideas and terminology in physics.
The action, S, can be decomposed into the temporal sum (in physics, an integral) of a Lagrangian

L(t) which in turn is a spatial sumn of a Lagrangian density L, = Co o + Foy:

S5 = Z[,([)
= DLl (X)) = Y (Cort Fun) (13)
(

s,t) (s,t)

(Note that the sum over timemay becorne an integral when we consider time steps of infinitesimal
duration, since the extra factor of At required to get an integral is just a constant that doesn’'t affect
the solution to an optimization problem.) For our neural network design purposes the Lagrangian L
is generaly the most useful of these aternative notations, particularly for algebraic manipulation,
because the temporal suinhas the same algebraic form from one problem to the next (and hence
is uninformative), but the spatia sum does not.

Extremization of such functions (or functional) provides a foundation for the study of many
dynamical systems including quantum field theories. I and C' might with lower confidence be
identified as classical kinetic energy and potential energy terms respectively, but as we will see,
many details are different. These differences prevent a literal-minded mapping of our ideas and
constructs onto the formalism of physics. In particular, causality is not built into physical theories
by means of the partia optimization of S, but in a completely different way that is inconvenenient
for treating irreversible dynamics such as our computations; therefore neither the dynamics nor the
Lagrangians of physics can be called “greedy” in the sense wc use the term.

There are a number of other ways to derive dissipative dynamics from Lagrangians, as summa-
rized in [VJ89]. Allowing explicit time dependence, such as an overall factor of e¢#!, in a conventional
Lagrangian permits physically clamped second-order dynamics to be derived. The strategy of the
approach is to start with a differential equation, derive an associated Lagrangian (this is called
the inverse problem of the calculus of variations, and it may have many solutions), and use that
L.agrangian to analyse or approximate the solutions of the differential equation. Our strategy and
methods differ, since the Lagrangians are obtained from cost and functionality considerations and
hence are known before the differential equations are known. Moreover these Lagrangians require
an unconventional variational principle (the greedy variation) to produce acceptable differential
equations. Nevertheless there may exist some deeper relationships between our greedy Lagrangians
and previous approaches discussed in [VJ89)].

2.1 Cost and Functionality Terms

Equation (8) for I’ is particularly appropriate for a net whose dynamics is intended to converge to
fixed points that encode the answer to a static optimization problem, such as the standard neural
network form of (9). Equation (8) represents a substantial specialization from the general set of
functions Fi({z(s', t')}) = 5, F,({=(s',t')}) that appears in (5). For in equation (8), F: depends
on t only through its arguments and not through its subscript, so that the agebraic form of Fiis
independent of time (i.e. £t is autonomous):

Fo({a(s', 1)1t <1)) = Blx(0)] - Elx(t - A0, (14)

In the simplest case of dtatic specia-purpose neural circuitry the computational cost is just a
constant N, reflecting the hardware committed (neurons and connections), times the length of time

it is used:
C/' = ANttolal (15)

for fixed hardware, or the more genera
C= AJ AN (1) (16)

if the amount of hardware devoted to the network can vary over time (a possibility we will consider
in detail in section 2 of Part Il. Once N is allowed to vary with time, it becomes relevant to consider
the details of how muchnode and wire volume isrequired to implement dynamically a given pattern
of connections.



Equations ( 14) and (15) go part of the way towards defining a computational system, butthey
arc not yet detailed enough to specify a paralel algorithin or analog circuit th at optimizes £y, Qur
mainline of development will be fromthese eguations towards an analog circuit. But first we note
an alternative strategy for generating parallel algorithms which will be developed in sections ‘2.1
and 2 of Partll.

2.1.1 Remarks on Some Generalizations

It is by no means necessary to specialize the expression for S'in (5) al the way to the formin ( 14),
if some other way to minimize the origina action in (4) can be found. Most aternative sets of F
functions would pertain only to one particular objective function F, but there are also systematic
methods for deriving Ft from £ in which Ft benefits from retaining an explicit time dependence.
For example, £t might take the form of AFE ) for one of p possible objectives ., wherethe choice
of objective as a function of time (given by «(t)€ {1, 2, . . p}) is made in a cyclic fashion. Then
(14) is replaced by

Fe({z(s', )]0 <) = > dhalt) AFa[x(t), x(t - At);x(t7)], (17)

where ¢, (t)=1if a=a(t) and O otherwise, and where
AEa[x(t), x(t - At); x(t°)] = Falx(t); x(t%9)] = Ba[x(t - At);x(t°)]. (18)

Here we assumed that ¢’ takes only the values ¢,t — At and ¢4, where t — At is the previous
time Step in the current o pham of the Cyc]e and told is thefmal time Step of the previous phase
a—1in the cycle. Because of its explicit dependence on a cyclic clock signed et(t), £, is caled a
clocked objective junction. It must be fundamentally connected to the original objective function F
if the resulting cyclic Lagrangian is to have the correct functionality, but there are several ways of
making such a connection. This possibility is explored further in section 2.1 of Part Il and applied
extensively in section 2 of Part II.

It is troubling that there exists a wide variety of different local and causa Lagrangians (cf. (5))
each of whose dynamics will partially optimize the original dynamical objective function or action
given by (4). How do we choose one over another, and what are the minima criteria for any to
be acceptable? In other words, what are the rules of the game for proposing distributed cost and
functionality terms in (5)? ‘I’he answers must ultimately be related to algorithmic performance in
minimizing the action itself (see (4)). We begin our work on these questions in section 2.3.2.

212 Refinement to Continuous Dynamics

For the moment, let us assume that (14) and (15) describe an acceptable Lagrangian, which is a
decomposition of (1) and (2) to finite-sized time steps, and try to further refine them to a dynamics
with infinitesimal time steps, i.e. continuous time and continuous-valued (i.e. analog)variables.

A standard form for analog neural networks objectives E is given in (9). The corresponding
functionality term £ may be derived with a series of three design transformations. Start with an ob-
jective function E[v] of continuous variables v1v,, ancl discrete 0/1-valued variables v, 4+1. . v,,
with ¢:(vi) = O for the latter (where ¢ is defined in (9)). The first transformation is to reformulate
the discrete variables as continuous variables each with the constraints that O <vi<1. This step
may introduce new local minima at the intermediate values of v;; if this possibility can be analyzed
away, or designed away by adding a “bump term” such as the pendty term 37, civi (1 — vi) to
E, then we have a valid transformation. I’he second transforination is to replace the constraints
with penalty or barrier terms ¢i(vi)added to £ for unconstrained, continuous-valued optimization.
Steps 1 and 2 together may sometimes be replaced by the one-step Mean Field Theory derivation of
continuous-valued objectives for discrete-valued variables (first discussed in[flop84]andextended
by others inducting [Sim90,PS89, GY91]) with improved control over local minima.Butinsection
2 of Part Il we will nave occasion to separate the two steps,

As an example of these first two steps, the image region segmentation objective (3) can be
refined to an analog ncural net with discrete variables s € {O, 1} replaced by continuous variables
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Finally, we must refine the global objective E into an arbitrarily large number of infinitesimal-
step AL terms for use in the simplest continuous-time dynamics. Using Taylor’s theorem for small
At,

+

Fooase= AE~ At Y Eivi= AtFgue[V) (20)

(so that Zt Feoarse & f diFf‘me), where

- = 2 qukv]vk - ZYIJUJ hi + ¢ (U ) (21)

and v is a vector of variables comprised of al the f, 1*, and [* variables of (19). This third
transformation step does not yet specify the associated transformatlons of the fine-scale cost term
Crinel{vs ¢ }] which we will work out in section 3. The result will be of the form Crine[V] = 2o K [0, vi)
(cf. (127) of section 3.2). Together with (20), this gives us the L.agrangian

. ad
LFgnel(V,v] = Z (1\ [6i, vi] + Lv,) (22)
and the action functional
S = / dt Lgipe- (23)
This action is in agreement with equation (1 1). For the region segmentation example, dF/0v; is

given by (21).

In summary, we have transformed the problem three times along the way to the circuit-level
functionality term in (20) and an associated Lagrangian. The transformations are intended to
preserve (approximately) the fixed points of the equations of motion, While making the dynamics
progressively more implementable as an analog neural network. Both thetransformations) validity
(as measured by the functionality term of the original coarse-scale action (4)) and their efficiency (as
measured by the cost term of (4)) must still be demonstrated, since the finer-scale versions of this
action functional are only partially optimized. The three transforrnations used to obtain equation
(20) were: (1) discrete variables — continuous variables, constrained to intervals; (2) constraints
—+ penalty or barrier terms in unconstrained, continous optimization; and (3) temporal refinement:

= AF ~ fth (The refinement of C' must still be worked out before we have a derivation of

the fine-scale Lagrangian. See section 3.)

22 Greedy Functional Derivatives

Based on the foregoing work, we seek to derive continuous-time dynamics from suitable Lagrangians.
This requires formulating the greedy derivative of (6) for use with continuous-time dynamics, hence
formulating it as a functional derivative.

Following equation (5), we argued that the local cost and functionality terms F,, and C, ., in
a Lagrangian should depend on variables z,:+ only for ¢’ < ¢, and that only variables with ¢’ =1
should be varied in the optimization of Fs.¢+ C, 1, @l values of earlier variables are held fixed.
Then Fand ' are said to be in retarded interaction form. These constraints can be imposed on
any continuous-time Lagrangian in differential form,

L(x(1), x(®), x(®).. ), (24)

as follows. First we replace the derivatives by difference expressions (x(t) — x(¢t-- At))/At, and so
on, taking care that the largest time ¢’ toappear ist. This yields an approximate discrete-time



Lagrangian, which we then optimize with respect to x(t) by differentiating to find the dynamies.
Then we take the limit as At — (). Inthat way we ensure that ¢ < t (retarded interactionform)
and that only variables for which ¢’ = tare actually optimized a time ¢, as required.

This procedure for finding the continuous-time dynamics for a Lagrangian in differential form
(24) may be formalized by means of the greedy functional devivative introduced in[MG90, MM9L1].
Ilere we provide a ncw formal derivation of the greedy functional derivative d¢; which exploits the
retarded interaction form of a Lagrangian.

Let N be anormal forin operator on derivative expressions:

N[z(t)] = z(),
N[z(t)] = (z(t) — z(t — At)) /AL,
N[#(t)] = (z(t) — 2z(t — At) + z(t — 2At)) /(AL (25)

and so on. Also
N[F [y(t)]] = FIN[y®]l, y = ={t), z(t), 2(t), if F is autonouious.

So N serves to replace time derivatives by tempora difference expressions for which t' <¢, which
we can differentiate with respect to xz(¢). In other words, it suflices to put a Lagrangian [, into
retarded interaction form, so that a greedy variation can be taken while preserving its value in the
At— O limit. (N is known in numerical analysis as the “backward divided difference operator”. )
Then the greedy functional derivative may redefined, evenon Lagrangians L not yet in retarded
interaction form, so as to agree with (6): For any small At >0,

chm ‘/dill(r(t‘),i‘(t),.‘.) /dza i-1) TNI' 2(0),
(,)Ja(t)NL( 2(t),2(t),..)  (asin (6)) "
et
B T A Y
where the last step used (25). Contining,
%f(t)/dfl,(x({), @),.. ) = ﬁﬁ[’(x(t)’aw )

— o~ 1 ) F) _ . .
| (Z;, (At) a(dnx(t)/dtn)(t))b( (1), (1), .. )
(by the chain rule)

/ dis(f - t)n(:%‘m)nl a(dnm(t;?/dtn)(t) ) L (®), (0

_ (e~ ] é S
= (g(m)n 5@ 20 0) (diL(z(@),2(D),. . ).

(27)
Here the functional derivatives §/4(d"z(t)/dt") are taken to be independent of one another as partia
functional derivatives (so for example §4(¢)/éz(t) = O, rather than 8z (f)/dx(t) =ds(t —t)/dt as
would be the case for total functional derivatives).
So the greedy functional derivative és/dgx(t) is given by the operator equation

Y] > 1 4
—° = 28
For(®) = 2 (A7 @ =(0/d0) (1) @)

where At is infinitesimal, Again, the conventional functional derivatives are independent of one
another (they are partial functional derivatives).Needless to say, the highest powers of ( I/At) will
dominate al others in the limit At — O. For example if L depends on v and v, but not onhigher
titne derivatives, then the greedy functional derivative will be(1/At)é/év. This will generally be
the case for our circuit Lagrangians.




We can derive analog, continuous-time network dynamics by applying the greedy functional
derivative to the continous-time Lagrangian (22).  Since the highest til[le-derivative inthe La-
grangian is ¢; for each variable v; the greedy functional derivative is proportional to §/dv. Then
the equations of motion become

65 ar

é_—vl = ]\,{/ [‘U,‘,Ui] + (‘)U‘ ol

(29)

For N{i,v] = (1/2)ry 03 /¢’ (g~ 1 (vi)), the circuit-level cost term which will be derived in section
3.2.3, and for an objective function / given by actuations (9) and (10), the greedy variation equations
become Hopfield/Grossberg dynamics:

Tty + u; = Z’I}jkvjvk + Z']}jvj + h; and v; = g(u;). (30)

Jk J

This type of dynamical system describes an analog neural network, and we will make no distinction
between such a dynamical system and the neural network itself.

As an example, we may work out the dynamics for the region segmentation l.agrangian given
by (22) and (19). Specializing the dynamics of (30) to the region segmentation objective (19), we
can expand the first term of the objective to find a potentia term (A/2) ,?J- for the fi; variables.
Then we find the standard Hopfield/Grossberg equations of motion for this analog network, which
are

Tfé,‘j + e; = A d,]—B(fij—fi+1,j)(1—l:'Jj) -- B(fij_fi,ji-l)(l“l:'/j)’f"j = (I/A)Cij’

Tkl + kY = B2 (i i) By = gk,

ke kY, = B2 (Nisn  f)? -, By = glky).
(3)

2.3 Theory for Refinement to Circuit Lagrangians

We have found a path of argument from computational first principles to specific neural networks,

but the status of some of the steps along the path is still unclear. The basic problem is that
various transformations of the original action functional (4) are required to get an implementable

dynamical system, and limitations of causaity and the simplicity of elementary processing devices
require that the spatially and temporally distributed Lagrangian functional (such as (5) or (1 1))
be optirnized only partially (as in the discussion following (5)).

Our approach to this basic problem is to catalog a variety of useful transformations that lead
towards circuits or paralel agorithms, and to re-use the fundamental dynamical objective function
(4), or closely related quantities, as a measure (i.e. a criterion) for judging the success of such
transformations. Such a criterion may be caled a meta-objective since it is an objective function
used to select a dynamica objective function for the neural network dynamics.

This approach may be thought of as a symbolic search procedure to be carried out by human
designers, who select the likely transformation sequences, with machine assistance in evaluating
them and perhaps aso performing them. On occasion it may be possible to eliminate the search
procedure by proving the (meta-)optimality of a given Lagrangian, but we do not think that this
will be possible in most cases.

2.3.1 Transformations of Lagrangians

Recall the three transformations leading to circuit-level Lagrangians in section 2.1.2:

T1. discrete variables — continuous variables constrained to intervals

T2. constraints — penalty or barrier terms in unconstrained continous optimization

T3. refinement: £} ::A]o‘zfdt[:}.(’l‘he refinement of ¢ will be worked out in section 3.)

We comment on each of these transformations.

T'land T3 are required to achicve a circuit implementation, but more generally they serve the
purpose of making a parale algorithm. Discrete-time update schemes may be introduced instead,
hutsome care is required so that the updates of independent variables done in paralel don’thave



the jointeftfect Of increasingrather than decreasing F. I'or example, fOr some networks ic iS possible
to “color” the variables with a small number of colors sothatno two connected variables (7, and
& such that7j; # 0) have tile same color; then different colors can be updated at different times
in aclocked objective function, and all the variables of the same color canbe updated at once
(even by discrete jumps) without interference in I+ (Interference would mean that several variables
would each, if updated alone,diminish £, but if the same updates were done together then 5 could
increase. ) Such (fairly standard) parallel update schemes are not so important fot continous-time
and analog-valued networks, whose descent dynamics are explicitly parallel.

Transformations like 'I'2, which incorporate static constraints into the static optimization prob-
lem, may change the nature of the optimization problem significantly. Penalty and barrier terms
on congtraints that involve many variables destroy locality, unless they are further transformed to
alocal form by methods such as those described in [M G90]. In this case a minimization problem
isreplaced by a saddle-point problem. Alternatively one can introduce Lagrange multipliers, but
that also changes the static optimnization into a saddle point problem [1'1187], Either way, the
dynamics associated with the Lagrangian functional loscs its obvious convergence properties (be-
cause limit cycles around a saddle point become possible), and it may be necessary to engage in
meta-optimization of some kind in order to secure convergence for a local circuit implementation.
Another alternative, which requires clocked objective functions but does not explicitly introduce
saddle points, is to use an algorithin similar to the “gradient projection agorithm” or “scaled
gradient projection algorithms” [B189] to repeatedly reestablish the constraints as the dynamics
proceed. Such an alternative will be employed in section 2.1.6 of Part Il.

In previous work [MG90] it has been demonstrated that static neural network objective functions
may be transformed in a variety of ways in order to acheive design goas such as reduced wiring
cost or attaining an implementable form while preserving the functionality (the fixed points) of an
optimizing neural network. Likewise, in this paper we will introduce a number of transformations
from one Lagrangian to another that satisfy design constraints while preserving or improving the
functionality of a computation.

A fundamental aspect of (5) is that, clue to its linearity, it naturally supports the hierarchical
decomposition of computational dynamics into large state changes (or decisions), each achieved
through many smaller state changes or decisions. This is in analogy to multiscale or multigrid
algorithms from numerical analysis, or to renormalization group ideas in statistical physics, or to
the idea of stepwise refinement in the design of computer programs. As in (5), the action S can
be decomposed into a sum over state-change decisions. But if each of these decisions is in turn
made by a dynamical system consisting of a sequence of sub-decisions at a finer time scale (which
may also involve a finer spatial scae), then we can relate the two time scales (“big” decisions
and “sub-decisions’ ) and reexpress the action in terms of the fine-scale decisions alone ( “small”
decisions):

S = A D CuxWWH4B YD E{x())
big decisions(s f) big decisions(3,f)
= A )] ( 2. Cal{x())
big decisions(3,f) sub—decisj~-~ = *)

(32)

+1{ Z sub—de%ons(s,t) Fs,l({x(‘!’)})

big decisions(3, )
= A Y. Codl{x(t)}) + B > Foe({x(1)))-

small decisions) small decisions(s,t¢)

Notice that the step from equation (4) to equation (5), or more specificaly to (7) and (8), can
be given a similar hierarchical interpretation: we arc expressing a single quantity, optimized over
the entire circuit convergence time, as a sumn of quantities to be optimized more localy in time or
space. The further refinement, to infinitesimal time steps, (23), is another example. Then equation
(32) subsumes al these examples of hierarchical design.



2.3.2 Mets-Optimizatic]n

Wehave discussed the necessity for some criterion or figure of meritby which to compare aternative
Lagrangians and tile dynamical systems to which they give rise. Generally we start with some global
objective function such a8 S in (4), then transform it though a series of spatialy and temporally
localized l.agrangians of theform(5) to a final circuit-level Lagrangian L, which is only partialy
optimized (i.e.is greedily optimized) by the dynamics.Finally we wish to quantify the performance
of the resulting dynamical system,1.e. to evaduate the quality of the associated computation, for
example by computing the value of S at the end of a run. The [nets-optimization problem is to
optimize the resulting evaluation, treating it as a functional of the exact form of L.

An obvious way to do that is by means of a retrospective (a posterior) evaluation of the original
objective S of (4). But optumizing with respect to this protocol of retrospective evaluation of Scoarse
seems out Of the question, since that involves many repeated tests of the neural network dynamics
with different values of the parameters that specify the (transformed) Lagrangian and is therefore
far more expensive than one relaxation run of the network. (The parameterization of I may involve
real-valued parameters or may simply be the discrete choice of a sequence of transformations to
derive L from Scoarse - )

Fortunately the cost of optimizing Sce.asrse 8 @ function of the form of L (i.e. the cost of meta-
optimization) may by amortized over many inputs h (cf. (9)) to one network, drawn according to
some probability distribution, or even over many network connection matrices T drawn according to
another probability distribution. Optimizing M may be very expensive but the expense is amortized
by using the resulting dynamics to improve the performance of many different computations. An
apparent obstacle is that different h vectors and 7" matrices will in genera have unrelated meta-
objectives M, so amortization may be difficult to accomplish.

Such amortization may still be achieved if the meta-objective function M[L}isaltered to become
an average-case measure of Scoarse:

M[L] =< Scoar se[L]>h,’I' . (33)

Just as in neural network learning procedures, the distribution average would be sampled by a
finite sum over a training set; this sum would be optimized, and then a further sampling could

bc made to test generalization from the training set to a testing set. If such generalization is
to be expected, either on experimental evidence or according to theoretical criteria such as the

V apnik-Chervonenkis dimension [Vap82, BH89],thenamortizationwill be possible. For the cost of
computing (hence of optimizing) AM([L]is multiplied by the size of the training set, but that large
initial cost is then effectively divided tzy the number of times that L is used subsequently, which
may be far larger than the training set. This gives the desired amortization.

Alternatively, one could amortize the cost of optimizing M by taking M to be a worst-case
measure Of Scoarse which can be optimized analy tically. The worst case performance is very hard
to evaluate experimentally, but it may be more easily subject to analysis than the average-case
performance, at least if we are alowed to alter the form of Secoarse SOmewhat. ‘I'hat will be our
approach in section 3.2.

3CIRCUIT DYNAMICS

3.1 Refinement to a Circuit

Upon refinement, the l.agrangian L = C + /' becomes
L = ANAt+ BAE. (34)

We would like to take the limit At— O, refining to infinitesimally small time steps in a continuous
analog circuit. We expect this to be both simpler than a discrete-tizne (finite At)dynamics, and
also more relevant to neural network implementations. But performing the greedy optimization of
such al.agrangian presents some surprising problems.

For instance, a first-orcler expansion of AFE(At)yields a l.agrangian proportiona to At: L{v,At] =
AU+ B, I i[v]vi), which cannot be optimized with respect to At > O without going outside the



expansion’s domain of validity. To avoid this problem At might be taken to be a small constant, but
that would inake the entire ("0sl term ¢/ = A NAt constant and therefore irrelevant to the dynamie
optimization problern. More seriously, partial optimization canonly affect v whichappears linearly
in this Lagrangian; i = 400 will be the optimum, which would not only invalid ate the expansion
of I(t) again, but would violate physical limits on circuits as well. A somewhat more physical
dynamics would result if we arbitrarily followed the analogy from the Lagrangians of physics and
changed the cost term to a kinetic energy (1/2) 5,92, but we have no computational justification)
for doing so.

On the other hand, not expanding AZ(At) at all leaves a fine-scale optimization problem which
is equivalent to optimizingthe full coarse-scale objective E in much less time, This is simply not
possible. And even a second-order finite Taylor expansion of AF/(At) is problematic, since the
optimized values of Atand v are likely to lie outside the expansion’s small dornain of suitability as
an aproximation.

The essential problem here is that each fine-scale optimization, to be imnplementable as a circuit,
must be more constrained than the coarse-scale optimization. We must stay within the domain of
convergence of a Taylor expansion of AF/(At), and we must not violate physical speedlimits (e.g.
for physical implementability we must prevent circuit tiine constants from becoming too small),
and so on. Such constraints are either (a) direct physical limits on circuit implementations, or
(b) computational limits on what can be achieved with a small amount of physical computing
(computation which occurs in a physica medium) in time At. These constraints are generally too
complex to state exactly in a simple Lagrangian.

We identify two general approaches to formulatingsuch circuit constraints and the corresponding
fine-scale Lagrangiaus. In the “underconstrained” approach, we impose simplified, loose versions
of the physical and computational constraints on the optimization of L sarse, in the hopes that the
resulting dynamics will be constrained enough for a genuine physical implementation (perhaps at
an even finer time scale). These loose constraints can be tightened up for analytic or computational
convenience, and then expressed as penalty or barrier functions which are added to L to forin L fine,
the fine-scale Lagrangian. By contrast, the “overconstrained” approach stays within the realm of
physical irnplementation by hypothesizing a parameterized class of fine-scale Lagrangians known to
be irnplementable, which can be thought of as alternative strategies, and optimizing some measure
of their relationship to the original coarse-scale Lagrangian L. In particular, the cost terms of L fine
may be optimized while the functionality term is taken to be AE ~ AtE asiu the coarse-scale
Lagrangian. Thus the underconstrained approach applies looser constraints than implementability
may actualy require, and the overconstrained approach applies tighter constraints than are actually
required. We give examples of each.

3.1.1 Underconstrained Refinement #1

We will require Av be small enough so that AE[Av] can be expanded to first (or second) order in
aTaylor series, and that each |%i| be bounded by a physical speed limitation. So we must optimize

L{v, At] = ANAt + BAE[AV] (35)
subject to
[[V]loo = max|t;]< s (36)
1
(where v =~ Av/At)and
lAv]|2 < r(v), (37)

where »(v) is chosen to ensure that a first (or second) order expansion of AE[Av] is sufficiently
accurate. Also, there are two approaches to varying At. If we let At be optimized (subject to
At> O), the cost term in the Lagrangian will keep it small but not necessarily drive it to the
continuum limit At¢-» O. Or, we can let At= x7, where xy € {O, 1} is a discrete dynamical variable
which “stops” the neural network when x is optimized to zero, and where risasmall constant
which we can analytically drive towards zero to extract continuum dynarnics.

In the latter case, ||Av|lz~ x7||v||]2<y7\/ns is more restrictive in the limit 7 — 0 than
constraint (37) except whenthe network finally stops, at which time both constraints become



irrelevant.  So we can drop constraint (37). If we express constraint (36) as a barrier function
2o Da1(vi/s), the fine-scale Lagrangian becomes unconstrained:

Lyine(¥.X] = D ¢x1(0i/s) + AT[AN + B Y 140]. (38)
i i
Except for thenew x variable, this is the same forin of Lagrangian for neural net worksthat we
have proposed in [MG90,Mjo87]. The corresponding dynamics are (varying v, cf. (28))
Ui = —sgx1(#,), (39)

and varying y to get the stopping criterion, we find the optimal values of y occur only at the
boundaries of the allowed domain of y:

X =0[s Y Eigs1(E:) — AN). (40)
Here ©(x) is the Heaviside function (1 for 2 > O; O for = < O).

3.1.2 Underconstrained Refinement #2

If, on the other hand, we let At be optimized freely, then we are taking a computational step that
requires a small but nonzero amount of time to change the state by Av, which is constrained by
both (36) and (37), which in turn are related by v ~Av/At. We will express constraint (36) as
[|Av||leo <sAt, which can be tightened to the more tractable

(1/5)) ] |Av]| < At (42)
i
Also we can tighten constraint (37) to
rv _
1avller < - = 7(2) (42)

(which implies (37)). Optimizing L{v,At] of (35) with respect to At, which occurs linearly in (35),
as constrained by (41) just saturates the constraint: At = (1/s)d;|Aw].

The remaining constrained optimization is with respect to Av. Using barrier functions, we find
an unconstrained Lagrangian

LIAV) = ”Ais]l Z [Avi| + Z EAvi + Z d11 (%); (43)
o . ANT(v) Av;
LAV = 3 Babv+ =223 oy (m) (44)

where ¢4 /0/-(2) = d11(x) + [z[. Also

1 if Ei—AN/s>0
Av; [i(v) = 0if £i— AN/s <0 and E’,+ AN/s >0 (45)

+1if E;+ AN/s <0

A number of calculations of bounding expressions 7(v} are possible, but we will not pursue this
approach further here.

3.1.3 Stopping Criterion

Lagrangians (38) and (43) each have intrinsic stopping criteria which compare the expected im-
provement in functionality AF with a cost of movement, and allow movement only when it is
sufficiently beneficial. But I may not always be the right function for this purpose. A monotonic
function 6( £) may be used in place of E in (8) ancl may likewise be decomposed into a sum of
Ab terms. The latter would alter the tradeoff with the cost term for incomplete optimizations and
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Figure 1. Potential ¢4 /o, () incorporates automatic stopping criterion. Whenother terms fail to
alter the ordering among ¢(— 1), ¢(0), and ¢(1 ), then Av = O is favored and neuron v: stops.

therefore the stopping criterion (the point at which a further decrease in F is smaller than the
expected cost of obtaining it).

One major drawback of using a monotonic function b(E) in place of £ inaLagrangian is that if
E is of the standard neural network form (9), it is aready a sum of local terms and therefore close
to neural implementation. By contrast, direct optimization of &(F) requires a global calculation
of E even to get the gradient, Vb = 'V E needed for the dynamics of every variable. One can
circumvent this problem by transforming the objective function with a particular type of Legendre

transformation [MG90]:
Xb(E) = —0E + x7 + ab™ (7). (46)

In the resulting gradient dynamics, only the one variable ¢ requires computation of the objective
function E. Unfortunately this transformation replaces a static minimization objet-tive with a static
saddle-point objective, since some of the new variables are to maximize rather than minimize the
transformed objective. To find a Lagrangian which always converges, rather than cycling around
the saddle point, may then require an appeal to meta-optimization (e.g. either experiment or deeper

analysis) of the saddle-point-seeking Lagrangian.

3.2 Overconstrained Refinement: Mets-Optirrlization of I

A second, more systematic way to overcome the problems with refining the Lagrangian through
expansion of E(At) is to define a class of Lagrangians which are known to be physicaly imple-
mentable ancl mathematically tractable, though they are not the only physically implementable
expressions for a circuit-level Lagrangian, and to pick the best member of the class based on a
meta-optimization criterion. So we overconstrain the set of allowed Lagrangians and optimize. We
will be able to do this theoretically for a meta-objective that measures worst-case performance of
a Lagrangian for minimizing an especialy simple class of neural network objective functions.

The allowable class of objective functions will be those of the form E[v]:_(1/2)2.‘j7%jv.~vj_
22chivie 22:6(vi), in which the matrix 7' is negative semi-definite and has eigenvalues whose
absolute values are bounded above by some number ¢,.x. An example of such an objective
function is the hysteresis-free version of the common winner-take-all network objective [11"1'85]
E = (A/2)(3 v — 1)°= 3 hivi+ 37, 4(vi). There is a straightforward generalization to the
case in which different neurons v have different potential functions ¢:(v:), but we won't work
that out here. The negative-definite restriction on T is severe because it means that 1? must be
unimodal (since each i isunimodal too), Unimodal objectives have some computational uses,
such as in the winner-take-all network or the “invisible hand” algorithm for matching [KY9 1], but
our meta-optimization results will not be widely applicable until they are generalized to multi-
modal objective functions. Nevertheless we can present the unimodal analysis as an example of the
meta-optimization of a circuit-level Lagrangian.

What mathematical conditions would make a Lagrangian physically implementable, so the as-
sociated dynamics can be implemented with a circuit, ant] aso result in good per formance? The
essential limiting factors for circuit speed arc the time constants (such asresist ance-capacitance



products in an clectrical circuit) that governthe approachtoany stable state of any one- or two-
clement subceircuit. T hesetime constants must be larger than somie physical lower bound, say Trast.
We aso want the stable fixed points to be minima of someneural network objective F. Subject to
these constraints, we want to minimize the slowest timne constant for the full circuit (which as we
will show is also larger than Tray Of course time constants are only defined for a local lineariza-
tion of a dynamical system, so wc must constrainthem in the neighborhood of each attainable
configuration, and wc may optimize the worst case time constant over al such configurations.
With these points inmind, we define a constrained optimization problem over a limited class of

Lagrangians of the form
LIV = > Kl ]+ ) | B, (47)
i i
where the objective takes the form

v] == *% Zilka)izlj - Zhivi + Z¢(1’i)v (48)
ij i i

and h includes the input to the network. Note that the cost term in (47) is a sum over kinetic-energy
terms each pertaining to only one neuron; this is a form of locality. Also the equivalence of stable
fixed points and local minima of £ can be ensured by siinple constraints on K. (47) together with
the time constant constraints and K constraints to be introduced specify the class of Lagrangians
that we will call “circuit-implementable’. ‘I'his class is parameterized by the kinetic-energy function
K from %% to ®, suitably constrained.

Onc important property of equation (47) is that it retains its form under componentwise repa-
rameterizations Vi = fi(xi), where fi is monotonically increasing, differentiable, and its inverse is
differentiable. (Note that such repararneterizations form a continuous group under composition.)
That is, under such a reparameterization the dF/dt term is invariant, and the ' term, while not
invariant, becomes another function 1\"[1'"i,x,-] of the corresponding new variables. So the problem
of optimizing with respect to K can be solved equivalently in any such parameterization we choose,
if only the objective ant] constraints are also chosen to be parameterization-invariant in this sense.
We will insure that condition by deriving them from physical circuit time-constants for exponential

convergence to fixed points.
The greedy functional derivative was derivedin section 2.2. Wc use that result to find the

greedy optimum of the action [ dtL with respect to the trajectory v(t). The dynamical system
that results from calculating the greedy variation of L with respect to v (i.e. the regular variation
with respect to v) and setting it to zero is

b = K[—FE;, v, (49)

where K[w,v] is the inverse of K[v,v]; on its first argument. This forces us to constrain K to be
monotonic in its first argument. Here we introduce the notation

i) = kg = 3Ty 4 b= ) (50

For stable fixed points to correspond to local minima of E (for which w = O), it suffices to assume
that

K[0,v] = O and K[w,v],> O (51)
for @l wandwv. The linearization of this dynamical system at v is
Av,- = 1{'[11),-, v,—] -+ Z A,‘jA‘Uj, (52)
J
where P
A,‘j = —,———f\"[w,-, v,-]
dv; (53)

= K, [U’i7vi](7;‘j - 5;‘j¢”(‘vi)) + K 6.

Now we are in a position to derive the constraints on the function Ii that result from considering
the timne-constants of the dynamics specified by A = (A,). We want the circuit elements and their



connections t0 be physically implementable, SO we’ll constrain one- and two-element subeircuits of
the linearized system (52) to be slower than ... We do this by sctting al elements of Ato zero
except for A, (for a one-element subcircuit) or {AiivA,'j,AjivAjj } (for a two-elernent subcircuit),
toget a1l X 1o0r 2 x 2matrix A(s) or A(7, j). Furthermore, we may arbitrarily pick thesubcircuit’s
fixed point v* by adjusting the input vector h; this does not alter any element of A or A.In
that case K[“’z‘,v,-] = O, and the linearized dynamics (52) couverges exponentially to v with atime
constant determined by the largest cigenvalue {Ai} of the matrix A, i.e. by its matrix norm{|A||.
So the physical constraint would be

max||Alls <1/7eas, (54)

where A ¢ A means that A is variedover al 1 x 1 and 2 x 2 submatrices of A and over all state
Vectors v. )

The constraint (54) is parameterization-invariant. Invariance follows for any Aby applying
Taylor’s theorem at a fixed point v* of v, to get the linearized dynamics in a new coordinate
system {2: = f;(v;)}- The new matrix A is just a similarity transform JAJ~! of A, where J
is the (nonsingular) Jacobian of the change of coordinates. Therefore A and A have the same
eigenvalues (cf. [Ner70], Theorem 5.20r 5.3) and |]Allzis parameterization-invariant as long as the
Jacobian J is not singular (which ours never are). Furthermore, the identity of the 1 x 1and 2 x 2
submatrices of A are invariant under our coordinate-wise reparameterizations {zi= fi(vi)}. So
the whole constraint (54) is parameterization-invariant. This invariance confirms the intuition that
exponential convergence to a fixed point in one coordinate system {vi} (i.e v - v* ~ c exp —At)
does not change its convergence exponent A in another coordinate system {zi= fi(vi)}.

Note that because each fi is assumed to be monotonic, differentiable, and to have a differentiable
inverse, constraints (51) are also parameterization-invariant. That’'s because each wi=—F |is
multiplied by fi(vi)in reparameterization{zi= fi(v:i)}, where O < f{(l’i) < .

Constraint (54) is not a sufficiently convenient form for all our subsequent analysis, so we will
relate the constraint to something more tractable. ‘I’he matrix norm of each AC Ais bounded
above and below by multiples of maxgs|A4as] (cf. [G 1.83], p. 15):

m%x[/iﬂb| < [|A]l2 < dim(A) m%x|/iab|, (55)
a a
whence .
max |4;;] < max||Af]z <2max|Ay], (56)
ij ACA 7

where as before A ranges over all 1 x 1 and 2 x 2 submatrices of A. So a closely related but more
tractable constraint may be formulated:

max max [Aij (V)| <1/ Trast. (57)
1

Of course, the bounds of (56) hold regardiess of what coordinate system is used tc, derive A, SO
long as A is expressed in the same coordinate systemn. Still, constraint (57) is not parameterization-
invariant, since similarity transformations do not preserve the elements of a matrix. We will have
occasion to use both (54) and (57) in what follows.

Since one K is to apply to many connection matrices 7' and state vectors v, we will also constrain
a worst-case estimate of the circuit speed over al 7' in some alowable class T in the formula for
A, and over al state vectors v for each connection matrix:

maxmaxmax HAll2 < 1/ Ttast. (58)

As previously mentioned, we take T to be the set of negative-se. midefinite connection matrices 7',

such that the absolute values of the 7"s cigenvalues (i.e. 77s singular values) are bounded above

by tmax- Constraint (58) is parameterization-invariant but not as analytically tractable as the

alternative,

max max max |A;; (v, )| < | /7as (59)
TeT 4

v

which will enter into the following analysis even though it is not parameterizat ion-invariant,



The invariance of constraint (58) iS one reason to prefer the time-constant constraint (58) over
the “speed Hmit” imposedinsections (3. 1. 1) and (3.1.2), which explicitly depends on the choice
of variables, Onthe other hand the speed-limit constraints take into account the entirety of each
trajectory, rather than just the behavior near (all possible) fixed points.

Next we must formulate the objective function, which will be a worst-case estiinate of the much
slower time constant for convergence of the full circuit (as opposed to 2 x 2subcircuits). We want
to minimize 50w, Where

Tslow = maxmaxmax /A (A(v,T))|
v TeT i ) n
= max glnea% max IN(AT (v, T))] (60)

= ATHY, T)o-
mjxxg}ea’;([[ (v, )2

Equivalently we want to maximize
inmin||A~Y(v,7)]]5 . 61
min min ||A™ (v, 7))l (61)

Again, the objective (60) will be parameterization-invariant because the time-constants arc invariant
under similarity transformations.

Because the optimization of (60) with respect to K{v,v] subject to (58) is invariant under
reparameterizations i = fi(v;), we may change variables to ui=¢!(v;), calculate A for the
linearized w variables, restate the optimization problem, and find the optimizing K. The functions ¢
are the single-variable potentials appearing in equation (48), so each ¢; is monotonic, differentiable,
and has a differentiable inverse. The variables ©; were introduced in equation ( 10). Using the u
variables, one may express the dynamics by means of the L.agrangian

~ . —~ ak
L= Zl\ [’U,,‘U,] + La—u;“n (62)
1 13
whence the equation of motion 5
- E
S >—1 _ ot X
u = K Bu;’u'l (63)

(where the function inverse concerns only the first argument, i, of f&’,a, ). This may be rewritten
in terms of wi from equation (50):

8E 1 JE

e 1 O 64
s Jv; 9'(w;) Oy (64)
which enables us to define A )
K[w,-, ;] - K;.‘l [u),-g'(u,') ) U] (65)
and reexpress the tidynamics as i
4 = K[w;, uy]. (66)
Then the linearized dynamics is
Au; = 11"[11);, ) + Z Aj;Avyj, (67)
J
where A;; = OK [w;, u;)/0u;, i.e.
—Aij = 1;'|u,[u1g,tai]<j}jg'(1t;) + 5,-1) — 1;,,u[llli,lti](5{j- (68)

(We have defined 7'=-1".)



So our optimization problem isto find A which solves the following optimization problem:

Maximize
O = min _ HA'I(u,’I")H;l
u,w,TeT
with respect to (w. r.t.)
I, subject to
C = ( max _ max ||Al)z < 1/Trase (69)

uw,7¢T ACA
and K yy = Ky and K4 >0 and K[0,u] = 0)
where )
T = {T)o1(T') < tmax and T’ is positive semi-definite}, and

—Aij = K uw;, ) (7§j9'(1ti) + 5.‘j> — K [wi, )0

and 01(7‘) is the largest singular value of T, i.e the largest absolute value of any eigenvalue of 7',
By introducing new notation

plw, u] = K4 [w, v]
viw, ¥l = -K, [W’ 1] (70)

and trandating the constraints appropriately, we can treat pand v as independent functions except
for the constraint on the mixed partial derivatives. Then the problem (69) is equivalent to the
following optimization problem:

Maximize _
O = min {47 (u, D)3
u,w,TeT
w.r. t. (i, v),
subject to
¢ = ( max max||A 2 < 1/ 7ga
u,u',’l-'éi’ACA” “ / ast (71)
and gty = —vy and P > 0 and u[O,“] = 0)
where

T = {71 (T) <tmaxand 7" is positive semi-definite}, and

—Aij = ;t[w,-,v,-]g}jg'(ug) + J;j)+ viw;, u;)i;.

In the next section we will establish an approximate solution to this optimization problem: a (u,v)
pair that satisfies all the constraints and comes within a factor of 2 of the globaly optima vaue
of @. Here we simply make several observations about the optimization problem (71).

First, one of the most important questions about this problem, and our solution to it, is whether
the restriction to positive semi-definite 7”s can be removed. Connection matrices appearing in rea
applications can have bounded singular values, but rarely are all the eigenvalues of the same sign.
Second, we note the close relation of this problem to a worst-case minimization of the condition
number of A, K(A) = [[ Aff2|[A~ 2 Since max;;lai;| <[|Allz and ; and v can easily be rescaled
by a constant while preserving their constraints, the two problems look quite similar.Indeed,
maximizing K(A) over allu,w,7' €7 subject to the p and v constraints would yield an upper
bound of 7rastkmax fOr Omax- But our problem is more difficult because the extremization over
u,w,T €T is performed separately for the constraint and the objective.



3.2.1 Optimization of ;¢ and v

A useful auxiliary problem to (7 | ) is obtained by replacing (54) with the non-invariant expression
(57):

Maximize
0 = min _||A™ u, T)))5!
u,w,TeT
w.r. t. (p, v),
subject to
C(c) = (c max max|Ai(u, 7)< 1/ 7 (72)
u, w,TeT Y

and gty = —v, and >0 and v[0,u] = 0)

where

T = {j'|01(j') < timax and T is positive semi-definite}, and
~Aij = plwi, vi] (’f}jg'(lti) + 5,-j> + viw;, u;)6i;.

Unlike the original problem (71), we will be able to solve this auxiliary problem exactly.

To solve the constrained maximization problem (72) and others like it, we will use the following
proof strategy. Given objective @ and constraints C, we will maximize some lower bound objective
O_ such that O_[u,v)<Olu,v)], subject to tightened constraints C- such that C_[ux,v]= Cly,v).
In this way we ensure that max(Q-|C-) <max(Q|C). Likewise we will maximize some upper
bound objective O, such that O[p,v] <O, [w,v], subject to loosened constraints C,such that
Clu,v]=> C[p,v]; this combination ensures that max(Q[C)< max(O4|C4+). Having solved both
constrained optimization, we will see that both give the same value for the objective:

max(Q4|C4) = max(O_|C-) (73)
which implies that al the extremal values are the same:
max(Q|C) = max(O_|C- ) = max(Q4|C4). (74)

Furthermore, the extremal values p* and v* of max(O_{u,v]|C_[i,v]) all satisfy constraints C
(since they satisfy C_)and thus constitute extremal values of max(Q[g,v])as well. Thus we will
have solved the original constrained optimization problem of maximizing O with respect to C, by
finding the maximal value and arguments p*,v*) a which the maximum is attained.

In the next section we will use this proof strategy to solve the auxiliary optimization problem
(72). A variant of the same argument can then be used to conclude that the (u,v) pair for the
¢ = 2 auxiliary problem comes within a factor of two of solving the origina optimization problem
(72).

In fact, using (56), we see that the ¢ = 1 version of (72) is a upper bound for (71) and the ¢ = 2
version is an lower bound. In other words,

max(O[C(c = 2)) <max(Q[C) < max(O[C(c = I)). (75)

Furthermore, C(c = 2) implies ¢ so that the extremal (p’, ") for max(O|C(c= 2)) are in the

congtraint set for max((J|C). As it will turn out, max(Q|C(c)) is proportiona to l/c, so O(x*, v*) =
O(p*,v*) is proven to be within a factor of two of its optimal value, max(Q|C). In other words,

O(p*,v")=max(0|C(c = 2)) <max(O|C) = 2 max(Q|C(c = 2)) (76)

which implies o
(1/2) max(OC) <O, v*),=max(O|C(c = 2)) (77)

and (p*,v*) is an approximate solution (satisfying the constraints and optimizing the objective to
within a factor of two) of the meta-optimization problem (71) or equivalently (69).

3.2.2 Solution of the Auxiliary Problem

We may solve the auxiliary problem for ¢ = 1, then scale it to any other ¢ by scaling Trast appr0pr_i-
ately. So we'll assume c=1inthe following solution of (72), The basic strategy will be to obtain



upper bounds by restricting consideration to diagonal connection mat rices 7', and to compare t hese
upper bounds with lower bounds that follow fromnatrix theory. [nsome cases, we will find it useful
to repeat the above reasoning to solve the bounding constrained optimization problems themselves.
For example, max(O_ [[!-) will befound by way of max((?__|C-_) and max{O_;|C_4).But first

we will treat the upper bound max(QO4 |[Cy).

By simply restricting the class T inproblem (72) to the subset ’f+ of 7 matrices whichare also
diagonal, we simultaneously increase the value of [y, v] (since it's aminimum over a proper subset
of 7'€T') and loosen the constraint C[u, u]. So one lower bound opt itmization problem is:

Maximize
0, = min_ [|A"Yu, T)||5"
u,w,TET,
w.r.t. (g, v),
subject to
Cy1 = ( max _max !A,‘j(ll,j‘)'sl/Tfast
u, w, T€ET, ij
and g =—v, and p > O and v[0,u] = O)
where

T4 ={T|T is diagonal and a (7)) <tmax and 7' is positive semi-definite}, and
~Aij = pluwi, vi](’f%jy'(ux') + 8y w6

(78)

This will not be the sought-after (4 and €4, but it moves in the right direction since O <,

and C:>C+1.

If 7' is diagona then so is A. For adiagonal matrix A = diag(a;),||A~!||~! = min;|a;| and
max;;|Aij| = max;|a;|. Sowe can calculate more detailed bounds:

04 = min_ In'in,;t,‘(j',-,-g,{ + 1)+u.<|
uwTeTy 4
< min min\g(Tig + 1) + v
uTeT, w=
= min min |t (Tigl + 1)
uTETy # w=0

= min ming(|Tslg) + 1)
uTeTy ¢

= minminy; (( min |Ti])g) + ])l
uo TeTy

w=0

= minmingf0, u;]
U 1

an/t[O, u]

0+ [U! V]'

n

w=

(sincev[0, U] = O)
(79)
(since p > 0 and g} > 0)

(since minj,e.h 73] = 0)

Likewise we can bound the main constraint of C41, which is that (?Hgl/rfw, where

Cy1 = max_ max [p; (gt + 1) + u,-l
uwTeTy
> max max|p(Tiig; + 1) + v
uTeTy 3 w=0
= max max|u(Tigi +1)
u,TE7-+ 1 w=

=  max max;u(ﬁhIg,’- + 1)
U,TET+ 3

= Imaxmaxp (( max [1};])g! + 1)~
b } TeTy w

1=

= maxmax [0,y (tma.xgl(ui) + 1)
= mlax 1[0, v} (tmaxgl(") + 1)
(?4- [/tv l/]‘

I

(since v[0,u]) = 0)

(60)

(since g« > 0 and g/ > 0)

(since maxge, |Thi] = tuax)



S0 theupperbound optimization problem becormes

Maximize
Oy =mmigf0, If]
w.r. t. (g, v), ‘
subject to (81)
¢y= (Ilax,l[o,u]~,1,ax,/(it)+ 1)51/%

ancl py=-v, and >0 and v[0,u] = 0)
To this optimization problem we propose the solution (u%,v}):

/tl [w,u] = 1/Trast (tmaxgo + 1)
il <) @)

where go =max, g’(u). These values for p and v are constant,i.e.independent of w and u, so the
mixed partial derivative constraint of problem (81) is trivialy satisfied. Clearly aso s3> 0 and

v3 [0, u] = 0 are satisfied. The C; < 1/Trase constraint can also be verified:

™axy (tnma’(u) + 1)

("\+ [l‘ll—.{ﬂ 1/_’;_] = I]]{ua,)(#j‘|> [0, U] (tnlaxgl(u) + 1) I:_Tfast(tmaxg() + l)— = l/Tfast- (83)

So (i, v1)satsifies the desired constraints. The objective is Oy [;t';,u_;] = ming p} [0, U] =
1 /7tast (tmaxgo + 1). But from the constraints we sce this value is aso an upper bound for” Q4 [u, V]

as follows: .
1 /Tfast > C+ [/‘ , V]
= max, [0, ] (tmaxgl(u) +1)

> (miny g[0, u]) (maxu(tmaxg’(u) + 1))
= 0+ [[l, V] (tmaxgo +1),

(84)

which implies O4 <1/7rast (fmaxgo + 1). S0 (%, v}) in (82) solves problem (81).

Next, we use matrix theory to find and solve a constrained optimization problem max{O_{C_)
which can serve as a lower bound for max(Q|C).

To bound @ below (in problein (72)), we must simplify {|A=!||;"'. In matrix notation, [|A~!]|;"
isjust o, (A), the smallest singular value of A. Also Ais given by the matrix expression

A = diag(p)(T'diag(g’) + 1) + diag(v). (85)

The smallest singular value o, (M + N) of asum of matrices M and N is bounded below by
on(M)—01(N), as shown for example in [GL83](Cor. 8.3-2, p.286). We will take A = M + N
with N = diag(v) and use o1(diag(r)) = max; |V to find a lower bound O_ for O:

O>0_= min _ [an (diag(p)('f‘diag(g') + ])) - maxlu,—|]. (86)
u,w,TET $

We can also bound the main constraint of C, which is that (?Sl/'rfast- We will use the fact
that oy (M + N) <01 (M) + o1(N), which is aso shown in [GL83](Cor. 8.3-2, p.286). The bound
is as follows:

Cl, Y] =  max_max A

u, w,TeT W
< max_||All2

u,w,TET

(standard matrix norm bounds, eg. [GL83], 2.2-10, p. 15)

= max . o1(A)

u,w,TET
< max i Feliaala’) 4 1 . ’_]
< max o (diag() (Tdiagly’) + 1) + wpx v

87

=C_ [p, V]



So the lower bound optimization problem becomes

Maximize
QO _ = 14,ﬁl)37l-l'67 [(r,, ((liag(/t)(’['diag(g’) + 1) - m'gxxlu,-ll
w.r. t. (g, v),
subject to (8%8)
. = ( tnax [01 (diag(;t)(j'diag(g') + 1)) + maxluil] < 1/ Trast
u,w, T€ET i .
and g1, = ~v, and p> O and v[0,u] = O).
Consider the related optimization problem
Maximize
Oy = min _ [(rn (diag(;t}(j’diag(g’) + 1)) - m_ax[u,»l]
uw TET 4
w.r.t. (p,v),
subject to (89)
Cop1 ™ (US]%’:T [al (diag(;t)('j'diag(g')+l)> +m'_a‘x|l/.'l] < 1/ 7tast

and x> O and v[0,u] = O),

which differs from (88) by removing the partial derivative constraint that relates pand v. Clearly if
we solve this problem and find a solution that also obeys the partial derivative constraint, then we
will have solved the origina problem. That is what we will do. But the new problemn (89) can be
further simplified by observing that the optimal »? ,; must be identically zero; otherwise, an optimal
(#2 41, v2 41 # 0) would have a lower value of the objective than (1241, O) which equally well
satisfies the constraint C-,; that would contradict the assumed optimality of (12, ;,v2 1 # O).

So to solve max(Q@_|C_}, i.e. problem (88), it suffices to (a) solve problem (89) assuming u = O,
i.e. to solve:

Maximize
O-;y = min_oy (diag(/t)(j'diag(g') + 1))
u,w T'€7T
wr. t. (4, 1),
subject to (90)
C-y = ( max_ 01diag(u)(7Tdiag(g’) + 1)) <1/Tast
u,w,TeT \
and > 0,
)

and then (b) verify that the mixed derivative constraint u.=-v,, {— O) is satisfied by the solution
(u2 4, O) to (90). Furthermore, the optimizing values (x-,v”) will just be (2, , O).

We will solve max(O-|C. ) using the same strategy as for max(O|C) itself: by construct-
ing an upper bound problems by restricting to diagonal connection matrices 7€ 7, =T N
{diagonal matrices}, and a lower bound problem using more matrix theory, and showing that
they have a common solution.

The upper bound for O_, is caculated as follows:

O_, = U’S,l;ré%an(diag(;z)(’f‘diag(g') + 1))
< min. o, (diag(u)(Tdiag(y’) + )
u,w,TeTy N
= min _ min #i(Thgi+ 1)
u, w, TET4? -
< min mingg(|7i)g: + 1
£ Min_m wi(|Tiilgg + 1) (91)

. . . g !
mmmm;t;( min |T5|g; + ])
u,w i 'fveﬂf_"
minmin gefw;,u; since ming 5, (15| = 0
minmin s, i ( jer, | Tiil = 0)
minp[ur,“]

u,u

O_4s.



The corresponding (lower)bound for ¢_, is calculated as follows:

C_, = max o (diag(u)(i’diag( )+ 1)
wwe I'eT
> max_ oy (diag(;t)(j'diag( g+ 1))
uwow TeTy
= max max pi(Tigi + 1)
uu [ TeTy ? . -
= min 1in g (7iig + 1) (since 15> O)
u, w, T€T4 1 (92)
= maxming , max Tigl + 1
u, w | (T€T+ )
= max min #{wi, wi]~n,axg (it,) +1) (since maxzy, T5i™ tmax)

u.w I

= maxpfw, ul (tmaxgl(u) +1)

u.w

Coty

n

So the upper bound optimization problem becomes similar to problem (81):

Maximize
O_4+4+ = ringfw,u]
U,w
w.r. t. (g, v),
subject to (93)
C44 = (ly“%’/xp[w,u] (tmaxg’(u) + 1) < 1/ Tast
and p> 9)

To this optimization problem we again propose the solution (cf. equation)

ll:++[w; u] = l/Tfast(tmaxgo + 1), (94)

where go = max, ¢'(u). The proof for this solution is the same as that of the solution of problem
(81) by equation (82), except that now w must be optimized everywhere u is. This establishes the
solution of problem (93) by equation (94).

We must now find a lower bound max(Q- 4 _{C_4-) for max(O_4|C-4), and to do so, we require
another matrix theory result: that for positive semi-definite matrices M and N,on(M + N)2>
on(M) + a,(M) [SgS90].

(Note on the proof so far: We could not use this result earlier since diag(v) was not positive
semi-definite. Also the use of this result and equation (92) are the only places in the proof that
depend on the assumption that 7" is positive sen~i-definite.)

Thus,

o_,

min _ o, (diag(;t)’i‘diag(g') + diag(u))
uw,TET

min o, diagpu ’f‘diag(g’)) + a,,(diag(,u))]
uw,TeT - N

min [on (diag()on (T)on (diag(¢')) + on(diag(1))
*(since ||MN|lo<||M|[2l[Nll2, [GL83] p.16)

min o (diag(u)) min on(T) ) on(diag(s’)) + on(diag(u) |

v

v

(95)

i

= minrnin #{wi, ui)
ww | -
(since ming 7 on(1) = 0)

= minpufw,u]
u,w

O 4-[u].

i



Likewise,

Coy = max o (diag(;t)’f'(liag(y’) + diag(;t))
u,w ,Te7
max _ [m ((liag(;t)j'(liag(g')) + al(diag(;t))]
u,w,T€ET ]
(since [|M + Nilo < |{[M]la+ |IN ]2, [GL83] Cor 8.3-2)
max [01((liag(/t))al(i’)al((liag(g')) + al(diag(u))]
u,w,TET N
(since || M N||2 < [IM|12{|N (|2, [GL83] p.16) (96)

= r:}i’xal(diag(p)) ((gmeafxal(j‘))al(diag(g')) + l)

IA

IA

= max(maxpfwi, 1) (tar(maxg(u) + 1)
»w - i
(Si nce n]anvej— (o1 (YY) = tmax)
C__ +- [/t] .

We can assemble these bounds into the constrained optimization problem

m

Maximize
O-4- = min pfw,y
u,w
w.r. t. (p, V),
subject to &)
Coy. = (rnax(rnax;t[U’f,ui]) (tmax(xnﬁxg’(ui)-kl) < 1/ Trast

Ut w b
and gt > O>.
To this optimization problem we once again propose the constant solution (cf. equation)
/‘1+— [wv u] = I/Tt‘ast.(tmaxgo + 1), (98)

where go=max, g (u). Clearly the constraint u*,_>0is satisfied. The C_ 4~ <1/Trast constraint
can aso be verified:

. ‘Ixx. _(tmaxg'(u) + 1)
* — * ! \ =
Covm ] = ety o) (tmnd () 4 P20 T = e (09

So pt , _satsifies the desired constraints. The objective is O_y_[u*, _]= ming ,#24- [w, ] =
1/7tast(tmaxgo + 1). But, once again, from the constraints we know this value is also an upper bound
for O_ 4 _{u):

Cot- [H]

maXw u /l[w, U] (tmaxgl(u) + 1)

1 /szmt

v

(loo)

v

(n]inw'u /4[u), U]) (maxw,u (tmaxgl(u) + l))
=0_4- [/l, l/] tkmaxgo + 1),

which implies O_¢_ <1/Tst(tmaxgo + 1). So equation 2 4 _in (98)solves problem (97).

We have previoudy solved problem u* ,, in (93) with equation (94). The resulting maximal val-
ues of O are the same for the two problems (97) and (93) (max(Q-4+-1C- ) = max(O- 4+ 4+1C-++) =
1/Ttast (tmaxgo + 1)), and they are attained by the same u* = constant functions. Since these were
lower and upper bounds for max((-+|C_4), we conclude that the same p* and maximal value of O
also solve problem (90), namely the calculation of max(®. 4+|C_4). But in the discussion of problem
(90) we pointed out that, if u*, , = O (as it certainly is, since /2 4 is a constant independent of both
u and w), then (4=, u = O) is also a solution (12 ,v2) of problem (88). Thisresult is the sought-
-after lower bound for the original problem (72), and may be joined with the solution of (81) (an up-
per bound for (72)) by (82) to finish the entire problem: max(Q_|C-)= max(Q|C)=max(+|C4)
= 1/7rast(tmaxgo + 1); and the optimum is attained at (p”, v*)= (u2.,v2)=(1f,v}) le.

L1 = L/ Trast(naxgo + 1 )
V‘[w,“] = 0

(101)



is shown to beasolutionof (72) for ¢ =1.0thervalues of ciaybe absorbedintothe definition
Of 7rast. S0 we have established Lemma 1:
Lemma 1. The optimization problem

Maximize )
O = min_ [jJA7u, D"
u,w,Te€T
wor.t (s, v),
subject to
C(c = vax cmax |A(w, 7Y < 1/7as
© ((max_emax|idis(a, 1) S 1/ (102
ancl p1=-v, and > O and v[0, U] = O)
where

T = {T101(T) < tuaxand T is positive senli-definite}, and
— Ay = pfwi, vi] 331'.‘7/(“:‘) + 6i5) + vlw, )b
has as one solution
o w, ul
v [w, u]

= tmax
5 1/(¢Trast (tmaxgo + 1)) (103)
= 0.

It remains only to translate this solution for y[w,u]and v{w,u] back into a function A (as called
for in (69)) and thence to the desired “kinetic energy” or “cost of movement” function K[u,u] or

its equivalent, K[v, v].

3.23 Approximate Solution of the Meta-Optimization Problem

iFrom equation (77), we can apply Lemma 1 with ¢ = 2 to find a (p”, ¥*) pair which comes within
a factor of 2 of solving the meta-optimization problem (71) or equivalently (69). (Note that (77)
was derived assuming that max(Q|C(c)) is proportional to I/c, which has now been established in
Lemma 1) Changing back to K notation,

Kuw=1/my, K,=0, (104)

where
TH = 2Tfast(tn1axg0 + 1) (105)

is a constant. (The factor of 2 comes from ¢ = 2.) The general solution of these partial differential
equations is K[w,u]=w/Ty -t- ¢, but from the statement of problem (69) we must take K [0, ] =
c,= O. Then )

K [w, u] =z ‘U)/TH. (106)

Using (65),
fi',g,[it, ul = 1;"1[1'1,11]g'(u) = ryug’(u). (207)

This has the solution K[u, u] = (74 /2)u2g'(u) + c2(u). But the term co(u)has no effect on the
dynamics, since its greedy derivative is zero, and without loss of generality we can take ca(u) = O.
Then

K, u) = Tguﬁg'(u). (108)

This is the sought-after kinetic energy or cost term for i,and the associated equation of motion is
(from equation (63))

. 1
u; = - Tis i+ hiu ,

- (ZJ: %R (109)
vi = g{uw).

This K may aso be translated back to a Lagrangian expressed directly in terms of ii, using
K[v,v] = K[i(v), u(v)]:
Kfo,v] = %’ilz/y’(g"(v)), (110)



or equivaently ,
INIEE #aﬁw”(p). (1)

If g(u) is linear (i.e. if ¢(v) is quadratic), this kinetic energy expression is proportional to the
conventional (m/2)9* expression encountered in physics, but for nonlinear g this expression is
different from a kinetic enecrgy in physics, (110) is the circuit cost-of-movement (or kinetic energy)
term used elsewhere in this paper,anda greedy variation of the associated actionfunctional yields
equations of motion equivalent to the Hopfield/Grossberg dynamics of ( 109).

Assembling Lemma 1 and (47), (48), (52), (58), (61), (77), (105), and (1 11), we have demon-
strated the following theorem:

Theorem 1. The linearized dynamics determined by a greedy variation of the Lagrangian
L[\.f] = 2‘- K[i).’, U,‘] + Z,- E,,'l-’,‘, with

<1

Elv] —%Z,-j Tijvivy — 3 hivi + 37, 6(v), and (112)
¢'(v) = g7 (v) and go = maxy |¢'(u)]
may be computed to be
A"U,' = 11"[10,-, v,-] + Zj AjjAv;
where 113
Aij = I;',w[w,-,v,'](il',-j - 5;j¢"(v,~)) + K di;, and (113)
w; = —FE;, and K[K[9,v],0] = 9.
If we define the objective
M, (K) = minmin ||A™ (v, T)|)57, (114)
v TeT
where
7-= {T|oy (T") < tmax and T' is negative semi-definite}, (115)
and if we impose the constraints on K that
(a) maxy max?-eT Max e 4 ||/il|2 <1/ 7ast,
(where A runs over 1x 1 and 2 x 2 submatrices of A), and
(b) K is continuous in its first and second derivatives, (116)
(c) 1}’[0,11] =0, and
(d) Kfw, v] <0,
then the function
Ko, v] = (ru/2)9%¢"(v) where (117)
TH = 2‘rt'a.st(tmaxgo + 1)

satisfies the constraints and comes within a factor of two of the globaly maximal value of M{X)
subject to these constraints. Furthermore, the objective M, and the congtraints (a) — (d) in
(1 16), with definitions of A, K and w as in (113) are invariant with respect to coordinatewise
reparameterizations i = fi (vi) in which each fi is monotonically increasing, differentiable, and has
a differentiable inverse.

3.2.4 Notes on the Solution

If ¢ differs from one neuron to the next, and is indexed by i as ¢:, then the optimal & term will
still have the above form if it too is alowed to depend on . The proof in section 3.2.2 can easily
be altered to establish this generalization of the result.

Note that (105) relates the fastest physical time scale 7r.er in a circuit to an optimal value of
the neural time scale 74 appearing in Hopfield’s version of the analog neural network [Hopg4], ancl
the two are not the same. The best value for the neura time constant is the slowest time constant
in the system. The ratio of the latter to the fastest time constant is roughly the product of the
neural gain go and largest eigenvalue of 7'.



We note a change of variable which sitnplifies the kinetic energy termm in the above dynamics,
for use in the next section:

LIW) = 37, gif + 32, g,
OL/0w(t) = 0 =y + OF/0w; = 0, i.e. (118)
w; = —0F [0w;

which is supposedtobe identical to wi=—9Fk/0v,, vi= g(ui)(cf. (12)). This can be arranged by
choosing w:

dw, . _ 8E d
—(uf,:{li =l du. a&.d
AL dv,  dv, /du,
= 'JU.‘ _dwlj* —dw, dl?.' (119)
= %.l = 9'(u)

w

w; :/ Idu\/g’(u) and v; :/"dw\/é’(u(ur)). (120)

4Discussion and Conclusions

We introduced a Lagrangian formulation of the relaxation dynamics of neural networks which
compute by optimizing an objective function in a standard neural network form. This optimization
involves a trading-off cost and functionality in the formulation of optimization problems. ‘The
Lagrangian formulation makes novel use of a greedy functional derivative, which we defined and
computed. With these tools we demonstrated the use of three levels of optimization in the design
of relaxation neural network dyunamics: the original objective ¥, the Lagrangian L, and a meta-
objective M which measures cost and functionality over many trials of the network.

Applications of the Lagrangian forinulation were divided into two broad groups: analog circuit
Lagrangians, and Lagrangians that require a hidden switching mechanism to implement as a circuit.
At the circuit level, we showed that a limited meta-optimality criterion is nearly optimized (within
a factor of two of the global optimum) by a Lagrangian corresponding to the conventional Hopfield-
Grossberg continuous-time analog neural network dynamics, we aso provided severa alternative
Lagrangians which might be preferable under less andytically tractable meta-optimality criteria
In part 11 of this work we shall introduce a generalization of such relaxation Lagrangians to cyclic
Lagrangians with clocked objective functions, which have a simple circuit implementation involving
external clock signals. We shall present suitable agebraic notation including a clocked sum and
clamped variables and use the notation concisely to express neural network dynamics for a variant
of line minimization and for relaxation networks that contain feed-forward networks.
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Abstract

In Part | of this work we showed how a tradeoff between measures of neural net cost (of
operation) and functionality (eflicacity) could be used to derive the dynamics of the net, and
in particular, optimize thereby a class of objective functions. Here we extend that methodology;
a Lagrangian formulation and greedy variation to treat more ramified problems. We introduce
a notion of clocking and a class of clocked objective functions to do this. A kind of switching
dynamics occurs which is suitable for many applications. This notational clocking calculus makes
for time-scaled computational techniques employing a “focus of attention” (similar to saccading,
foveation, and covert attention in biological vision). Experiments dealing with applications are
referenced.

1INTRODUCTION

In Part | of this work [MM] (to be referred to hereafter, smply as Part 1) we introduced a La-
grangian formulation of the dynamics of a class of relaxation-based analog neural networks. These
Lagrangians incorporate a trade-off between measures of the operational cost and the functionality
(efficacy) of neural networks employed to optimize a given objective function £. Because of the
need for nonconservative or dissipative dynamics, our Lagrangians are to be varied in a nonstan-
dard way using the so-caled “greedy variation”. This results in dissipative analog circuit dynamics
described by first-order systems of differential equations. Within a class of candidate |,agrangians,
we proved the near-optimality (under a suitable meta-objective function) of a particular Lagrangian
corresponding to the Hopfield/Grossberg analog circuit dynamics. However, for efficiency, elabo-
rate computations may require more complex dynamics specified at a coarser scale of temporal
resolution, and this is a theme of the present work.

Here (in Part 1) we proceed to consider more elaborate L.agrangians which are capable of spec-
ifying non autonomous dynamics. For example the dynamics may depend on which subset of the
problem variables is currently being optimized, as well as the subset next to be optimized. This
kind of ‘[switching” dynamics occurs in many applications and requires a more general formula
tion of the Lagrangian which we develop [n section 2 we introduce a time-varying or switched
version of the problem objective function /, called a “clocked objective function”. We relate it to



our Lagrangian formulation of dynamics, producing so-c allted eyclic Lagrangians We develop suit-
able notation for expressing a number of existing optimization methods in terms of such clocked
objectives. Reference is made to @ number of experiments, application and computation, which
utilize this clocking caculus. Insection 3 we showhow to specialize these ideas to thecase of a
computational “focus of attention” (Similar to saccading, foveation, and covert attentionin bio-
logical vision) which iteratively and opportunistically selects asubset of the problem’s variables
for optimization, and optimizes them. We show how to develop Lagrangians on different problem
scales, Greedy variation then leads to the dynamics relevant to each scale. The working of the
clocking or switching in the problem development and its solution is worked out, In section 4 we
derive and relate various particular focus of attention mechanisms, inducting several which have
been tested in previoudy reported computer experiments. These include priority queue attention,
multiscale attention, jumping and rolling windows of attention, spreading activation (of neurons)
and orthogonal windows. Section 5 provides a suminary.

2 DYNAMICS WITH SWITCHING: VIRTUAL
NETWORKS

Suppose we have hardware capable of switching different sets of neuron output values from a
static (backup) memory into an active neural network, where they can be updated. With such
hardware it is possible to implement a computation which would require a much larger neural
network if every neuron were to be actively updated at all times. This situation would be analogous
to the use of virtual mermory in a conventional computer, in which one has a limited amount of
physical memory (Random Access Memory)augmented by a much larger amount of secondary
storage (magnetic disks). Equally, it is analogous to the distinction between the small cache memory
associated with a central processing unit, and the larger physica memory (RAM). In either part
of the memory hierarchy a relatively small and fast memory, in concert with a relatively large and
slow memory, simulates a large fast memory (with occasional slowdowns due to page faults or cache
misses). In like manner, we seek to design a switching mechanism for obtaining the computational
power of a large neura network with a small neural network plus a large, slow and relatively
inexpensive memory. Furthermore, in some cases it will prove possible to dispense with the slow
memory entirely.

Such a system would be useful not only for making space-time tradeoffs in situations where
only a limited amount of spatial resources (neurons and connections) are available, but also for
formulating search algorithms (suchas binary search) which can’'t be fully parallelized due to their
unpredictable total resource requirements.

What kind of cost and functionality termswould model this situation? This is a hierarchica
design problem. At a coarse time scale, we have just two kinds of decisions to make: what the
active set of neurons (the focusof attention) is to be at any given time, and what their new values
are to be after some period of active dynamics. (In the memory hierarchy analogy, one would like to
decide which part of slow memory to bring into fast memory as some computation progresses.) At
a fine time scale we must repeatedly make circuit-implementable state changes which move towards
answering these two coarse-scale questions.

A strong constraint on the system is that, under reasonable cost metrics such as network space-
time volume, no savings will be realized unless the focus-of-attention decision has converged to a
definite answer by the time a switch of attention is to be made (i.e. by the time that decision
is to be implemented); partial answers as to which neurons should be active would just force all
the candidate neurons to be active. (An attentive neural network which unhappily violates this
constraint is described in [Mjo87].) Of course one can contemplate dynamics in which by way of
example a linear combination of neuron values is made active, but such a system should be designed
by introducing new variables for the linear combinations and a discrete switching circuit which still,
to be physically cost-effective, makes definite decisions about the active set of neurons.

So, our problem is to find both coarse-scale and fine-scale cost and functionality terinsto mocdel
a focus-of-attention mechanism which switches many stored neuron values into and out of a small
active network, where the neural values are updated. We will not consider all aspects of this
problem. Rather wc shall show how the Lagrangian formalisms provide a tractable frammework for



1
€

Figure 1: Two time variables 73 and 72 may increase during nonoverlapping intervals of an underlying
physical time variable, t. For example 7y = f dtsh; (t) and 72 = [ dteh,(t) where 3, = dT1/dt and
P2 = dra/dt are nonoverlapping clock signals. (a)’ The parametric curve (7y (1), 72(¢)).(b) The
functions v, (t) and ¥2(t)-

our approach. This is illustrated through derivation of a few plausible L.agrangians in the form of
clocked objective functions. Related work appears in [Coo89, Mjo87, MM91, BSB* 91].

2.1 Cyclic Lagrangians

In discussing coarse-scale cost and functionality terms, the idea of a repeating cycle of a fixed
set of dissimilar coarse-scale decisions will be fundamental. This idea is analogous to a “loop” in
programming, or to the use of cyclic clock signals to control an electronic circuit. The idea may
be expressed in terms of Lagrangians in several different contexts which we will discuss here. In
al cascs we will find asimple formulation in terms of a “clocked objective function” [MGM91]: a
version of the AE functionality term of the Lagrangianinwhich the structure of E is regarded
as time-dependent according to a temporalcycle corresponding to the fixed cycle of coarse-scale
decisions. The possibility of formulating a cyclic Lagrangian in terms of a clocked objective function
was introduced in section 2.1.1 of Part 1, equations (17) and (18).

As an example, consider a line-minimization algorithm for local optimization. Repeatedly, one
calculates the gradient at a current location x, does a one-dimensiona minimization of the objective
function along the gradient direction, and updates x. During the cycle it is necessary to store an
old configuration xoid for useinupdating.and to reset to zero the scalar parameter s which
measures displacement in the gradient direction.

To express these ideas we recall the clocked objective function notation (M GMot): Suppose
that we have a small set of objective functions { £, } which are to be partialy relaxed (i.e. par-
tially optimized) in a cycle. We define one nonoverlapping clock function, ¥« (t) = O or 1 (with
Yo valt) < 1), for each phase @ = 1,2,...,Aof the cycle. ‘I'he clocked objective function is written

Pclocked X, t Z "v/’ [’ Xfrccl A ﬁwd} (1)

where A’ and x4 arc subsets of variables from the entire set {z:}. During phase o (i.e. when
Pal(t) = 1), Fclocked = Bf xylrecjyfixed) is to be extremized with respect to all variables in A free,

while dl variables in X'fixed are to be held fixed or clamped. Figure 1 shows one interpretation of

the nonoverlapping clock functions ¥, (f).
For example, a simple clocked objective function for line minimization would be

Foocked = ¢ 1(6)2 Hxod - x|[* + 52)[x°ld,slx] (initialize x°' and s)

+ipa(t) i1,
+ah3(1)

:\/

Jx + sVE[xOld]]) [s]x, x°) (line minimization) o)

(Hx o _ Sv [','[x““‘]llz) [x]s,x?M] (update x).

N} -,



Since the e = land a = 3 phases are especially easy quadratic optimizatious, one could arrange
that these terins are relaxed almost to zero during the clock phase interval appropriate to each.
Then equation (2) is a continuous-time refinement of the coarsf-scale Lagrangian’s decision cycle,
which partially relaxes Fin a gradient direction and then resets the variables for the next partial
relaxation. At the end of phase 2 in each cycle, the clocked objective functiontakesthe value of
[ a the new point. So the clocked objective function may be interpreted as a refinement of the
functionality term of the coarse-scale decision-cycle Lagrangian. This interpretation also requires
that the appropriate variables be held fixed at the correct times; this may be achieved with a cost
term C, which strongly penalizes any change in the clamped variables for the relevaut clock phase.

Many variations on equation (2) are possible; the clocked objective could interpolate an extra
cycle for the calculation of the gradient vector, and the x used to calculate the gradient could be
taken as the u = g7} (v) rather than v variables for £/, and soon.

2.1.1 R elation of I ,ckeq to F

So far we have only argued that clocked objective functions provide an interesting special case of
the distributed Lagrangian equation (5) in Part I; we have not shown how they can be related
to the static objective function E or the dynamic objective function equation (4) in Part 1 with
functionality term F = Fgnal- Finitial- Here we will discuss three different classes of clocked
objective functions, each of which can be used to make some progress on minimizing E in every
complete clock cycle so that AE < Ofor each cycle even though the functionality term is not simply
equal to AE. In this section we refer to such a clocked objective as “valid” for objective E.

Transient Terms For the first claw of clocked objective functions, of which the line minimiza-
tion objective (2) is an example, Felocked is valid if one of its components Ejis equalto F itself,
perhaps with restricted arguments, and if the other components can each be expected to relax to
near-zero values within their own phase of the cycle. These other components will be referred to as
transient terms of a clocked objective function, since they approach zero quickly. Then progress is
definitely made during phase 3, and at least o harmis done (i.e. no increase in Ej is suffered) in
the other phases a. Generally these other phases are used to ensure the suitability of the arguments
of Esg=E.

Subspace Terms In thesecond class of valid clocked objective functions, F, is equal to F
during all clock phases, except that it is a function of different sets of variables (or more generaly,
is a function on different submanifolds) during different clock phases. We will refer to this type of
term a-s a subspace term of a clocked objective function. There can be no significant calculation
required to decide what subset of variables £ depends on during each phase (otherwise we'd need
a further phase to make that calculation). One simple arrangement is to partition all variables into
a few blocks ', with the variables in one block allowed to change during each phase of the clock.
Then eguation (1) simplifies (since every K, isjust £) to

Egocked[X, t] = Z Val(t) E[A’éree[“t’gxed]' )
a

This permits concise expression of blockwise coordinate descent algorithms.

It 1S perhaps surprising that #ciocked(X; ] is not numerically equal to £{x(t)] ‘or all tin this
case,owing to the nonoverlapped clock factors ¢, (¢t) e [0, 1] whose sum varies between O (between
phases) and 1 (during a clock phase). As we will see in the next section (2.1.2), this is necessary so
that the continuous-time Lagrangian will force all variables to completely stop changing between
clock phases, as they should.

We note that the second class of clocked objective functions can be used for the discrete par-
allelization scheme mentioned at the beginning of section 2.3.1 of Part I. I'"here we postulated a
partition of the network variables into a small number of “colored” blocks, with neighboring vari-
ables in the network having different colors. (Colors are in a correspondence with phases. ) Such a
partition can beused to ensure noninterference of discrete-tume paralel update dynamics. Clearly
equation (3) is the correct clocked objective for this situation, and # would just be A FEcigeked:

Control Terms For the third class of valid clocked objective functions which perform optimiza-
tion, onc constituent objective £ is 262! taken to be F£ with restricted arguinents (asubspace
term, asinthe first and second classes), ancl the other phases either relax to nearly zero (being



composed of transient terms as in the first class) or serve t0 determine the choice of active argu-
ments for phase 7 without directly changing any of the original variables X. Since this last type of
objective is @asum of terms that only involve variables that control membershipin the active set
of arguments for g, its constituent teris will be referred to as control terms in a clocked objective
function. Clocked objective functions with control terms arethe class of objective functions most
relevant to the attention mechanisms of section 4. Inthat section we will have occasion to usc
clocked objectives containing a variety of subspace terms,transient terms and control terms.

2.1.2 Lagrangians for Clocked Objective Functions

We have seen in equation ( 17) of Part | how clocked objective functions may arise from coarse-scale
Lagrangians, in which the the functionality term takes on a cyclic sequence of different forms. Our
purpose now is torelate such clocked objective functions (as in (1)) to continuous-time Lagrangians.

The essential feature of a single term F [xfreejafixed] in a clocked objective function E is that
it depends only on some of the variables, the rest being held constant at their earlier values. This
gives a property expressible in terms of derivatives:

OF,
Ox;

OF
31‘,‘ '

where Xai€ {O, 1} is aconstant which indicates the presence (x = 1) or absence (X = 0) of z;

in Xfree. (For fixed a,Xai is an indicatrix for A’fre¢). Consequently, F,[xfrec|xfixed)isalow-

dimensional dlice (restriction) of the higher-dimensiona function F,[1%], evaluated at values of the

fixed parameters which are dictated by the state vector x at the beginning of the a-th phase.
.From equations (3) and (4) we may now calculate dFEciocked/ 0z

0 Felocked
- a Ql a1 5
Be. Zt/ Xoi (5)

[R. freclfl fxe(lJ = Yaio2

4

which is nonzero at any given time ¢ only if i isin the free set of variables at that time.
We can take the final continuous-time Lagrangian to be

L= Z (K[it,', z] + thic_ked :L,) , (6)
i

i

where K is a cost-of-motion term (see section 1.1 of Part I). To see that this is consistent with the
desired pattern of fixed variables as a function of time, we examine the resultant dynamics. As
in equation (30) of Part 1, varying #i and using 3, ¥aXai€ {O, 1 }, and defining A'[w,z] as the
inverse of K{z,z] > with respect to its first argument, the equations of motion are

N OEq ~. Obg
2; = K[- Zwa(i)xa.’—é}f,ri] =) Palt)Xail [_W’ z;]. (@)

Here we have used equation (5) and K[0,z] = O to simplify the equations of motion. The factor of
Ya(t)xai ensures that the correct variables are clamped at the correct times.

Equation (6) is appealing because it has the same form as the continuous-time Lagrangian for
unclocked objective functions, equation (22) of Part 1. This is the desired relationship between
continuous-time Lagrangians and clocked objectives. Because of equation (6) it will often suffice to
give the clocked objective aone, omitting the Lagrangian, in order to specify a network’s dynamics.

2.1.3 Notation for Clocked Objective Functions

Equations such as (4) can be expressed in a more convenient notation for algebraic calculations (by
human or computer). From an algebraic point of view, (4) may be regarded as the i derivative of
E,, a version of F, in which all fixed variables z; € A'f sfixed gre simply replaced by clamped variables
(or “fixed variables”) #; for which

arj

& ,
= — () despite the fart that ———— ;. (8)

r;




The actual value of z; is updated to the current value of 25 only at the (otherwise irrelevant)
time intervals between the nonoverlapped clock phases, when Y~ o (t) = 0. Equation (4) follows
directly from this interpretation of £« ['rﬁmci'r}:‘ xed}in terms of £, )

In fact,we can design notation for thesubstitution that relates £ to £ Define

e{x}=xr+ (=) so x{xo}=xo x+(1-x4) X (9)

where y is a binary (zero- or one-valued) scalar (or can easily berounded to zero or one)and Xa is
just the constant array X«iwhich specifics with its zero-valued entries which variables are clamped
in each phase a. With this notation, Fais just Fa[x{x,}] i.e.

Eq[xfree|xfixed) - Balx{xq}). (lo)

We will use Fo[x{Xx. }] as the preferred notation. Furthermore X need not be a constant; it can
be replaced with any vector-valued expression #(€) involving variables €. Equation (9) would still
define

x{x(&)} = O(n(@) - 1/2) -x+0(1/2 - =(§)) x, 1y
where l " 0
1z >
c)(r) { 0 otherwise. (12)

© is defined componentwise on vectors. ‘I’he purpose of the © function in (11) is to round = (&) to
zero or one, with a boundary at 1/2. Note that, in agreement with equation (9) in which x isa
constant, X is clamped in equation (1 1). That is because x’s focus of attention cannot shift during
the phase in which x is being relaxed without incurring excessive and uncontrolled switching costs.

As a further notational refinement, we may drop the explicit +(¢) functions from our notation

by defining a clocked suiT,
EB Fo = Z Ya(l)Fa (13)

which may be written out term-by-terin as
FidOE, ... F4. (14)

(The“@” symbol is evocative both of a rolling “+” sign, and of an analog clock face.) Of course the
periodic functions 4 (2) still have to be specified before the clocked sum is a well-defined quantity.
The clocked sum is neither commutative nor associative, but we may take it to associate over the

ordinary sum:
ST Ew =P Faa (15)

Moreover, parenthesized expressions such as F, @ (F2@ E3) may be used to denote nested loops
in which for example E2 and E3 are repeatedly relaxed in an inner loop, within one phase of an
outer loop, and £1 is relaxed once during the other phase of the outer loop. Again the timing
would be controlled by external functions v, (t), which must still be specified separately.

Note that the use of clocked objective functions is reminiscent of time ordering of operators in
guantum physics. See aso the so-called Feynman entangling calculus [MWG66].

Perhaps the most important algebraic property of the clocked sum, for the purpose of formu-
lating descent agorithms, is its commutation with partial differentiation:

L Dr=@ b (16)

This follows directly from the definition of the clocked sum.The right handside of equation ( 16)
could be used as the time-dependent descent direction in a gradient-descent algorithm.

We may conventionally expect to find the ¢ signs outside the + signs in a clocked objective func-
tion, and accordingly we assign¢) a lower grammatical precedence than + in otherwise ambiguous
expressions.So by convention, F, ¢ Fa 4+ FEizmeans I (Fa2+ E3).




Wi th the addition of clamped variables », conditional variables »{y }, and clocked sums @, £,
we are able to concisely express a wide variety of cloc’keel objective functions. For example the line
minimization object ive (2) becomes

Eeoocked = s°/2+ ||x°M — x[?/2 (initidize s, x°'9)
O E[x + sV E[x]] (line minimization) (17)
@ [1x — x°M _ swplxi||*/2 (update Xx),

or what may be easier to implement as a circuit,

Faoeked = - s7/2 + ||x° — x|12/2 + ||w - VE[x]]]*/2
(initidize s, x°'; find gradient w) 18
® Blx + sw] (line minimization) (18)
@ llx — x4 — sw||*/2 (update x).

Furthermore, clocked objective functions make new algebraic transformations possible. For ex-
ample, equation ( 11) may be implemented for X-expressions (assuming only that we can implement
it for O/l-valued variables) by introducing new variables 1 as follows:

E[X{ﬂ(é)}]ﬂz [ m(m(€) —1/2) + ¢0/1(7li)]&)E[x{1]}]. (19)
i
Here #0/1 is a two-sided barrier function which limits its argument to values between zero and one.

214 Experiments

The clocked objective function notation has been used to derive and express a number of experi-
mentally validated relaxation-based neural networks, including networks for multiscale image seg-
mentation [1'si97), visual pose estimation [LM94], point matching [GI-R+95], and invariant learning
of point-set and graph models of visual objects [RGM96]. In these applications, the problem vari-
ables were divided into an exhaustive collection of subsets each of which received an exclusive clock
phase. During the clock phase for any subset of the variables, al other variables were clamped and
the optimization of the free subset was relatively easy or even analytically solvable. This situation
is described by equation (3), which may be rewritten as a clocked objective function using (13). It
occurs sufficiently often that we provide another notation for it:

E(/\’lfmc, Xzfrec’ B ‘{—V};ree)e) = @ ],)[Ar(greclxglxed] — Z b (t)E[A'Ct;reel(X-gxed] (20)
a

«a

2.1.5 Clocked Circuits

Clocked abjective functions can aso be used to specify circuits a the analog level. The simplest
way to do this is to assign to each clock phase the dynamics of an analog neural network in which
some variables have been clamped. The clamping is under the control of the clock signals and/or
other variables. That is the effect of equation (6), either under the original definition of clocked
objective (5) or under the more powerful and convenient notation defined in equations (8), (11),
and (1 3); it is aso a basic idea behind the design of clocked pipelines of combinatorial logic in the
data paths of simple CPU chips [MCB80] where clamping is determined only by the clock signals.
We take it as clear, then, that such clocked objective functions can be implemented as analog
circuits provided that each phase can be so implemented, and provided that the objective includes
# expressions (cf. (3)) but does not include z{y} expressions (cf. (8)). For example, the line
minimization clocked objective of equation (18) can be implemented this way, as can the multiscale
optimization objective found in [MGM91].

In the next subsection wc show another such example: a clocked objective function which
incorporates one or more general feed-forward ncural networks inside a relaxation-based neural
net, in a hybrid that may be of usc for combining relatively efficient learning algorithms (from
feed-forward nets) wit i expressive power (from relaxation nets).

{.ater, we will discuss a set of applications that require the more powerful » {y}unotation, without
speculating on the hidden circuit- level implementation of the switching mechanism. Thus the



problem of eliminating x{y} expressionsin favor of r expressions remains for future work;it is
related to the “neural network routing problemn” discussed in [MG90], section 2.6. A further open
problem is to replace global clock signals in a Lagrangian circuit formulation with a system of
self- timed subcircuits in which the ¢, cont rol functjons arc replaced by relatively local variables
with independent dynamics. Solutions to analogous problems are implicit in the design of many
distributed computer systems but not within a circuit-level Lagrangian framework. The »{y}
notation represents a substantial escalation in expressive power, and section 4 is devoted to some
of its uses in designing computational attention mechanists.

2.1.6 Feed-Forward Networks as Constraint Projection

A feed-forward network inside of a relaxation network can be regarded as a set of constraints on
the relaxation network:

Epp/retax[X] = Fretax[x th« v 7V g, (21)
t (layers)

where F'F' is the functional dependency constraint of a layer's output neurons on its input neurons
(here taken to be in the previous layer, though neurons in any previous layer may be inputs
without causing problems for the following agorithm). Various methods are available for enforcing
constraints within a neural network optimization [PB87,MG90,PS89], but the feed-forward network
constraints have a natural ordering determined by the feed-forward pattern of connections. So
in this special-case we can use a nonlinear projection method to enforce al the constraints. As
mentioned in section 2.3.1 of Part |, related algorithms are discussed in [BT'89], for example, under
the name of “gradient projection algorithms’ or “scaled gradient projection agorithms’.

Any incremental relaxation of the objective Frelax is followed by a series of projections which
reestablish the feed-forward constraints, layer by layer (i.e. from earlier to later neurons in the
feed-forward neuron order), in preparation for further relaxation. The clocked objective is

EFF—projection[ @ { Z { - vl L 7;1_1 _; ! + ¢’:(v£)}} @ Hrf'lax[x]' (22)
I (layers) i

Note the especialy simple form of each layer's objective:

Z ~v'Z7z“ (o) p - 23)

Every neuron v} in layer 1 is independent of every other in this objective, and the minimization of
this objective is best achieved just by assigning values to all layer-l variables in parallel:

Z’],J ;7). where g7 L) = ¢l(v). (24)

This is the projection operation which immediately enforces the layer-{ constraints. Later layers
projection operations do not disrupt earlier ones. So, at the beginning of the relaxation phase of
every cycle, al the FI* constraints will have been consistently satisfied.

3 FOCUS OF ATTENTION THEORY

A particular kind of clocked objective function formalizes the idea of a computational focus
of attention. We will derive this clocked objective by first considering the functionality and cost
terms of a coarse-scale greedy Lagrangian, and then developing the associated fine-scale greedy
Lagrangian which specifies circuit-level dynamics,

3.1 Formulation of the Lagrangian at the Coarse Scale

Let X be a set of discrete-valued variables which determine, directly or indirectly, which components
of the neuron vector v are actively updated at any given titne. In other words, X determines a



characteristic function m(x) for the focus of attention or active set of v;’s. 'Thus

r(x) = 1if v is active, i.e. inthe focus of attention, o5
! 0 otherwise, (25)
with

domlx) =, (26)

1

For example, we could have as many components of X as of v and set 7 (X) = Xi-Or instead, we
could introduce a partition of the components of v into blocksindexed by cc, with a 0/1 partition
matrix Bia; this is a form of aggregation applied to x. (For now we will take n to be constant,
though a variable n is sometimes useful ) Then we would have one component of x to switch each
block of the partition, and 7i(x) = ?_, BiaXa- (That is, a variable v; isin the focus of attention if
and onlyif its course-scale block ais in the focus of attention as determinedby x4.) Usually m;(x)
can be made linear in X-

Regardless of the actual formula for mi(Xx), there will be some sparseness constraint on X to
ensure that only a small fraction of the neurons v are in the focus of attention at any one time.
For example one might impose Y, m;(x) = n, where n is the optimal size of the focus of attention
(and n<< N = the total number of neurons vi). In the case of a partition matrix 3 with blocks of
roughly equal size b (so 2_; Bian b), the sparseness constraint would become 2 aXa= n/b.

Whatever the sparseness constraint on X is, we will express it as a summand ®(x) in an
objective function. & may be a penaty function, a barrier function, a Lagrange multiplier times
the constraint, orsomecornbinatio nof these possibilities. Thus, we could choose froma variety of
“k-winner” objective functions (k winners allowedin a competitive group ). Assuming ®(x) = ®(e)
where e=37,mi(X)— n, we can enforce or at least favor satisfaction of the constraint e < O with

(c/2)e? (a penalty term), or
Ae + cue — (¢/2)o? (Lagrange multiplier+ effective penalty [MG90],
with ¢ an appropriate auxiliary variable), or
Pe) = cfcoog(x)dr g monotonic and odd (a barrier term), or @

eo —fn"]ing(y) 9 V(z)dx, (effective barrier, linear in e),

Stricter sparseness terms are also perimissible, such as a sum of many k-winner terms on different
sets of variables. And for a variable-size focus of attention, in which 71 is variable, one would also
need a cost term for n.

All components of v will be assumed to take continuous values, even if they are ultimately
supposed to converge to discrete values, Then the coarse-time-scale update rule implied by the
action S will be of the form

V= vi(v,X)- (28)
For example
vl v = m(x)Gi(v), (29)
where G is the cumulative effect determined by the fine-scale dynamics within an active-v clock
phase. ‘I'his update rule is to be derived from the greedy variation of a multiphase dynamical
objective of the form

s= Y ww= Y St + F0)], ()

coarse Scale t| Zu ['azoe coarse-V,
. a
decision timest, coarse-X
[/cycle > 0

where v, is defined as in section 2.1. The principle feature of equation (30) isthat it has two cloclc
phases, one during which the v variables are free to move and the X variables are clamped, and
one in which the roles are reversed, During the active-x phase the focus of attention is determined
for the next active-v phase of the cycle.

Notice also that we have assumed a simple stopping criterion, 3" 1, < 0, which means that
the coarse-scale dyuarnics continues only as long as its benefits (decrease in £) outweigh the costs
(given by C'), and this decision is made at the end of each complete cycle. We must now find
suitable functions Ceo arse—v, Fcoarse-v, Ccoarse— v, an’c f'eoarse—x -



3.2 Coarse-Scale I

To find the £ terms, we must decom pose Frotal= A F into asum of roars(~-scale causalterims. We
would like Feparse 10 measure the improvement in /2 due to choosing a configuration x and then
updating v accordingly:

["(t) = I'coarse—v + 1”{30&‘5(‘—\ = E[Vl(vy X)] - [9‘["] + (I)(X) (31)

How can wc decompose this combined effect of v and X into separate /' terms for each coarse-scale
decision? As previously mentioned, the difficulty is that the coarse-scale decision step which chooses
values for X cannot be made simultaneously with the decision of v values whose presence inthe
focus of attention is determined by that particular X- One obvious way to accomplish this is to
stage alternating coarse-scale decision phases, updating the two sets of variables, each based on the
most recent value of the other: ) (

X x(Xv

voo= v’(v,x’)). (32)

Then, to decompose Fy + F\, = E[v'] - E[v], we may interpose some especialy low cost estimate
v of v’ which could even be computed anaytically given any candidate X"

Fcoarscx'[x’ v] = E[G(V, Xl)] - E[V] + q)(X) (33)

Feoarse v’[Vllvy X'’ ] ; E[VIIX’] ’ E[‘?(V) XI)Ivv XI]~
The optima of these two expressions with respect to their free arguments then determine the
functions in equation (32). Note that Feoarsev' V] - ..] is independent oft, though the constant
E[v(v,x")] is subtracted off to satisfy equation (31).

The F functions of equation (33) may be understood in the terminology of section 2.1.1 as acon-
trol term (A E)ea[x|V] = E[V(v,x')] - E[v], a transient term ®(X), and a subspace term E[v'|x'].
However, the subspace term is carefully normalized by subtracting the constant E[v(v,x’})]in order
to apportion credit for a given AE (equation (31)) between the X and v phases of the dynamics.
By equations (9) and (25), the subspace term E[v’|x’'] may be written as E[v'{w(x)}]. So the
objective function of equation (33) is equivalent to the clocked objective function

Fatten = (AE)est[xIV] + @(x) @ E[v{m(x)}). (34)

It remains to specify the parameterization 7(X) of the focus of attention, the cost ®(x) for a given
focus of attention, and the estimation formula for the AF that would accrue from a given focus of
attention 7(x)-Fach can be specified in a variety of ways. ®(x) may be a k-winner constraint.
Also the estimation formula (A E)est may be meta-optimized to provide more accurate estimations
as judged by their effect on the performance of the attention algorithm.

In summary, once we are given the function v(v,X’)and the cost terms C, there is a Lagrangian
(the sum of cost and functionality terms) and an associated optimization principle (§gL = O, asin
section 2.2 of Part 1) that determines the discrete-time dynamics of v and X-The action is given
by (30) for S and (33) for F'.

3.2.1 Criteria for Estimating the Effects of a Focus

It remains to find suitable expressions or dynamics for v(v,X')- These have the function of es-
timating the influence of alternative X vectors (hence of different foci of attention) on v without
actually performing the minimization of Feoarsev V] V. Khis problem is closely analogous to
the recta-optimization problem posed in section 3.2 of Part | . ‘I"here we sought a functional form
K (v, v) for the kinetic energy which resulted in the “optimal” dynamical system, where optimality
was defined to depend on behavior in many different trials of the network. Likewise we must first
define meta-optimality and then seek it, in the determination of a formula for v which will be used
in many different trials of the network.

For any such functional v, the required network computation must be very inerpensive compared
to that of v’ for this reason: the cost of optimizing Feoarse y IS €xpected to be some large number
of fine-scale iterations times the cost of finding v and is to be added to (and therefore balanced
with) the cost of finding v’,



As always we must weigh functionality against cost. What makes an estimator v{v, X') effective?
For asingle neuralnetwork trajectory, the obvious choice is to consider the Vfunction effective to the
extentthat the resulting v(¢) trajectory ininimizestheaction.Sin (30). After al, thelagrangian
already containsthe correct balance of cost and benefit terins for judging the v dynamics, complete
with a stopping criterion. The only remaining question is how to aggregate overinany trials of
the network which share the same formula for v, i.e many starting points, inputs, and possibly
connection matrices. One could attempt a worst-case analysis as in the determinat ion of A'(v, v),
but we have not succceded in that, Alternatively we consider an average case measure of action,
averaged just over some probability distribution on starting points.

We have aready proposed a recta-objective, (35), for this type of problem, Here we are averaging
over starting points (and perhaps also over inputs £ and connection matrices 1'):

[)
MEI=(S) = 3 B0) A~ 3 v (0) = My (33)
HL(t)>0 V(o) P=1tL(t)20

where {VP(0)} are £ starting points sampled from the same random distribution over initial con-
ditions.

Generally, predictive accuracy in v is rewarded by this objective because of the term E[v'|x']
in (33): xis optimized for F[V (v, X)] and then used as a constraint in optimizing E{v'|x'] with
respect to v'.

The sampling procedure converts the infinite sum into a computable and optimizable quan-
tity M, at the expense of introducing a learning and generalization problem. Asin theoretical
approaches to learning [Vap82, BH89], we must ensure a sample size suflicient not only to approxi-
mate the infinite sum, but to continue to do so even after the sampled objective has been optimized
(by tuning V) to that particular sample (so that it is no longer a random sample of the infinite
sum). In this way, a nontrivial predictive learning problem enters into the design of the switched
neural network dynamics.

M may also be regarded as an average over dl configurations along a trajectory, rather than
just over the starting points, since every decision point along the trajectory contributes to the
summed action. But to do this we must define a suitable probability distribution of configurations,
and the distribution itself is a function of +. This may limit its usefulness for simplifying the
objective.

The connection between the optimization of v and a learning problem demonstrates one ad-
vantage of the derivation in section 3.2 of Part | of optima kinetic energy terms from a worst-case
meta-objective (equation (60) in Part 1) rather than an average-case meta-objective (equation
(35)): by this means analysis could be substituted for a large and (in general) recurring training
computation.

3.2.2 Candidate v Estimators

We now present severa possible forms for G(v,x), which are to be optimized and evaluated accord-
ing to the criteria of the previous section. In the simplest form, v isto be computed by hypothesizing
a small, constant time At between course scale decisions, during which v and therefore E[v] change

according to Taylor’s formula: y
v
~,' =, - At -
0] v; 4 aT (36)
(cf. (29)) where .= { ¢y (t)dtas in Figure 2.1.
We may aso introduce, for each variable vi, a hypothetical time axis 7; which increases linearly
with real time ¢ when neuron vi is in the focus of attention (eguivalently, when ¢, (t) = 1 and x

adlows vi to be actively updated, i.c. when ¥v(t)mi{x} = 1) and stays constant otherwise. So

ni(t) = /dh/’v(t)m(x), and dri/dry = m{x). (37)
Then
0’j,1g.‘/l‘r~l
v = v; + Al (38)

drndry



and

Ev(v,x")] = £[v] + ®(x)
(AF)est[x]v] + ¢(x),

Feoarse-v! [XIV]

(39)

fen

where 91 du d
Y dv; dT;
(AE)esL[XIV] = At Z ('h'—‘ _‘"> [V(tbcginning of v phase)lX]' (40)

Av; dry dry

We introduce the useful quantity

. _OFdu
Biv =50 (41)
which for Hopfield/Grossberg dynamics becomes (cf. equation (30) of Part 1)
. I ‘ .
Eilv] = —gilg7  (w)) <a‘> = —gi(w)(£,)%, (42)

first proposed as an objective function for driving a focus of attention in [Mjo87]. With these
definitions, (AFE)est becomes

(AE)ealxIv] = A1) mi(x)Ealv] + ¢(x), (43)

and the associated v becomes, from (38),
Dy = v; + Atmi(x)i, (44)

where now vi = dv; /d7; and v will take bounded values determined by the v-phase Lagrangian.

‘I'he optimizing parameter here (for the prediction objective M) is At, which will also enter
into the coarse-scale cost term, since the cost of switching can be amortized only over the time
At. Note that the variables x, are ill discrete, and the cost of partly or completely minimizing
Feoarse y» depends on the relation between mi(X) and xa to be specified.

Naturally the partial relaxation cost associated with 7i(x) will only increase if we take the
natural step of expanding v and F' to second order in At. One good reason for doing this second-
order expansion is that the optimal At will not be small if switching costs are sufficiently high,
so a second order approximation may be more accurate. The second-order expansion proceeds as
before:

U = v + Atmi(x)v; + A; mi(x)v; (45)
and At?
(AE)en[xIV] = At Do mx) Elv) + == 3 W00 mi(x) By v] + $(x), (46)

ij

where E.i has been defined in equation (43) and where F;j[v]isthe quadratic form given by

) O*FE
Eﬁj[v] = (9T,' Tj
0*E dy; _a:vj OF d*v; (47)

Svyvj dry dT; Y du; drf
= FEyvivy + 0 B v

For example under Hopfield/Grossberg dynamics, £,i; can be caculated as

o , oy gr)
T Eslv] :gl(ui)g’(uj)F’,iE,J'E,fj+éijgl(“i)F’,i(zk:gl(uk)ﬁ,ik + g,(u:)(h,.i)2 (48)

Because mi(x)? = mi(x), any diagonal terms in the quadratic form Zij Eaimi(x)mi(x) (cl. (46)),
in particular all those terms with di; factors as in (48), canbe absorbed into the m-linear part of
Froarse v+ FOr example, in a quadratic neural net objective E[v) = —(1/2)2_:;1i;v: vi 2o hivi +
22 ¢(vi), the coefficient of the quadratic form for y could be taken as

[;J;,-J- (vl = ~Tij9" (wi)g' (w3) 23 F . (49)



In this case the m-quadratic part of (46) becomes

(AE)cstimate—qua(lratic = Z 7|'l ‘l u; )'] (UJ )[’ il J 1'] ’ (50)

and a corresponding connection matrix would have the opposite sign.

The essentia ncw feature of objective (46) is thatit involves quadratic infraction.s between the
X expressions corresponding to different neurons This introduces a nontrivial scheduling problem as
part of the determination of the next focus of attention: separate neurons must not only be capable
of making progress individually, but also those neurons likely to cooperate should be scheduled into
the same focus of attention. This point will be elaborated in section 4.2.

3.23 Cost Terms

At the coarse scale, the cost of one cycle of computation is the cost of running the v network for
timme At,, plus the cost of switching to the X network, plus the cost of running the x network for
aperiod At, plus the cost of switching back to the v network to start the next cycle.

These considerations may be expressed in the following cost terms for a coarse-scale clocked

Lagrangian:
Goarse-v - Uswitch + Nij(n)Aty + Clamp(Ax, {Aviln,(x):ﬂ}) (51)

and
Ceoarse-x = Clwitch + N,y (n)Aty + Clamp(Av), (52)
where “Clamp” is a penalty or barrier function which enforces the constancy of v or x as needed.
Both of the cost terms here are constant if we regard n, A¢y,and At as constant within a run,
although in that case the constant values of the n and the At’s probably should be chosen by a meta-
optimization procedure using the same action, averaged over many trials, as the meta-objective.
Such a meta-optimization procedure could also be generalized to produce a simple rule, rather
than a constant value, for each At and for 71; when such a rule produces the result At, = At,= O,
the computation stops, In that way the cornrnon problem of choosing a stopping criterion, as well
as the more specialized problem of switching between optimization of v and of X, fal naturaly in

the purview of meta-optimization. Of course such a rule could be given in the form of a Lagrangian
for At., or equivaently for ., but we will not pursue this case here.

3.3 L. at the Fine Scale

Since the v are analog variables, finding fine-scale C' and F terms which act to minimize the
coarse-scale ones is now easy. We proceed as in sections 2.1.2 of Part | and 3 of Part |, except
that the Lagrangian functional of equation (22) in Part 1 is generalized to integrate each variable
v; according to its own internal time variable 7i= [, (t)mi(x)(t)dt as in Figure I:

(1) dv, oF dv.
Sty = Z / dr; <1&[ v;] + Bor dr. (53)

We may convert this into an integral of a single Lagrangian over a single time variable by using
the formula for 7 and the fact that ¥ (¢) and m:(x)(t ) are each approximately zero or one almost

al the time:
dr; dv; OF dv;
(1) _ 2 : i LA ik
'Sﬁne—v - /dt < dr; ,‘U,] + Ov; dT,‘)

dT, dU{ aE dU{
/dzZ( < f’”‘]+27—u£?i'r_.->
(l‘r, dv; OF dv; dry
/(llzwv (t)mi(x) < [dT ]+—((K;i7—|_(}t_)

dv; dy OF dv;
/dtwv( er.(x ( [1T dt’ ']+5v7-67>

(using K [0, v] = 0 and dry/dt = 0 or 1)

/([{d!v([) (Z 7i(x) dU 1+ Z gf (lU,) ‘

i

Q

(54)
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But this is not quite the whole fine-scale Lagrangian for the active-v clock phase,becanse of t he
coarse cost tertns of equation (51 ). The “Cllamp™ terms may be refined by adding appropriate
cost-of-movement terms K[, r] (where A is minimal at # = 0) for each of the clamped variables:

: 1; _
Sfine-y = /dtu’w(t) ( > N[, 2]+ }:(1 - n,.(x))z\'[‘-d«‘r, ,,‘]> (55)

all non-v variables »

Adding S and S together, we get the part of the action that pertains to the active-v phase:

e 6[‘)([ i
Shine-v = /dtv/rv(t) ( Z K[z, 2]+ Zm(x)%%) (56)

all-+zriables

Comparing this action to the Lagrangian in equation (6), we see that the fine-scale dynamics is that
of a clocked objective function governed by the focus of attention characteristic function mi(x)-
Note that, as far as the Lagrangian is concerned, this refinement amounts to an algebraic

substitution

bt G4 PV = w0 1\’[m1+2m(x)§§m), 57)

. 1
al variables r

which is justified since at the end of a coarse-scae step, F is just a constant starting value plus a
coarse-scale change Acoarsef',and the coarse-scale change is equal to a sum of fine-scale changes
[ dt32;(0F/8vi)vi. Also, the K terms for the clamped variables (some viand al other variables)
serve as pendty terms which, in the absence of other = terms, enforce 2 = O when ¢, = 1 and
thereby refine the “Clamp” terms of C,.

The hard part of refining a focus-of-attention Lagrangianis to find fine-scale C and F' terms for
the variable-z phase, because our coarse-scale terins assume discrete-valued X variables and the
previous refinement techniques don't apply to that case. Indeed, a general, N variable, discrete-
valued optimization may be the goal of the entire neural computation (at the coarsest time scae
of al) so we surely can't assume that much capability at the tine time scale. On the other hand we
have already accepted an approxitnation in Feoarse-x ON the grounds that it is not global convergence
but merely the order of neural updates that is at stake. Additional simplifying approximations may
also be acceptable if optimized through training and verified through testing.

Unless Feoarse-y 1S linear in xa, (for example by being linear in At with mi(x) linear in x), this
F is a nonlinear objective which will require many steps of analog relaxation dynamics, implying an
uncertain time to convergence to a nearly discrete- valued X- Since we only have an intermediate,
fixed time At available for relaxation, some additional mechanism will be required to find discrete
values for X after a possibly incomplete analog optimization of F[£], where £, are continuous-valued
versions of Xa-

3.31 Two Phases of Switching

The computational savings we seek accrues through the actual switching from one active set of
neurons to the next. For switching to occur, however, we need a “digital restoration phase” in
which the X variables are restored to definite 0/1 values. This phase could be left implicit in our
modeling, as part of the unspecified switching hardware, but then we would be unable to analyze
possible failures of the mechanism such as too little time to converge to discrete values, or too many
mi(x)=1. By contrast it is easy to leave purely digital circuit switching details unspecified, since
accumulated experience makes it relatively easy to engineer such circuit mechanisins outside of our
methodology. We will however explicitly model a third phase, in which analog variables x. are
restored to nearly discrete values y,, as close to O or 1 as any physical circuit quantity ever gets.

Then we will have a global cycle through oue phase that relaxes the analog v variables and two
phases that optimize the discrete 0/1X variables by first optimizing analog variables £ and then
restoring them to nearly discrete values xy which can substitute for actual discrete values Xiu any
circuit implementation. Of course in a digital implementation medium (such as a general-purpose
software environ ment)which exists as an abstraction of some analog physical system, one should
instead move directly from £ to X-



With this addition the fine-scale Lagrangian becomes
Liine ~ > KE DD dalt) > o (63)
i ‘ : 0%
al variablesr phases o a-variables x,,

which, as we showed with equation (6), is exactly the Lagrangian corresponding to a clocked
objective function

Frge = O () Ealxa] ] = B FalXa Xs2a)- (64)
a @

More particularly (substituting from equations (57) and (60)) we get the clocked objective function
for three-phase attentive dynamics:

ES-phase - Zﬂ'i[f]l"’;i[‘?] + @ <Z 71’,‘(6) - “>+ Z¢0/1(£a) (control te”“S)

b - ZXu(éa' 0) + Zd’()/l(,\h) | (transient terins)
& L[vt{lﬂ'(x)}] ’ (subspace term)

(65)

This clocked objective function for a focus of attention is a more elaborated version of equation
(34). Note that, from equation (57), we have

AENv{=(x)}] _ _, |OF _ OF

o = Mg =m)gs (66)
which is the essential feature of a clocked objective function, as derived in (5).

Various special case expressions for i (X) will be explored in the next section. In the result-

ing networks we will often omit the digital resetting phase for a simple kWTA network, on the
understanding that it should be restored as part of an analog circuit design.

4 APPLICATIONS TO COMPUTATIONAL
ATTENTION

Here we present several possible applications of the forgoing computational attention mecha-
nisms and notation. The first two (sections 4.1and 4.2) have been employed to good effect in [T'si97]
where substantial savings in computational cost are documented. The rest of the applications below
may be considered as design examples.

4.1 Priority Queue Attention

The simplest possible expression for 7i{X) is the identity function, in which each variable v: has its
own attention indicator Xi:

mi(x)=xi€ {O, 1}, where Y _xi=n << N. (67)

We have previously reported on this case in [MM91]. “i’he objective function for X would be
transformed into a clocked objective, as in (30) (again using the notation of section 2. 1.3):

E[v] - (kWTA(x. n) o+ Do E;-’[V]) @ Elv{x}]- (68)
|

This representation of 7i(X) looks expensive, since any savings obtained by leaving most #: ‘sout of
the focus of attention could be lost by updating all the xi variables each iteration. From equation
(65) this update would also require computing k; for every #,n the focus or not. But in fact £2:
is unchanged unless wv; is in the focus of attention, or has a network neighbor in the focus; so for
efficiency we can store this gradient information in a variable wiwhich is only updated in those



These considerations can be formal ized as a slight modification of the Lagrangian transformation
point of view used in section 2.1 of Part1to derive a fine-scale Lagrangian for V. Now we are required
to partially opt imize an objective fcoarse-y [X]V], while guaranteeing the discreteness of X We will
adapt the same three transformations as before.  Pirst we switch from discrete to constrained
continuous optimization, accomplished in two successive phases using clocked objective function
notation (2. 1):

Ix(t) Cx + Fx]+ (I’(L TF:'(X)")l - Pell)

2: Kz, z]+ F[& + ¢(Z mi(€) — n)}
[

all variables x i

ma[ S K+ Y el -0)]

all variables z J
(58)
where &i¢ [0, 1], Xi€ [0, 1], 0 is a threshold, and @ isa sparseness term such as those of equation
(27). Second, replace al constraints with penaty functions added to the objectives:

FE] o5 Ex-optl€] = F[E] + P02 m(€) n)+ 3, ¢(&),
Za i/a(ﬁa i 0) + IQ‘restore{i] = Za Xla(sa - 0) + Za ¢()2a)

Here the threshold ¢ is usualy taken to be 1/2, but other values may be used if the analog x
dynamics would thereby be sped up without losing accuracy. Also £(i)=mi(§),as in equation (25).
Note that the objective Frestore[X] is especialy well-behaved among those wc have considered, since
the only way a large condition number or delay can arise is through the potential terms. The third
transformation is to refine these coarse-scale objectives, and the usua volumetric cost terms, into
fine-scale Lagrangians (cf. (57)):

Ce + Fle] + E¢(§a) Y Z K[, r]+V€[l"[€] + d)(z n +E¢ (€a ]
a all variables ¢
CX + Za i'a(Ea - 0) ¢ Za d’(*a)—) Al Z 1 .’l‘ +V [Z)m (¥ +- Z(f) X“ ]
variables x
(60)

These two Lagrangians, along with the usua one for v, must be reassembled into a full three-phase
Lagrangian by multiplying by nonoverlapping clocks 14 (t) and summing over o as in section 2.1,
that is the only way to express the action as a sum over agorithm time ¢ (some [ -dt or some 3, ")
rather than over the intra-phase time variables 7.

(59)

3.3.2 Complete Multiphase Dynamics

We now have a 3-phase dynamics. First, choose the focus of attention using analog X variables so
as to optimize their estimated effect on AF subject to resource limitations. Second, discretize x.
I'bird, relax E[v|x], using the chosen focus of attention. The analog X phase includes a global -
winner constraint for 7(x)- We will assemble the previously derived fine-scale cost and functionality
terms for this net into an action functional and an associated clocked objective function.

Adding the partial Lagrangians of equations (57) and (60), we get a preliminary Lagrangian

. ( " — I Ea
Lne= Y. d}a(tt > Kéa] . (_ﬂx X (61)
(e S ated }

phases « all variables r o-variables, x4

This Lagrangian presents a problem for times t between a-phases, when ), #(t) = O, because
at such times no dynamics is specified. The desired dynamics between phases is that all variables
should be clamped. This can be ensured by adding a penalty term for movement of any variable
between phases, in the form of a kinetic energy term K':

jlcxtra = (1 - Z 1/’0(”) Z [\'[i‘v I]‘ (62)

all variables r

Note that in physics, a Lagrangian consisting only of a kinetic energy terin corresponds to a particle
moving along a geodesic such as a straight line (# = O), whereas here it corresponds to a variable
clamped to a particular value.



circumstances. Also, the n-winner circuit canbeimplemented digitally as anincremental priority
queue of Wivalues. SO the clocked objective function becotnes

Faquene = Z (w,-{start, + i+ Z Nbr;jxj} - IJI,-[\}']>~/2 (transient terins)
i J
b sLa,rLl‘/‘z + Z Nit; + @ (Z Xi - n) + }_: ¢o/1(xi) (transient + control terms)
o Elv{x}] (subspace terms)

(69)
Here “start” is initialized tounity and almost immediately changed to zero (in the second phase of
the first clock cycle), and Nbr;; is a constant 0/1 matrix recording whether neurons v: and v; are
adjacent in the network or not:

0 |fmax](?; v]|=

Nbr,= re. if maxv()d)”(v D+ 17351« Yo ikl =0; (70)
{1 otherwise.
Note that at the end of the first phase,w; = —F;[V]. That’s because (a) in the first cycle,

start; = 1, and every variable w; is initialized to —¥,; and (b) in subsequent cycles, either w; is
again set to the proper value, or else Xi = O and} Nbr;;x; = O. In the latter case we know that
w; is unchanged from the previous cycle (since it is only changed in the first phase of any cycle),

and also that £ is unchanged from the previous cycle because it is unchanged by the dynamics of

FElv{x}]’s relaxation:
d /OF -
- Z(au, (a ))’
d

if&'-.‘
R (- k) s ke,

dt

Ov; dv; dv; dt
—~ O’ dvjdrj\/. OF . dv; dr; OF ‘.
- ( 7 E‘)v;(’ivj g‘l?}lT) (h 3) g K w) o dr, dl 6U. (71)
~| 08 | fdvify | 9 dv, oK
R Ll BTN PR
- (214 f)vj(%] I dry ) k ov; " X Ov;

= O (since Xi + Z Nbrijx;= O).
J
So throughout the second phase when X is being determined, @; =—£;([v].

Also note that in accordance with the definition in equation ( 11), the expression that controls the
clamping of a variable such aswi is implicitly held constant and need not be explicitly clamped.
Only the second phase of equation (69) above has O(N) variables, and it can be replaced by
a priority queue data structure with update cost O(n 10§ N + ¢N), where k depends on digita
hardware details and where ¢ <<1 reflects the cost of storing w; in inactive memory for future use,
presumed to be relatively small.

Equation (69) assumnes that n is constant. This assumption may be removed, if the coarse-scale
cost of each nis modeled explicitly as mentioned in section 3.2.3. 1o a first approximation we
may take the cost of a focus of attention to be proportional to its size, n, and ignore the effects of
various different border shapes on the actual cost (these effects would tend to favor a focus with
asmall-boundary.) But what should the proportionality factor be between cost and benefit (AE)
terms? To get sensible results we'll answer this question in an ad hoc way, not (yet) derived from
fundamental considerations. Suppose that the cost of updating a neuron is dominated, not by space
and time costs, but by the A E benefit foregone by not saving those same space-time resources to
update some other neuron in the following iteration. To estimate that cost, per focal neuron, we
multiply the average available A per neuron by a constant f which must be meta-optimized.
Thenwe have the following functionality expression.

Flx,n) = Z\,ni 14+ kWTA(x, n) + %Z[[o';,-[v]|+¢o/l(n/N). (72)



Optimizing this I’ may be achieved by (a) sortingiaccording to £4, for exampleincrementally with
a priority quene data structure, and (b) turning on all\i for which |k ,|/(N 'S Ei[v])) > f.
The focus of attention then consists of neurons whose single-neuron estimated contribution to A/
is more than ftimesthe average; it canrange fromnone to al of theneurons. The potential
function ¢g;1(n/N)can aso be chosenso that the minimumn focus size is oue, rat her thannone, of
the neurons.

The focus of attention equation (67) provides maximal flexibility, since any subset of nout of
N neurons in the network canbeinthe focus at one time. however, efficiency requires a hidden
priority queue representation of m(x), so that x can be represented with only a marginal increment
of space to encode this focus over that required by the n actual neurons in the focus at any time.

Generally such a representation is based on the binary addressing capabilities of a general-

) . . . N
purpose computer. In fact the number of hits required in X to specify such a focus is log, ( 7Ly

For large N and << N, this is approximately nlog, N bits. \Ve can easily encode x with this
many bits, for example using the binary addresses of the n neurons in the unrestricted focus of
attention. (Other efficient addressing schemes, such as Gray codes, would work teo.)In radix (e.g.
binary) notation for whichi ==i,...4:

1
= YT 6% (s ®) (73)

a b=1

(where Xab are binary-valued and §% is the Kronecker delta), or equivalently,

ZH\“’”“ with Zkabw: . (74)

a b=1

If such a representation is substituted directly into a neural network objective function, rather
than used in a hidden digital implementation of a stereotyped objective function such as the priority
queue, then we get relatively intractable high-order objectives for X (see (MG90] for an example
of a sorting network using a similar high-order representation). Until this problem is solved by
expressing some specia- or general-purpose addressing and communication algorithms with simple
clocked objective functions, we must appea to non-neural switching circuits as necessary, taking
care to estimate their costs. The clocked objective with brace notation v{x} still specifies the use
we make of such switching hardware, and would remain a useful notation even if we knew how to
eliminate it in terms of clocked objectives without brace notation.

4.2 Multiscale Attention

The 7 (X) = Xi representation of a focus of attention has the disadvantages of requiring a hidden,
digital implementation (e.g. a priority queue) in order to be efficient, ancl of alowing foci without
any coherent structure that might decrease the number of border neurons that are outside the
focus but involved in the computational decision to move the focus, Both of these problems may be
eliminated by restricting the focus of attention to a choice of one or severa blocks of neurons, from
afixed partition of all the neurons into equal-sized blocks with low connectivity between the Mocks.
An example of such a partition would be the division of the 2-d grid of the region-segimentation
network (equation (19) in Part 1) into A << N uuiform rectangular sub-grids. Any such partition
can be represented by a sparse, non-square 0/1 matrix B for which 3, Bia== 1. Given such
a partition, only one focus indication neuron Xa is needed for each blocka€ {1, .... A << N},
rather than one per neuron index i€ {1, .. .. N}. Inreturn for increased efficiency in the attention
mechanism as compared with the previous case, one gives up flexibility in the shape of the focus of
attention. Some of that flexibility can be reacquired by generalizing the partition scheme described
below to many levels in a recursive algorithm.

For a single level of partitioning, in which neurons v; are grouped into fixed blocks @ which enter
or leave the focus together according to indicator neurons xa,

= Z”ia/\ay (75)



where I3 1S the constant partition matrix.

We could just substitute this expression for \i (or 7i(x))into equation (69) (or (65)),inwhich
case the most active blocks of the partition /3 wouldbe the focus of attention. Attention would
be a very affordable computation, a k-wi[lncr-take-all (kW T'A)network. One clocked objective is

stimply
Fylock = 9. Xa D BiaFilV]+@ (Z Xa — "(A/N)> + Y dos1(xa)

@ E[V{Z BiaXa}l

which can again be improved by storing ;i as wi, to be recalculated only as necessary, and which
can be further improved by storing w,=73_,; Biawi.

But here we will push the method a little farther, by choosing the 4 blocks not only based
on their internal gradients but also on their predicted synergies with each other. The synergy is
predicted by using the second order expansion for £, equation (46), which may be affordable now
that we have only A focus-control neurons:

(76)

Q(d E
2 dT"

B = A (o) vt + (Bx}). o

Then the clocked objective analogous to (69) is

s = 3 (sfoton s 3 o+ Y20} - ) 71
+§: (u»,]{start + Z o + Bja)Xa + Z (Nbrie + Nbric)xe } = il ) /2
3 E (wa{start + Xa+ ZNbrabxb} ZBmw )12
+aZ (war{start + xa+ xo + ): (Nbrae + Nbree)xe } - Z B,afx,,,w,,> /2

139 start?/2 + Z{awa — ATV Zfafbwab + @ <Z o — nf A/N)) +- L d)o/l(fa

& - Z NaXa + P (Z Na — n(A/N) ) + Zcﬁon a)
&b —ZXa Ta "0 +Z¢0/1(Xu
[$3] E[V{Z BmXa

(78)
where we have introduced constant sparse matrices
Nbriy = ©( D7 BjeNbryj - 1/2) (79)
J
ant]
Nbres = O 3 BiaBjNbry; — 1/2). (80)

LN

In (78), as in its prototype (46), the main departure from other clocked objective functions for
attention is the quadratic objective function for £ which expresses a nontrivial scheduling problem:
which & neuron-blocks should be active simultaneously in order to maximize the expected sum of
single-block and block-pair contributions to |A E{? This quadratic optimization could be as hard as
the original optimization problem E, were it not for the fact that it involves far fewer variables &,.
So it is crucial to have a separate restoration phase for X in case the £ analog scheduling optimization
does not finish within its clock phase.In fact if the convergence time of the scheduling network
isn't known well enough, we may need two restoration phases. one which restores & to an analog
kWTA solution 7, and a subsequent phase to ensure discrete 0/1 values X for the attention control
variables. T'his conservative approach to restoration is incorporated in eguation (78).



Figure 2: A rolling window of attention.

The scheduling network is a kind of auxiliary, coarse-scale network which controls attention at
the level of blocks. Its connection matrix is surprisingly similar to part of a previously studied
multiscale optimization neural network [M GM91], which also had an auxiliary coarse-scale network
a the level of blocks of neurons. In that case the coarse-scale network was not for the purpose
of control, but rather to accelerate the convergence of the much more expensive fine-scale network
(which was simulated without any attention mechanism). In this regard the coarse-scale attention-
control connection matrix wg,, May be taken (as discussed in section 3.2.2) to be the negative
of equation (50) after substituting (75) for mi(x); then it becomes identical to the coarse-scale
acceleration connection matrix from [MGM91],

Tav = Y BiaBjog (wi)g' (w)) B E ;T (81)

ij
43 Jumping and Rolling Windows of Attention

The block-attentive neural network algorithm of equation (78) is equipped with a focus of attention
that jumps from one block or combination of blocks to another in successive clock cycles. These
jumps are rather expensive, since they involve storing the values of whole blocks of neurons which
used to be in the focus of attention but no longer are, and retrieving from static memory the blocks
of neurons which are newly promoted to the focus. A more gradual migration of neurons to and
from the focus of attention is studied in this section, for networks with such a regular topology
that the focus of attention can roll (i.e. move incrementally) from one region to another as well as
jump.

A rolling focus of attention is one which moves incrementaly, keeping most of its neurons
assigned to the same implementation hardware.For example, consider a two-cl imensional mesh of
neurons with local connectivity, as occurs for example in the region-segmentation objective function
(19) of Part I. A small piece of such a mesh could be implemented by a two-dimensional VLSI chip
in which a fraction of the chip area is devoted to end-around connections, giving the circuit the
topology of a torus, together with some form of secondary storage for the many neuron values which
are clamped and stored off-chip. The torus can roll in any direction. The situation is illustrated in
figure 2. Consider aso the assignment of physical (chip-implemented) neurons to the much larger set
of virtual neurons comprising the neural network. A rolling motion allows this assig nment to remain
unchanged everywhere except at the boundaries of the chip, or equivaently the boundaries of the
focus of attention. This minimizes the need for off-chip communication and on-chip analog shifting
circuitry everywhere in the chip, at the expense of requiring dynamic boundary circuitry (probably
digital) throughout the chip. An alter-native would be to alow the focus of attention to “dlide”
around the ncural net instead, inwhich case the dynamic boundary circuitry may be eliminated
in favor of the analog shifting circuitry. Our clocked objective function can beimplemented either
way. For clarity we will discuss therolling case.



‘1’0 describe the focus of attention mathematically, we just need w(x ). We want to use a set
of blocks of neurons as insection 4.2, so that they can jump under the control of {y .}, except
that the blocks also roll (or slide) around the mesh.Fach block’s position canbe characterized
by its center. Block e has center ¢, + x4, inwhich ¢, is a home position for block a defined by
afixed coarst’-scalc grid, and x, is a dynamical displacement variable. The reason for including
the hone positions is to alow unused blocks to stay near theirhome positions, providing coverage
of the alternative locations that the focus of attention can jump to. (This capability would not
be necessary if blocks were only allowed to roll, but that would introduce spurious local minima
into the attentionmechanism, for example when a rolling window encounters its own or another
window’s path. ) Then w(x)isas in section 4.2, with Bia = b;(ca + x,4):

= 3 bi(ca + xo)xe. (82)

We may scale our two-dimensional coordinates so that a block is a unit square, and we may
assign addresses cin this coordinate system to each neuron i. We take ¢, and x, to be measured
in this coordinate system aso. Then the window boundary function b,becomes

bi(ca+ x4) = b(ca + xa— C), (83)
where ,
dimx
b(x) = JIe/2—1xal). (84)
a=1
We will also have occasion to use a soft (differentiable) version of this window boundary function,
I;i(ca -+ xa) = E(Ca + Xg — C,’), (85)
where
dim X R
= [T 00/2~ lza)) (86)
and
R 0, r<—w/2
Oz)= =zf/w+ V2 -111/2 <x <w/2 (87)
{5 r<w/2

Then a clocked objective function for the rolling and jumping window of attention is

Ej & v, € x] = Z (w,-{start + Zb;(ca + Xa)Xa + ZNbribXb} — E';;[V])Z/Q
1 b

3

a
(compute the gradients)

© 3 [ ma(start+ xa + 3" Nbraske — 1/2) + doa (1))

a b
(clamp unaffected windows)

& Z (Wa{na} "Zbi(ca + xﬂ)w")z/2
(;ggregate the g,radients) (88)
@ start?/2 + Z [H(za{na}) + ZNbrajl;j(xa{na})ﬂ;j]
J

(roll unclamped windows)

® ZYa [H (Za) -ij Ca + ia)u‘zj] + kWTA(x,nA/N)

J
(sc.lect k best windows & jump there),
<) E[v{ Zani(Ca + x“)}] (descent within windows),

where as before

kWTA(x, k) (Z Yo = A) + qu (Xa) (89)



Figure 3: Spring function H(z) = €|z| + c1p(|z] — 1/2) + ¢11(ﬁ5),solid curve. Iirst term restores
|z| to zero when block is out of the focus of attention. Second term favors hand-of'to a neighboring
block (neighboring block spring functions shown in dotted curves.) Thethird term is a barrier term,
limiting the number of blocks that can be attracted to an attractive focal region of the network.

A crucia ingredient is the spring potential function A which allows a block 0 to move freely
away from its home position until it is more than halfway into another block’s territory, then to
hand off the rolling window to a neighboring block 6 by turning off x,and turning on xs, and then
to return to the borne position x, = O t0 compute its expected AE and compete for another chance
in the focus of attention.

A spring function that makes this possible is illustrated in figure 3. An explicit expression for

His
dir_xLX .
H(x)= > H(za), (90)
a=1
where A 2
H(z) = e|z|+ cipllx]—1/2) 4+ 4% 1m), (91)
and where . 0
0, <
o(r) = / O)dr= O 127, (92)
— 00 { d —_

4.4 Sparse Networks and Spreading Activation

‘I'he attention mechanisms of the previous sections are designed to limit the number of active vari-
ables at any time, including both problem variables v and attention-control variables X-However
there is no attempt to limit the number of inactive variables whose values must still be stored and
which therefore still occupy some hardware at al times. By imposing such a limit, we may be able
to achieve far greater efficiency for optimization problems whose solutions are constrained to be
sparse. What is required is that most of the variables outside the focus of attention should take on
default values, such as zero, which need not be stored at all. The strategy is to enforce sparseness
of v at every phase in every cycle, not just at the end of the computation. To achieve this we will
allow mild expansions in the number of active neurons at some phases within a cycle, and enforce
counterbalancing contractions in the number of active neurons at other phases in the cycle.
Suppose Vv is a set of N variables, constrained to be sparse in the sense that al but n << N
of them take (possibly identical) default values default(i) at any valid configuration. The default
values may be zero or any number easily computed from the index r' aone, without the use of a
large table of values (which would have to be stored). Let E(v) be an objective which includes
penalty terms for sufficient sparseness constraints on at least some of the variables v, andwhich
has the property that at any sparse configuration in which cn variables are unclamuped in a focus of
attention, al but n of the variables must approximate their default values at any local minimum.
(Herec > 1 is a constant, ) Also suppose it is possible to initialize the network so that the focus of



attention contains al non-default. variables (of which there are <n)and also all neighbors of such
variables (of which there arc <en).

T'henat the beginning of a relaxation phase for [v{x}],all <nunon-default variables and all
their <en neighbors are included in the focus of attention At the end of the relaxation phase,
some new set of <n variables have non-default values; the rest have near default values which can
be reset to their default values without introducing much error, and which therefore do not need to
be stored explicitly. In this way a limited front of activation relaxation, will propagate through the
network of possible neurons which we shall refer to as latent neurons. The dynarnics iS reminiscent
spreading activation or “marker propagation” algorithms in artificia intelligence [Fah79, ‘1lou86],
and could perhaps be developed in that direction by using objective functions proposed in [MGA&89].
Latent neurons are to be distinguished from the virtual neurons of previous sections (e.g. section
4.1), the latter requiring storage even when out of the focus of attention.

A suitable clocked objective function for such a spreading activation network, with many latent
neurons, is

Idspread = Z\i{\"}+ Z¢0/1 Xi{Yf
& ZX:{S; + Nbr,]sj} + Z¢0/l (xi{si + Nbryjs;})

o Llv {X} 71, €]
@ D sebxi (@ - defaultli) /et 1) 4 37 gopa(si i) )

+7(I>(ZS,'{X,’ -n) +7L3|{X:}[";l["x"]
@ —(1/2) }j(1’i{Xi($i 1)} 'd'efault(i))z + Zd’O/l(vi{Xi(Si D).

|

Here the first phase serves simply to find all nonzero x’sand to set their values to zero. The
second phase sets the focus of attention to include all non-default v;’s (for which s; = 1) and
their neighbors in the network topology. The third phase relaxes the network within the focus of
attention, which we assume produces a new set of <n variables vi’s which are not close to their
default values. The fourth phase finds these variables and updates sto record them. Optionally,
we can set v > 0 to ensure what is aready supposed to be guaranteed by F,that s== 1 for nonzero
gradients and that Y, s<n. The fifth phase truncates near default values to exact default values,
because neurons taking their default values do not need to be stored. (So in an implementation the
fifth phase would not physically perform a truncation; it would simply de-alocate the hardware
used to support the affected neurons.) The five phases together constitute one iteration of sparsity -
preserving dynamics.

As an example of a suitable objective function F, we discuss a simple network for finding roots
of a continuous function f(z) of one variable z € [0, 1], by the bisection method. This network
dynamically constructs a tree of at most n nonzero indicator neurons @i, taken from an infinitely
large tree of latent neurons. The network seeks large negative values of f(z) f(z+¢), and then bisects
the interval [z,z + ¢]. Using multiple index notation i=1%1%214;, the search tree consists of al the
latent O/1 neurons ail.. i, which take a value close to one if the search currently includes that node
of the treg; also each node has a census neuron™i, .. i, € [0, n] which counts the number of neurons
(including a’s and m’s)active at or below that node in the tree. These sets of variables would include
the I = O versions, a andm without any indices, which are associated with the root of the search
tree. The bisection search interval boundaries arc o= 0O, 1= 1, oo= O, To1= 210 = .5, Z11=1,
and in general, zi,.inb =Y oe i, 277 + 427

Then a sparse objective {ﬁm:tton for this problem is

Eiree = Z Z A @ uqi(( f(Tn 'lo)f(r'.l-vill))
I=11,...4;,=0,1
oo .
HA/DD T DT (i Gealmi ) iy oy = ) (94)
{=01,...1,=0,1
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+(A/2)(m/n - 1)? + M Z dosi(ai, . +L Z Gosi(miy i /1),

{=01d,...4;,=0,1 1=01,...1;=0,1



where g4 is an odd monotonic function with slow asymptotic growth, e.g.logarithmnic growth. T'he
network could be initializedwithaga, 1 and svariables taking near-zero (O{e) << ) values, except
at the root where s = 1. At initialization al the non-zero gradients of £ (which arise fromthe
k-winner-take-all terms) are concentrated at the root and its immediate childreni=0and: = 1.

A noteworthy property of the objective (94)isthat the sparseness constraints are not global,
but rather distributed over the topology of the network in such a way that an actua neuron ais
involved in every term of the sparseness constraint. T'his prevents many census variables 7 from
being given non-zero values in an effort to find one non-zero a variable. Instead, only as many
census variables will be activated as needed. Thea; + g4 () summand in the k-winner term
serves to include both a; and mi in the count of activated variables: g4 1(m) is asigmoid with
values ~ 771 for m<« 1, and & 1 for m > 1. The g+1(m) expression could be replaced by another
Oll-valued neuron whose sole connection is to m.

We speculate that it may be possible to give a similar treatment of the conventional objective
functions for inexact graph matching, such as [11'1’ 86]

EmaenlM] = =) GijgasMiaMjs + (A/2) L Z Mia — 12+ (4/2) > () Mia = 1)?
a i

1jab

+BY " Mia(17 Miq +L¢0/1 M.a ).

(95)
However it is again necessary to localize the winner-take-all constraints, for example by embedding
them in spanning trees for both G and g, in which each variable Mia enters into each WI'A constraint
a its own location in the spanning tree. An additional attraction of such a sparse graph-matching
network is that the E-relaxation phase of the clocked objective could actually be a nestedloop
which performs deterministic annealing in order to avoid loca minima, Since successive cycles
would have different foci of attention, the successive annealing procedures would be different - the
high-temperature part of an annealing relaxation would not erase the progress towards a solution
encoded in the focus of attention. A related technique for accelerating the convergence of matching
networks by exploiting their sparseness was used in [LM94, GLR*95].

45 Orthogonal Windows

As suggested in [Mjo87], we can take advantage of the fact that some or all of the neurons in many
hand-designed neural nets fall into natural cross-products, e.g. vi=vi,,i,- An example is the
graph-matching objective function of equation (95). In such cases we can greatly decrease the cost
term by decomposing X and hope to retain functionality since it is only X, not v, whose information
content is thereby reduced. An obvious decomposition to try is:

mi(x) = X5y x50 (96)

(1)

n(x) - xF oxi?, 97)

3o }: Xi Z X)) < (98)

1 i1=1 i=1

where

‘I'he last may be ensured by constraining

§_4 x,b) <mnp (b€ {1,2} and nins < nj. {99)

;=1

For more than two terms in the cross product, al this generalizes to

H\ff), (100)
where
Ny
Z xf:’) < ny and Z m(x) = H n, < n. (101)
1s=1 1 ]



Following equation (68), we can use the clocked objective function

Focthog = Ey[x, v] ® Elv{x™ o x*}], (102)

zd\,l \lf)["' +(I’ L\l — 1N +(I)ZX __“2
(@ (103)

L¢0/1 (l) +L¢0/1 (xi,)

A major problem with this scheme is that al the 1/;.'[VJ derivatives must be calculated, even though
we want a small window of attention. A simple solution is to window the control variables X also,
and only calculate the few that are necessary. There may be only O(Ny1+ N2) of those, rather than
O(N). One possibility is the disjoint union focus of attention 7T(X) (), 72y for x- We will
apply transformation (68) twice: first to v, substituting mi(x)= \_, xz) for x;,and then to X
itself, using a straightforward focus of attention:

(o) (1) = 0\, where anf) < cnp. (104)

i

where

JFrom equations (41) and (42), we can calculate

EQ) [, v] = By, VIXS = gl (5 x,,)))(zx,f)f,.[vH ) (105)
and
[izt)z (X, ‘1 = Fxilx, V]§}:‘~g;(gx X,2 Zk,l Eilv] + ) (106)

Thenthe doubly attentive clocked objective function becomes
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The first phase may be traded in as before for a priority queue implementation; but the space
cost of the default circuit implementation is aready so small (O(ny+ n,) for the kWTA network)
that the priority queue is not necessary. In the second phase at most (c+ 1)2n? gradients £ must
be calculated, As in previous networks, one could make the efficient calculation of all gradients
explicit by adding extra phases and variables.

The focus of attention introduced in this section applies when the neuron index : takes values in
some domain which is a cross product of other domains, domain(i) =domain(i; ) xdomain(zz). ‘1’his
is of interest for building complex network architectures by composing simpler elements. Another
natural operation on index domains is the digoint union i = (b,%)- The E, example above showed
how to compose a focus of attention for this case as well (see equation (104), with Y, cnp<the
number n of active neurons allowed), though that case is much simpler than for the cross product.

i iz

(107)

5 DISCUSSION AND CONCLUSIONS

In part 1of this work wc introduced a l.agrangian formulation of the relaxation dynamics of
neural networks which comnpute try optimizing an objective function in a standard neural network



form. The Lagrangian formulation akes novel use of a greedy functional derivative, which we
defined and computed. With these tools we demonstrated the use of three levels of optimizationin
the design of relaxation neural network dynainics: the original objective £/, the Lagrangian /., and
a lllicta-objective M whichmecasures cost and functionality over many triais of the network.

In part I here we deal with a secoud group of more ramified applications. For these we intro-
duced a clocked objective function and an associated notation. These constructs have the capability
to clamp or unclampnet variables depending on the values of other of thenet variables. Thisno-
tation and tile stepwise refinement strategy for designing clocked objective functions sufliced to
obtain computational attention mechanisms. Analogous to virtual memory or virtual processors
in digital computers, such computational attention mechanisins have a focus of attention quality
which can take a variety of forms. These include a priority queue, a set of coarse-scale blocks of
neurons which could be scheduled according to their expected synergies in optimization, a set of
jumping and rolling rectangular windows in a two-dimensional network, a sparse set of active neu-
rons for which the excluded latent neurons require N0 memory, and the cartesian product of several
simpler foci of attention. Bach of these cases was concisely expressed using simple analytic notation
with clocked objective functions. Reference was made to a number of experiments, application aucl
computation, which employ the greedy variational and clocking calculus which we have introduced
here.
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