A Lagrangian Formulation of Neural Networks
Il: Clocked Objective Functions and Applications

Willard L.Miranker! and Eric Mjolsness?

! Department of Computer Science
and Neuroengineering and Neuroscience Center
Yale University New Haven CT' 06520
and
Research Staff Member, Emeritus,
IBMT.J. Watsou Research Center, Yorktown Heights, NY 10598

2Jet I'repulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena CA 9110W3099

Abstract

In Part | of this work we showed how a tradeoff between measures of neural net cost (of
operation) and functionality (eflicacity) could be used to derive the dynamics of the net, and
in particular, optimize thereby a class of objective functions. Here we extend that methodology;
a Lagrangian formulation and greedy variation to treat more ramified problems. We introduce
a notion of clocking and a class of clocked objective functions to do this. A kind of switching
dynamics occurs which is suitable for many applications. This notational clocking calculus makes
for time-scaled computational techniques employing a “focus of attention” (similar to saccading,
foveation, and covert attention in biological vision). Experiments dealing with applications are
referenced.

1INTRODUCTION

In Part | of this work [MM] (to be referred to hereafter, smply as Part 1) we introduced a La-
grangian formulation of the dynamics of a class of relaxation-based analog neural networks. These
Lagrangians incorporate a trade-off between measures of the operational cost and the functionality
(efficacy) of neural networks employed to optimize a given objective function £. Because of the
need for nonconservative or dissipative dynamics, our Lagrangians are to be varied in a nonstan-
dard way using the so-caled “greedy variation”. This results in dissipative analog circuit dynamics
described by first-order systems of differential equations. Within a class of candidate |,agrangians,
we proved the near-optimality (under a suitable meta-objective function) of a particular Lagrangian
corresponding to the Hopfield/Grossberg analog circuit dynamics. However, for efficiency, elabo-
rate computations may require more complex dynamics specified at a coarser scale of temporal
resolution, and this is a theme of the present work.

Here (in Part 1) we proceed to consider more elaborate L.agrangians which are capable of spec-
ifying non autonomous dynamics. For example the dynamics may depend on which subset of the
problem variables is currently being optimized, as well as the subset next to be optimized. This
kind of ‘[switching” dynamics occurs in many applications and requires a more general formula
tion of the Lagrangian which we develop [n section 2 we introduce a time-varying or switched
version of the problem objective function /, called a “clocked objective function”. We relate it to



our Lagrangian formulation of dynamics, producing so-c alted eyclic Lagrangians We develop suit-
able notation for expressing a number of existing optimization methods in terms of such clocked
objectives. Reference is made to @ number of experiments, application and computation, which
utilize this clocking caculus. Insection 3 we showhow to specialize these ideas to thecase of a
computational “focus of attention” (Similar to saccading, foveation, and covert attentionin bio-
logical vision) which iteratively and opportunistically selects asubset of the problem’s variables
for optimization, and optimizes them. We show how to develop Lagrangians on different problem
scales, Greedy variation then leads to the dynamics relevant to each scale. The working of the
clocking or switching in the problem development and its solution is worked out, In section 4 we
derive and relate various particular focus of attention mechanisms, inducting severa which have
been tested in previoudy reported computer experiments. These include priority queue attention,
multiscale attention, jumping and rolling windows of attention, spreading activation (of neurons)
and orthogonal windows. Section 5 provides a suminary.

2 DYNAMICS WITH SWITCHING: VIRTUAL
NETWORKS

Suppose we have hardware capable of switching different sets of neuron output values from a
static (backup) memory into an active neural network, where they can be updated. With such
hardware it is possible to implement a computation which would require a much larger neural
network if every neuron were to be actively updated at all times. This situation would be analogous
to the use of virtual mermory in a conventional computer, in which one has a limited amount of
physical memory (Random Access Memory)augmented by a much larger amount of secondary
storage (magnetic disks). Equally, it is analogous to the distinction between the small cache memory
associated with a central processing unit, and the larger physica memory (RAM). In either part
of the memory hierarchy a relatively small and fast memory, in concert with a relatively large and
slow memory, simulates a large fast memory (with occasional slowdowns due to page faults or cache
misses). In like manner, we seek to design a switching mechanism for obtaining the computational
power of a large neura network with a small neural network plus a large, slow and relatively
inexpensive memory. Furthermore, in some cases it will prove possible to dispense with the slow
memory entirely.

Such a system would be useful not only for making space-time tradeoffs in situations where
only a limited amount of spatial resources (neurons and connections) are available, but also for
formulating search algorithms (suchas binary search) which can’'t be fully parallelized due to their
unpredictable total resource requirements.

What kind of cost and functionality termswould model this situation? This is a hierarchica
design problem. At a coarse time scale, we have just two kinds of decisions to make: what the
active set of neurons (the focusof attention) is to be at any given time, and what their new values
are to be after some period of active dynamics. (In the memory hierarchy analogy, one would like to
decide which part of slow memory to bring into fast memory as some computation progresses.) At
a fine time scale we must repeatedly make circuit-implementable state changes which move towards
answering these two coarse-scale questions.

A strong constraint on the system is that, under reasonable cost metrics such as network space-
time volume, no savings will be realized unless the focus-of-attention decision has converged to a
definite answer by the time a switch of attention is to be made (i.e. by the time that decision
is to be implemented); partial answers as to which neurons should be active would just force all
the candidate neurons to be active. (An attentive neural network which unhappily violates this
constraint is described in [Mjo87].) Of course one can contemplate dynamics in which by way of
example a linear combination of neuron values is made active, but such a system should be designed
by introducing new variables for the linear combinations and a discrete switching circuit which still,
to be physically cost-effective, makes definite decisions about the active set of neurons.

So, our problem is to find both coarse-scale and fine-scale cost and functionality terinsto mocdel
a focus-of-attention mechanism which switches many stored neuron values into and out of a small
active network, where the neural values are updated. We will not consider all aspects of this
problem. Rather wc shall show how the Lagrangian formalisms provide a tractable frammework for
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Figure 1: Two time variables 73 and 72 may increase during nonoverlapping intervals of an underlying
physical time variable, t. For example 7y = f dts; (t) and 72 = [ dteh,(t) where 3, = dTi/dt and
P2 = dr/dt are nonoverlapping clock signals. (a)’ The parametric curve (7y (1), 72(¢)).(b) The
functions v, (t) and ¥2(t)-

our approach. This is illustrated through derivation of a few plausible L.agrangians in the form of
clocked objective functions. Related work appears in [Coo89, Mjo87, MM91, BSB* 91].

2.1 Cyclic Lagrangians

In discussing coarse-scale cost and functionality terms, the idea of a repeating cycle of a fixed
set of dissimilar coarse-scale decisions will be fundamental. This idea is analogous to a “loop” in
programming, or to the use of cyclic clock signals to control an electronic circuit. The idea may
be expressed in terms of Lagrangians in several different contexts which we will discuss here. In
al cases we will find asimple formulation in terms of a “clocked objective function” [MGM91]: a
version of the AE functionality term of the Lagrangianinwhich the structure of E is regarded
as time-dependent according to a temporal cycle corresponding to the fixed cycle of coarse-scale
decisions. The possibility of formulating a cyclic Lagrangian in terms of a clocked objective function
was introduced in section 2.1.1 of Part 1, equations (17) and (18).

As an example, consider a line-minimization algorithm for local optimization. Repeatedly, one
calculates the gradient at a current location x, does a one-dimensiona minimization of the objective
function along the gradient direction, and updates x. During the cycle it is necessary to store an
old configuration xoid for useinupdating.and to reset to zero the scalar parameter s which
measures displacement in the gradient direction.

To express these ideas we recall the clocked objective function notation (M GMot): Suppose
that we have a small set of objective functions { £, } which are to be partialy relaxed (i.e. par-
tiadlly optimized) in a cyclee. We define one nonoverlapping clock function, %, (t) = O or 1 (with
Yo valt) < 1), for each phase @ = 1,2,...,Aof the cycle. ‘I'he clocked objective function is written

Pclocked X, t Z "v/’ [’ Xfrccl A ﬁwd} (1)

where A’ and x4 arc subsets of variables from the entire set {z:}. During phase o (i.e. when
Pal(t) = 1), Fclocked = Bf xlrecjyfixed) is to be extremized with respect to all variables in A free,

while dl variables in X'fixed are to be held fixed or clamped. Figure 1 shows one interpretation of

the nonoverlapping clock functions ¥, (f).
For example, a simple clocked objective function for line minimization would be

Foocked = ¢ 1(6)2 Hxod - x|[* + 52)[x°ld,slx] (initialize x°' and s)

+ipa(t) i1,
+ah3(1)

:\/

Jx + sVE[xOld]]) [s]x, x°) (line minimization) o)

(Hx o _ Sv [','[x““‘]llz) [x]s,x?M] (update x).

N} -,



Since the e = land a = 3 phases are especially easy quadratic optimizatious, one could arrange
that these terins are relaxed almost to zero during the clock phase interval appropriate to each.
Then equation (2) is a continuous-time refinement of the coarsf-scale Lagrangian’s decision cycle,
which partially relaxes Fin a gradient direction and then resets the variables for the next partial
relaxation. At the end of phase 2 in each cycle, the clocked objective functiontakesthe value of
[ a the new point. So the clocked objective function may be interpreted as a refinement of the
functionality term of the coarse-scale decision-cycle Lagrangian. This interpretation also requires
that the appropriate variables be held fixed at the correct times; this may be achieved with a cost
term C, which strongly penalizes any change in the clamped variables for the relevaut clock phase.

Many variations on equation (2) are possible; the clocked objective could interpolate an extra
cycle for the calculation of the gradient vector, and the x used to calculate the gradient could be
taken as the u = g7} (v) rather than v variables for £/, and soon.

2.1.1 R elation of I ,ckeq to F

So far we have only argued that clocked objective functions provide an interesting special case of
the distributed Lagrangian equation (5) in Part I; we have not shown how they can be related
to the static objective function E or the dynamic objective function equation (4) in Part 1 with
functionality term F = Fgpal- Finitial- Here we will discuss three different classes of clocked
objective functions, each of which can be used to make some progress on minimizing E in every
complete clock cycle so that AE < Ofor each cycle even though the functionality term is not simply
equal to AE. In this section we refer to such a clocked objective as “valid” for objective E.

Transient Terms For the first claw of clocked objective functions, of which the line minimiza-
tion objective (2) is an example, Felocked is valid if one of its components Ejis equalto F itself,
perhaps with restricted arguments, and if the other components can each be expected to relax to
near-zero values within their own phase of the cycle. These other components will be referred to as
transient terms of a clocked objective function, since they approach zero quickly. Then progress is
definitely made during phase A, and at least o harmis done (i.e. no increase in £y is suffered) in
the other phases a. Generally these other phases are used to ensure the suitability of the arguments
of Esg=E.

Subspace Terms In thesecond class of valid clocked objective functions, F, is equal to F
during all clock phases, except that it is a function of different sets of variables (or more generaly,
is a function on different submanifolds) during different clock phases. We will refer to this type of
term a-s a subspace term of a clocked objective function. There can be no significant calculation
required to decide what subset of variables £ depends on during each phase (otherwise we'd need
a further phase to make that calculation). One simple arrangement is to partition all variables into
a few blocks ’,, with the variables in one block allowed to change during each phase of the clock.
Then eguation (1) simplifies (since every K, isjust ) to

Egocked[X, t] = Z Val(t) E[A’éree[“t’gxed]' )
a

This permits concise expression of blockwise coordinate descent algorithms.

It 1S perhaps surprising that #ciocked(X; ] is not numerically equal to £{x(t)] ‘or all tin this
case,owing to the nonoverlapped clock factors ¢, (¢t) e [0, 1] whose sum varies between O (between
phases) and 1 (during a clock phase). As we will see in the next section (2.1.2), this is necessary so
that the continuous-time Lagrangian will force all variables to completely stop changing between
clock phases, as they should.

We note that the second class of clocked objective functions can be used for the discrete par-
allelization scheme mentioned at the beginning of section 2.3.1 of Part I. I'here we postulated a
partition of the network variables into a small number of “colored” blocks, with neighboring vari-
ables in the network having different colors. (Colors are in a correspondence with phases. ) Such a
partition can beused to ensure noninterference of discrete-tume paralel update dynamics. Clearly
equation (3) is the correct clocked objective for this situation, and # would just be A FEcigeked:

Control Terms For the third class of valid clocked objective functions which perform optimiza-
tion, onc constituent objective £ is 262! taken to be £ with restricted arguinents (asubspace
term, asinthe first and second classes), ancl the other phases either relax to nearly zero (being



composed of transient terms as in the first class) or serve t0 determine the choice of active argu-
ments for phase 7 without directly changing any of the original variables X. Since this last type of
objective is @asum of terms that only involve variables that control membershipin the active set
of arguments for g, its constituent terins will be referred to as control terms in a clocked objective
function. Clocked objective functions with control terms arethe class of objective functions most
relevant to the attention mechanisms of section 4. Inthat section we will have occasion to usc
clocked objectives containing a variety of subspace terms,transient terms and control terms.

2.1.2 Lagrangians for Clocked Objective Functions

We have seen in equation ( 17) of Part | how clocked objective functions may arise from coarse-scale
Lagrangians, in which the the functionality term takes on a cyclic sequence of different forms. Our
purpose now is torelate such clocked objective functions (as in (1)) to continuous-time Lagrangians.

The essential feature of a single term F [xfreejafixed] in a clocked objective function E is that
it depends only on some of the variables, the rest being held constant at their earlier values. This
gives a property expressible in terms of derivatives:

OF,
Ox;

OF 4
31‘,‘ '

where Xai€ {O, 1} is aconstant which indicates the presence (x = 1) or absence (X = 0) of z;

in Xfree. (For fixed a,Xai is an indicatrix for A’fre¢). Consequently, F,[xfrec|xfixed)isalow-

dimensional dlice (restriction) of the higher-dimensiona function F.[1%], evaluated at values of the

fixed parameters which are dictated by the state vector x at the beginning of the a-th phase.
.From equations (3) and (4) we may now calculate dFEciocked/ 05

(()Idclocked
T = Z 1/’ \m Iy ) (5)

[R. freelA ﬁxe(l] = Yaio2

4

which is nonzero at any given time ¢ only if Zi isin the free set of variables at that time.
We can take the final continuous-time Lagrangian to be

L= Z (K[it,', z] + thic_ked :L,) , (6)
i

i

where K is a cost-of-motion term (see section 1.1 of Part I). To see that this is consistent with the
desired pattern of fixed variables as a function of time, we examine the resultant dynamics. As
in equation (30) of Part 1, varying #i and using 3 _ ¥aXai€ {O, 1 }, and defining A'[w,z] as the
inverse of K{z,z] > with respect to its first argument, the equations of motion are

0k,

e = D elOva Kl ™

T = ]‘ [_Zwa(t Xou

Here we have used equation (5) and K[0,z] = O to simplify the equations of motion. The factor of
Ya(t)xai ensures that the correct variables are clamped at the correct times.

Equation (6) is appeaing because it has the same form as the continuous-time Lagrangian for
unclocked objective functions, equation (22) of Part 1. This is the desired relationship between
continuous-time Lagrangians and clocked objectives. Because of equation (6) it will often suffice to
give the clocked objective aone, omitting the Lagrangian, in order to specify a network’s dynamics.

2.1.3 Notation for Clocked Objective Functions

Equations such as (4) can be expressed in a more convenient notation for algebraic calculations (by
human or computer). From an algebraic point of view, (4) may be regarded as the i derivative of
E,, a version of F, in which all fixed variables z; € A'f sfixed gre simply replaced by clamped variables
(or “fixed variables”) #; for which

arj

& ,
= — () despite the fart that ———— 6;;. (8)

r;




The actual value of z; is updated to the current value of 25 only at the (otherwise irrelevant)
time intervals between the nonoverlapped clock phases, when Y~ o (t) = 0. Equation (4) follows
directly from this interpretation of £« ['rﬁmci'r}:‘ xed}in terms of £, )

In fact,we can design notation for thesubstitution that relates £ to £ Define

e{x}=xr+ (=) so x{xo}=xo x+(1-x4) X (9)

where y is a binary (zero- or one-valued) scalar (or can easily berounded to zero or one)and Xa is
just the constant array X«iwhich specifics with its zero-valued entries which variables are clamped
in each phase a. With this notation, Fais just Fa[x{x,}] i.e.

Eq[xfree|xfixed) - Balx{xq}). (lo)

We will use Fo[x{X. }] as the preferred notation. Furthermore X need not be a constant; it can
be replaced with any vector-valued expression w(€) involving variables €. Equation (9) would still
define

x{x(&)} = O(n(@) - 1/2) -x+0(1/2 - =(§)) x, 1y
where l " 0
1z >
c)(r) { 0 otherwise. (12)

© is defined componentwise on vectors. ‘I’he purpose of the © function in (11) is to round = (&) to
zero or one, with a boundary at 1/2. Note that, in agreement with equation (9) in which x isa
constant, X is clamped in equation (1 1). That is because x’s focus of attention cannot shift during
the phase in which x is being relaxed without incurring excessive and uncontrolled switching costs.

As a further notational refinement, we may drop the explicit +(¢) functions from our notation

by defining a clocked suiT,
EB Fo = Z Ya(l)Fa (13)

which may be written out term-by-terin as
FidOE, ... F4. (14)

(The“@” symbol is evocative both of a rolling “+” sign, and of an analog clock face.) Of course the
periodic functions v (2) still have to be specified before the clocked sum is a well-defined quantity.
The clocked sum is neither commutative nor associative, but we may take it to associate over the

ordinary sum:
ST Ew =€) Faa (15)

Moreover, parenthesized expressions such as F, @ (F2@ E3) may be used to denote nested loops
in which for example E2 and E3 are repeatedly relaxed in an inner loop, within one phase of an
outer loop, and £1 is relaxed once during the other phase of the outer loop. Again the timing
would be controlled by external functions v, (t), which must still be specified separately.

Note that the use of clocked objective functions is reminiscent of time ordering of operators in
quantum physics. See aso the so-called Feynman entangling calculus [MWG66].

Perhaps the most important algebraic property of the clocked sum, for the purpose of formu-
lating descent agorithms, is its commutation with partial differentiation:

L D r =@t (16)

This follows directly from the definition of the clocked sum.The right handside of equation ( 16)
could be used as the time-dependent descent direction in a gradient-descent algorithm.

We may conventionally expect to find the ¢ signs outside the + signs in a clocked objective func-
tion, and accordingly we assign¢) a lower grammatical precedence than + in otherwise ambiguous
expressions.So by convention, F, ¢ Fa 4+ FEizmeans I (Fa2+ E3).




Wi th the addition of clamped variables », conditional variables »{y }, and clocked sums @, £,
we are able to concisely express a wide variety of cloc’keel objective functions. For example the line
minimization object ive (2) becomes

Eeoocked = s°/2+ ||x°M — x[?/2 (initidize s, x°'9)
O E[x + sV E[x]] (line minimization) (17)
@ [1x — x°M _ swplxi||*/2 (update Xx),

or what may be easier to implement as a circuit,

Faoeked = - s7/2 + ||x° — x|12/2 + ||w - VE[x]]]*/2
(initidize s, x°'; find gradient w) 18
® Blx + sw] (line minimization) (18)
@ llx — x4 — sw||*/2 (update x).

Furthermore, clocked objective functions make new algebraic transformations possible. For ex-
ample, equation ( 11) may be implemented for X-expressions (assuming only that we can implement
it for O/l-valued variables) by introducing new variables 1 as follows:

E[X{ﬂ(é)}]ﬂz [ m(m(€) —1/2) + ¢0/1(7li)]&)E[x{1]}]. (19)
i
Here #0/1 is a two-sided barrier function which limits its argument to values between zero and one.

214 Experiments

The clocked objective function notation has been used to derive and express a number of experi-
mentally validated relaxation-based neural networks, including networks for multiscale image seg-
mentation [1'si97), visual pose estimation [LM94], point matching [GI-R+95], and invariant learning
of point-set and graph models of visual objects [RGM96]. In these applications, the problem vari-
ables were divided into an exhaustive collection of subsets each of which received an exclusive clock
phase. During the clock phase for any subset of the variables, al other variables were clamped and
the optimization of the free subset was relatively easy or even analytically solvable. This situation
is described by equation (3), which may be rewritten as a clocked objective function using (13). It
occurs sufficiently often that we provide another notation for it:

E(lemc, A‘Zfrecv B ‘A,Ii;ree>® = @ ]’)[A'(Srec,/\'ﬁxed] — Z wa(t)],/v[lrcl;reelk-jxed] (20)
a

«a

2.1.5 Clocked Circuits

Clocked abjective functions can aso be used to specify circuits a the analog level. The simplest
way to do this is to assign to each clock phase the dynamics of an analog neural network in which
some variables have been clamped. The clamping is under the control of the clock signals and/or
other variables. That is the effect of equation (6), either under the original definition of clocked
objective (5) or under the more powerful and convenient notation defined in equations (8), (11),
and (1 3); it is aso a basic idea behind the design of clocked pipelines of combinatorial logic in the
data paths of simple CPU chips [MCB80] where clamping is determined only by the clock signals.
We take it as clear, then, that such clocked objective functions can be implemented as analog
circuits provided that each phase can be so implemented, and provided that the objective includes
# expressions (cf. (3)) but does not include z{y} expressions (cf. (8)). For example, the line
minimization clocked objective of equation (18) can be implemented this way, as can the multiscale
optimization objective found in [MGM91].

In the next subsection wc show another such example: a clocked objective function which
incorporates one or more general feed-forward ncural networks inside a relaxation-based neural
net, in a hybrid that may be of usc for combining relatively efficient learning algorithms (from
feed-forward nets) wit i expressive power (from relaxation nets).

{.ater, we will discuss a set of applications that require the more powerful » {y}unotation, without
speculating on the hidden circuit- level implementation of the switching mechanism. Thus the



problem of eliminating x{y} expressionsin favor of r expressions remains for future work;it is
related to the “neural network routing problemn” discussed in [MG90], section 2.6. A further open
problem is to replace global clock signals in a Lagrangian circuit formulation with a system of
self- timed subcircuits in which the ¢, cont rol functjons arc replaced by relatively local variables
with independent dynamics. Solutions to analogous problems are implicit in the design of many
distributed computer systems but not within a circuit-level Lagrangian framework. The »{y}
notation represents a substantial escalation in expressive power, and section 4 is devoted to some
of its uses in designing computational attention mechanists.

2.1.6 Feed-Forward Networks as Constraint Projection

A feed-forward network inside of a relaxation network can be regarded as a set of constraints on
the relaxation network:

Epp/retax[X] = Fretax[x th« v 7V g, (21)
t (layers)

where F'F' is the functional dependency constraint of a layer's output neurons on its input neurons
(here taken to be in the previous layer, though neurons in any previous layer may be inputs
without causing problems for the following agorithm). Various methods are available for enforcing
constraints within a neural network optimization [PB87,MG90,PS89], but the feed-forward network
constraints have a natural ordering determined by the feed-forward pattern of connections. So
in this specia-case we can use a nonlinear projection method to enforce al the constraints. As
mentioned in section 2.3.1 of Part |, related algorithms are discussed in [B1'89], for example, under
the name of “gradient projection algorithms’ or “scaled gradient projection agorithms’.

Any incremental relaxation of the objective Frelax is followed by a series of projections which
reestablish the feed-forward constraints, layer by layer (i.e. from earlier to later neurons in the
feed-forward neuron order), in preparation for further relaxation. The clocked objective is

EFF—projection[ @ { Z { - vl L 7;1_1 _; ! + ¢’:(v£)}} @ Hrf'lax[x]' (22)
I (layers) i

Note the especialy simple form of each layer's objective:

Z ~v'Z7z“ (o) p - 23)

Every neuron v} in layer 1 is independent of every other in this objective, and the minimization of
this objective is best achieved just by assigning values to all layer-l variables in parallel:

Z’],J 5 ~1), where g7 (v) = ¢l(v). (24)

This is the projection operation which immediately enforces the layer-{ constraints. Later layers
projection operations do not disrupt earlier ones. So, at the beginning of the relaxation phase of
every cycle, al the FI* constraints will have been consistently satisfied.

3 FOCUS OF ATTENTION THEORY

A particular kind of clocked objective function formalizes the idea of a computational focus
of attention. We will derive this clocked objective by first considering the functionality and cost
terms of a coarse-scale greedy Lagrangian, and then developing the associated fine-scale greedy
Lagrangian which specifies circuit-level dynamics,

3.1 Formulation of the Lagrangian at the Coarse Scale

Let X be a set of discrete-valued variables which determine, directly or indirectly, which components
of the neuron vector v are actively updated at any given titne. In other words, X determines a



characteristic function m(x) for the focus of attention or active set of v;’s. 'Thus

r(x) = 1if v is active, i.e. inthe focus of attention, o5
! 0 otherwise, (25)
with

domlx) =, (26)

1

For example, we could have as many components of X as of v and set 7 (X) = Xi-Or instead, we
could introduce a partition of the components of v into blocksindexed by cc, with a 0/1 partition
matrix Bia; this is a form of aggregation applied to x. (For now we will take n to be constant,
though a variable n is sometimes useful ) Then we would have one component of x to switch each
block of the partition, and 7i(Xx) = 2, BiaXa- (That is, a variable v; isin the focus of attention if
and onlyif its course-scale block ais in the focus of attention as determinedby x4.) Usually m;(x)
can be made linear in X-

Regardless of the actual formula for mi(Xx), there will be some sparseness constraint on X to
ensure that only a small fraction of the neurons v are in the focus of attention at any one time.
For example one might impose Y, m;(x) = n, where n is the optimal size of the focus of attention
(and n<< N = the total number of neurons vi). In the case of a partition matrix I3 with blocks of
roughly equal size b (so 2_; Bian b), the sparseness constraint would become 2 aXa= n/b.

Whatever the sparseness constraint on X is, we will express it as a summand ®(x) in an
objective function. & may be a penaty function, a barrier function, a Lagrange multiplier times
the constraint, orsomecornbinatio nof these possibilities. Thus, we could choose froma variety of
“k-winner” objective functions (k winners allowedin a competitive group ). Assuming ®(x) = ®(e)
where e=37,mi(X)— n, we can enforce or at least favor satisfaction of the constraint e < O with

(c/2)e? (a penalty term), or
Ae + cue — (¢/2)o? (Lagrange multiplier+ effective penalty [MG90],
with ¢ an appropriate auxiliary variable), or
Pe) = cfcoog(x)dr g monotonic and odd (a barrier term), or @

eo —fn"]ing(y) 9 V(z)dx, (effective barrier, linear in e),

Stricter sparseness terms are also perimissible, such as a sum of many k-winner terms on different
sets of variables. And for a variable-size focus of attention, in which 71 is variable, one would also
need a cost term for n.

All components of v will be assumed to take continuous values, even if they are ultimately
supposed to converge to discrete values, Then the coarse-time-scale update rule implied by the
action S will be of the form

V= vi(v,X)- (28)
For example
vl v = m(x)Gi(v), (29)
where G is the cumulative effect determined by the fine-scale dynamics within an active-v clock
phase. ‘I'his update rule is to be derived from the greedy variation of a multiphase dynamical
objective of the form

s= Y ww= Y St + F0)], ()

coarse Scale t| Zu ['azoe coarse-V,
. a
decision timest, coarse-X
[/cycle > 0

where v, is defined as in section 2.1. The principle feature of equation (30) isthat it has two cloclc
phases, one during which the v variables are free to move and the X variables are clamped, and
one in which the roles are reversed, During the active-x phase the focus of attention is determined
for the next active-v phase of the cycle.

Notice also that we have assumed a simple stopping criterion, 3" I, < 0, which means that
the coarse-scale dyuarnics continues only as long as its benefits (decrease in £/) outweigh the costs
(given by C'), and this decision is made at the end of each complete cycle. We must now find
suitable functions Ceo arse—v, Fcoarse-v, Ccoarse— v, an’c f'eoarse—x -



3.2 Coarse-Scale I

To find the £ terms, we must decom pose Frotal= A F into asum of roars(~-scale causalterims. We
would like Feparse 10 mieasure the improvement in /2 due to choosing a configuration x and then
updating v accordingly:

F(t) = I'coarse—v + ['}x)al‘w—\ = E[Vl(vy X)] - [9‘["] + (1)(/\/) (31)

How can wc decompose this combined effect of v and X into separate /' terms for each coarse-scale
decision? As previously mentioned, the difficulty is that the coarse-scale decision step which chooses
values for X cannot be made simultaneously with the decision of v values whose presence inthe
focus of attention is determined by that particular X- One obvious way to accomplish this is to
stage alternating coarse-scale decision phases, updating the two sets of variables, each based on the
most recent value of the other: ) (

X x(Xv

voo= v’(v,x’)). (32)

Then, to decompose Fy + F\, = E[v'] - E[v], we may interpose some especidly low cost estimate
v of v’ which could even be computed anaytically given any candidate X"

Fcoarscx'[x’ v] = E[G(V, Xl)] - E[V] + q)(X) (33)

Feoarse v’[Vllvy X'’ ] ; E[VIIX’] ’ E[‘?(V) XI)Ivv XI]~
The optima of these two expressions with respect to their free arguments then determine the
functions in equation (32). Note that Feoarsev' V] - ..] is independent oft, though the constant
E[v(v,x")] is subtracted off to satisfy equation (31).

The F functions of equation (33) may be understood in the terminology of section 2.1.1 as acon-
trol term (A E)ea[x|V] = E[V(v,x')] - E[v], a transient term ®(X), and a subspace term E[v'|x'].
However, the subspace term is carefully normalized by subtracting the constant E[v(v,x’)]in order
to apportion credit for a given AE (equation (31)) between the X and v phases of the dynamics.
By equations (9) and (25), the subspace term E[v’|x’] may be written as E[v'{w(x)}]. So the
objective function of equation (33) is equivalent to the clocked objective function

Fatten = (AE)est[xIV] + @(x) @ E[v{m(x)}). (34)

It remains to specify the parameterization 7(X) of the focus of attention, the cost ®(x) for a given
focus of attention, and the estimation formula for the AF that would accrue from a given focus of
attention 7(x).Each can be specified in a variety of ways. ®(x) may be a k-winner constraint.
Also the estimation formula (A E)est may be meta-optimized to provide more accurate estimations
as judged by their effect on the performance of the attention algorithm.

In summary, once we are given the function v(v,X’)and the cost terms Cl, there is a Lagrangian
(the sum of cost and functionality terms) and an associated optimization principle (§g1 = O, asin
section 2.2 of Part 1) that determines the discrete-time dynamics of v and X-The action is given
by (30) for S and (33) for F'.

3.2.1 Criteria for Estimating the Effects of a Focus

It remains to find suitable expressions or dynamics for v(v,X')- These have the function of es-
timating the influence of alternative X vectors (hence of different foci of attention) on v without
actually performing the minimization of Feoarsev V| V. Khis problem is closely analogous to
the recta-optimization problem posed in section 3.2 of Part | . ‘I"here we sought a functional form
K (v, v) for the kinetic energy which resulted in the “optimal” dynamical system, where optimality
was defined to depend on behavior in many different trials of the network. Likewise we must first
define meta-optimality and then seek it, in the determination of a formula for v which will be used
in many different trials of the network.

For any such functional v, the required network computation must be very inerpensive compared
to that of v’ for this reason: the cost of optimizing Feoarse y IS €xpected to be some large number
of fine-scale iterations times the cost of finding v and is to be added to (and therefore balanced
with) the cost of finding V',



As always we must weigh functionality against cost. What makes an estimator v{v, X') effective?
For asingle neuralnetwork trajectory, the obvious choice is to consider the v function effective to the
extentthat the resulting v(¢) trajectory ininimizestheaction.Sin (30). After al, thelagrangian
already containsthe correct balance of cost and benefit terins for judging the v dynamics, complete
with a stopping criterion. The only remaining question is how to aggregate overinany trials of
the network which share the same formula for v, i.e many starting points, inputs, and possibly
connection matrices. One could attempt a worst-case analysis as in the determinat ion of A'(v, v),
but we have not succeeded in that, Alternatively we consider an average case measure of action,
averaged just over some probability distribution on starting points.

We have aready proposed a recta-objective, (35), for this type of problem, Here we are averaging
over starting points (and perhaps also over inputs A and connection matrices 1'):

[)
ME =) =( Y L0)  mEY Y L) = Myl (35)
tr(t)>0 p=1t|L(t)>0

where {VP(0)} are £ starting points sampled from the same random distribution over initial con-
ditions.

Generally, predictive accuracy in v is rewarded by this objective because of the term £[v'|x']
in (33); xis optimized for F[V (v, X)] and then used as a constraint in optimizing E{v'|x'] with
respect to v'.

The sampling procedure converts the infinite sum into a computable and optimizable quan-
tity M, at the expense of introducing a learning and generalization problem. Asin theoretical
approaches to learning [Vap82, BH89], we must ensure a sample size sufficient not only to approxi-
mate the infinite sum, but to continue to do so even after the sampled objective has been optimized
(by tuning Vv) to that particular sample (so that it is no longer a random sample of the infinite
sum). In this way, a nontrivial predictive learning problem enters into the design of the switched
neural network dynamics.

M may also be regarded as an average over dl configurations along a trajectory, rather than
just over the starting points, since every decision point along the trajectory contributes to the
summed action. But to do this we must define a suitable probability distribution of configurations,
and the distribution itself is a function of +. This may limit its usefulness for simplifying the
objective.

The connection between the optimization of v and a learning problem demonstrates one ad-
vantage of the derivation in section 3.2 of Part | of optima kinetic energy terms from a worst-case
meta-objective (equation (60) in Part 1) rather than an average-case meta-objective (equation
(35)): by this means analysis could be substituted for a large and (in general) recurring training
computation.

3.2.2 Candidate v Estimators

We now present several possible forms for G(v,x), which are to be optimized and evaluated accord-
ing to the criteria of the previous section. In the simplest form, v isto be computed by hypothesizing
a small, constant time At between course scale decisions, during which v and therefore E[v] change

according to Taylor’s formula: y
v
~,' =, - At -
0] v; 4 aT (36)
(cf. (29)) where .= { ¢y (t)dtas in Figure 2.1.
We may aso introduce, for each variable vi, a hypothetical time axis 7; which increases linearly
with real time ¢t when neuron vi is in the focus of attention (eguivalently, when ¢, (t) = 1 and x

adlows vi to be actively updated, i.c. when ¥v(t)mi{x} = 1) and stays constant otherwise. So

ni(t) = /dh/’v(t)m(x), and dri/dry = m{x). (37)
Then
0’j,1g.‘/l‘r~l
v = v; + Al (38)

drndry



and

Ev(v,x")] = £[v] + ®(x)
(AF)est[x]v] + ¢(x),

Feoarse-v! [XIV]

(39)

fen

where 91 du d
Y dv; dT;
(AE)esL[XIV] = At Z ('h'—‘ _‘") [V(tbcginning of v phase)lX]' (40)

Av; dry dry

We introduce the useful quantity

. _OFdu
Biv =50 (41)
which for Hopfield/Grossberg dynamics becomes (cf. equation (30) of Part 1)
ar\’ ‘ .
Eilvl = ~llor ) (51 ) = =sl(w) (B (12)

first proposed as an objective function for driving a focus of attention in [Mjo87]. With these
definitions, (AFE)est becomes

(AE)estlxIv] = A1) mi(x)Ealv] + ¢(x), (43)

and the associated v becomes, from (38),
Dy = v; + Atmi(x)i, (44)

where now vi = dv; /d7; and v will take bounded values determined by the v-phase Lagrangian.

‘I'he optimizing parameter here (for the prediction objective M) is At, which will also enter
into the coarse-scale cost term, since the cost of switching can be amortized only over the time
At. Note that the variables x, are ill discrete, and the cost of partly or completely minimizing
Feoarse y» depends on the relation between mi(X) and xa to be specified.

Naturally the partial relaxation cost associated with 7i(x) will only increase if we take the
natural step of expanding v and F' to second order in At. One good reason for doing this second-
order expansion is that the optimal At will not be small if switching costs are sufficiently high,
so a second order approximation may be more accurate. The second-order expansion proceeds as
before:

U = v + Atmi(x)v; + A; mi(x)v; (45)
and At?
(AE)en[xIV] = At Do mix) Elv) + == 3 W00 mi(x) By v] + $(x), (46)

ij

where E.i has been defined in equation (43) and where F;j[v]isthe quadratic form given by

) O’k
E;ij[V] = (9T,' Tj
O*E dv; dv; OF dv; 47)

N 6'U;v_,' (l’T‘- dTJ' Y 31),‘ dTiE
= Fijvv+ {5,']'E,,‘v,'.

For example under Hopfield/Grossberg dynamics, £,i; can be caculated as

o , oy gr)
T Eslv] :gl(ui)g’(uj)F’,iE,J'E,fj+éijgl(“i)F’,i(zk:gl(uk)ﬁ,ik + g,(u:)(h,.i)2 (48)

Because mi(x)? = mi(x), any diagonal terms in the quadratic form Zij Eaimi(x)mi(x) (cl. (46)),
in particular all those terms with di; factors as in (48), canbe absorbed into the r-linear part of
Froarse v+ FOr example, in a quadratic neural net objective E[v) = —(1/2)2_:;1i;v: vi 2o hivi +
22 ¢(vi), the coefficient of the quadratic form for y could be taken as

[;J;,-J- (vl = ~Tij9" (wi)g' (w3) 23 F . (49)



In this case the m-quadratic part of (46) becomes

(A[9‘)cstimate—qua(lralic == Z 7|', ‘l uy )" (UJ )[’ il J 1'] ) (50)

and a corresponding connection matrix would have the opposite sign.

The essentia ncw feature of objective (46) is thatit involves quadratic infraction.s between the
X expressions corresponding to different neurons This introduces a nontrivial scheduling problem as
part of the determination of the next focus of attention: separate neurons must not only be capable
of making progress individualy, but also those neurons likely to cooperate should be scheduled into
the same focus of attention. This point will be elaborated in section 4.2.

3.23 Cost Terms

At the coarse scale, the cost of one cycle of computation is the cost of running the v network for
timme At,, plus the cost of switching to the X network, plus the cost of running the x network for
aperiod At, plus the cost of switching back to the v network to start the next cycle.

These considerations may be expressed in the following cost terms for a coarse-scale clocked

Lagrangian:
Goarse-v - Uswitch + Nij(n)Aty + Clamp(Ax, {Aviln,(x):ﬂ}) (51)

and
Ceoarse-x = Clwitch + N,y (n)Aty + Clamp(Av), (52)
where “Clamp” is a penalty or barrier function which enforces the constancy of v or x as needed.
Both of the cost terms here are constant if we regard n, A¢y,and At as constant within a run,
although in that case the constant values of the n and the At’'s probably should be chosen by a meta-
optimization procedure using the same action, averaged over many trials, as the meta-objective.
Such a meta-optimization procedure could also be generalized to produce a simple rule, rather
than a constant value, for each At and for 71; when such a rule produces the result At, = At,= O,
the computation stops, In that way the cornrnon problem of choosing a stopping criterion, as well
as the more specialized problem of switching between optimization of v and of X, fal naturaly in

the purview of meta-optimization. Of course such a rule could be given in the form of a Lagrangian
for At., or equivaently for ., but we will not pursue this case here.

3.3 L. at the Fine Scale

Since the v are analog variables, finding fine-scale C' and F terms which act to minimize the
coarse-scale ones is now easy. We proceed as in sections 2.1.2 of Part | and 3 of Part |, except
that the Lagrangian functional of equation (22) in Part 1 is generalized to integrate each variable
v; according to its own internal time variable 7i= [, (t)mi(x)(t)dt as in Figure I:

d v o OF du

We may convert this into an mtegral of a single Lagrangian over a single time variable by using
the formula for 7 and the fact that ¢ (¢) and m:(x)(t ) are each approximately zero or one almost

al the time:
dr; dv‘ OF dv;
(1) _ } : i LA ek
'Sﬁne—v - /di < dr; ,‘U,] + Ov; dT,‘)

dri 4 dv,' OF dv;
/dt}:( ( f’”'“b—u;?i'r_.-)
(lr, dv; OF dv; dry
/(llzwv 7T:(X < [dT ]+—(ﬁ;iT—|_‘_il_)

dv; dr OF dv;
/dupv( er,(x ( [(IT, T — )+ 51)—'-(?)

(using A [0, v} = 0 and dr;/dt 2 0 or 1)

dv; OFE dv;
/dzwv(z) (}: Ax )1\[11 ]+Zm-(x)%;i%>-

i

Q

(54)

Q

i



But this is not quite the whole fine-scale Lagrangian for the active-v clock phase,becanse of t he
coarse cost tertns of equation (51 ). The “Cllamp” tertis may be refined by adding appropriate
cost-of-movement terms K[, r] (where A is minimal at # = 0) for each of the clamped variables:

2 IU,' N
Sty = / Aoty ( 2 KL+ 3000 ml0) K5 1> (55)

all non-v variables »

Adding St and S(?) together, we get the part of the action that pertains to the active-v phase:

e 6[‘)([ i
Shine-v = /dtv/rv(t) ( Z K[z, 2]+ Zm(x)%%) (56)

all-+zriables

Comparing this action to the Lagrangian in equation (6), we see that the fine-scale dynamics is that
of a clocked objective function governed by the focus of attention characteristic function mi(x)-
Note that, as far as the Lagrangian is concerned, this refinement amounts to an algebraic

substitution

bo(t) [Cv+ V] - wv(t)( > 1<[r,a=1+2m(x>§§m), (57)

. 1
al variables r

which is justified since at the end of a coarse-scae step, F is just a constant starting value plus a
coarse-scale change Acoarsef',and the coarse-scae change is equal to a sum of fine-scae changes
[ dt3;(0F/0vi)vi. Also, the K terms for the clamped variables (some viand al other variables)
serve as pendty terms which, in the absence of other = terms, enforce 2 = O when ¥, = 1 and
thereby refine the “Clamp” terms of C,.

The hard part of refining a focus-of-attention Lagrangianis to find fine-scale C and F terms for
the variable-z phase, because our coarse-scale terins assume discrete-valued X variables and the
previous refinement techniques don’t apply to that case. Indeed, a general, N variable, discrete-
valued optimization may be the goal of the entire neural computation (at the coarsest time scae
of al) so we surely can't assume that much capability at the tine time scale. On the other hand we
have already accepted an approxitmnation in Feoarse-xy ON the grounds that it is not global convergence
but merely the order of neural updates that is at stake. Additional simplifying approximations may
also be acceptable if optimized through training and verified through testing.

Unless Feoarse-y iS linear in xa, (for example by being linear in At with mi(x) linear in x), this
F is a nonlinear objective which will require many steps of analog relaxation dynamics, implying an
uncertain time to convergence to a nearly discrete- valued X- Since we only have an intermediate,
fixed time At available for relaxation, some additional mechanism will be required to find discrete
values for X after a possibly incomplete analog optimization of F[£], where £, are continuous-valued
versions of Xa-

3.31 Two Phases of Switching

The computational savings we seek accrues through the actual switching from one active set of
neurons to the next. For switching to occur, however, we need a “digital restoration phase” in
which the X variables are restored to definite 0/1 values. This phase could be left implicit in our
modeling, as part of the unspecified switching hardware, but then we would be unable to analyze
possible failures of the mechanism such as too little time to converge to discrete values, or too many
mi(x)=1. By contrast it is easy to leave purely digital circuit switching details unspecified, since
accumulated experience makes it relatively easy to engineer such circuit mechanisins outside of our
methodology. We will however explicitly model a third phase, in which analog variables x. are
restored to nearly discrete values y,, as close to O or 1 as any physical circuit quantity ever gets.

Then we will have a global cycle through oune phase that relaxes the analog v variables and two
phases that optimize the discrete 0/1X variables by first optimizing analog variables £ and then
restoring them to nearly discrete values xy which can substitute for actual discrete values Xiu any
circuit implementation. Of course in a digital implementation medium (such as a general-purpose
software environ ment)which exists as an abstraction of some analog physical system, one should
instead move directly from £ to X-



With this addition the fine-scale Lagrangian becomes
Liine ~ > KE DD dalt) > o (63)
i ‘ : 0%
al variablesr phases o a-variables x,,

which, as we showed with equation (6), is exactly the Lagrangian corresponding to a clocked
objective function

Frge = 3 () Ealxa] ] = B FalXa %24l (64)
a @

More particularly (substituting from equations (57) and (60)) we get the clocked objective function
for three-phase attentive dynamics:

ES-phase - Zﬂ'i[f]l"’;i[‘?] + @ <Z 71’,‘(6) - “>+ Z¢0/1(£a) (control te”“S)

b - ZXu(éa' 0) + Zd’()/l(,\h) | (transient terins)
& L[vt{lﬂ'(x)}] ’ (subspace term)

(65)

This clocked objective function for a focus of attention is a more elaborated version of equation
(34). Note that, from equation (57), we have

OEv{=(x)}] _ _, JOF _  OF

T_ = ﬂt(l)avi = ﬁt(X) dv;’ (66)
which is the essential feature of a clocked objective function, as derived in (5).

Various special case expressions for i (X) will be explored in the next section. In the result-

ing networks we will often omit the digital resetting phase for a simple kWTA network, on the
understanding that it should be restored as part of an analog circuit design.

4 APPLICATIONS TO COMPUTATIONAL
ATTENTION

Here we present several possible applications of the forgoing computational attention mecha-
nisms and notation. The first two (sections 4.1and 4.2) have been employed to good effect in [T'si97]
where substantial savings in computational cost are documented. The rest of the applications below
may be considered as design examples.

4.1 Priority Queue Attention

The simplest possible expression for 7i{X) is the identity function, in which each variable v: has its
own attention indicator Xi:

mi(x)=xi€ {O, 1}, where Y _xi=n << N. (67)

We have previously reported on this case in [MM91]. “i’he objective function for X would be
transformed into a clocked objective, as in (30) (again using the notation of section 2. 1.3):

E[v] - (kWTA(x. n) o+ Do E;-’[V]) @ Elv{x}]- (68)
|

This representation of 7i(X) looks expensive, since any savings obtained by leaving most #: ‘sout of
the focus of attention could be lost by updating all the xi variables each iteration. From equation
(65) this update would also require computing E; for every #,n the focus or not. But in fact £/
is unchanged unless wv; is in the focus of attention, or has a network neighbor in the focus; so for
efficiency we can store this gradient information in a variable wiwhich is only updated in those



These considerations can be formal ized as a slight modification of the Lagrangian transformation
point of view used in section 2.1 of Part1to derive a fine-scale Lagrangian for V. Now we are required
to partially opt imize an objective fcoarse-y [X]V], while guaranteeing the discreteness of X We will
adapt the same three transformations as before.  Pirst we switch from discrete to constrained
continuous optimization, accomplished in two successive phases using clocked objective function
notation (2. 1):

Ix(t) Cx + Fx] + (I’(L TF:'(X)")l - Pell)

Z: Kz, z] + I'[€] + ¢(Z mi(€) — n)}
[

all variables x i

gt > 1f[a‘ur]+2}>za(sa‘0)],

all variables z J
(58)
where &i¢ [0, 1], Xi€ [0, 1], 0 is a threshold, and @ isa sparseness term such as those of equation
(27). Second, replace al constraints with penaty functions added to the objectives:

FE] o5 Ex-optl€] = F[E] + P02 m(€) n)+ 3, ¢(&),
Za i/a(ﬁa i 0) + IQ‘restore{i] = Za Xla(sa - 0) + Za ¢()2a)

Here the threshold ¢ is usualy taken to be 1/2, but other values may be used if the analog x
dynamics would thereby be sped up without losing accuracy. Also £(i)=mi(£),as in equation (25).
Note that the objective Frestore[X] is especialy well-behaved among those wc have considered, since
the only way a large condition number or delay can arise is through the potentia terms. The third
transformation is to refine these coarse-scale objectives, and the usua volumetric cost terms, into
fine-scale Lagrangians (cf. (57)):

Ce + Fle] + E¢(§a) Y Z K[, r]+V€[l"[€] + d)(z n +E¢ (€a ]
a all variables ¢
CX + Za i'a(Ea - 0) ¢ Za d’(*a)—) Al Z 1 .’l‘ +V [Z)m (¥ +- Z(f) X“ ]
variables x
(60)

These two Lagrangians, along with the usua one for v, must be reassembled into a full three-phase
Lagrangian by multiplying by nonoverlapping clocks 14 (t) and summing over o as in section 2.1,
that is the only way to express the action as a sum over agorithm time ¢ (some [ -dt or some 3, ")
rather than over the intra-phase time variables 7.

(59)

3.3.2 Complete Multiphase Dynamics

We now have a 3-phase dynamics. First, choose the focus of attention using analog X variables so
as to optimize their estimated effect on AF subject to resource limitations. Second, discretize x.
I'bird, relax E[v|x], using the chosen focus of attention. The analog X phase includes a global -
winner constraint for 7(x)- We will assemble the previously derived fine-scale cost and functionality
terms for this net into an action functional and an associated clocked objective function.

Adding the partial Lagrangians of equations (57) and (60), we get a preliminary Lagrangian

. ( " — I Ea
Lne= Y. d}a(tt > Kéa] . (_ﬂx X (61)
(e S ated }

phases « all variables r o-variables, x4

This Lagrangian presents a problem for times t between a-phases, when ), #(t) = O, because
at such times no dynamics is specified. The desired dynamics between phases is that all variables
should be clamped. This can be ensured by adding a penalty term for movement of any variable
between phases, in the form of a kinetic energy term K':

jlcxtra = (1 - Z 1/’0(”) Z [\'[i'v 'T]‘ (62)

all variables r

Note that in physics, a Lagrangian consisting only of a kinetic energy terin corresponds to a particle
moving along a geodesic such as a straight line (# = O), whereas here it corresponds to a variable
clamped to a particular value.



circumstances. Also, the n-winner circuit canbeimplemented digitally as anincremental priority
queue of Wivalues. SO the clocked objective function becotnes

Equene = Z (w.-{start, + i+ Z Nbr;jxj} - IJI,-[\}']>~/2 (transient terins)
i J

) sta,rL'*'/‘Z + Z Xiwi + ¢ (Z Xi — n) + Z(j»o/l(,\',-) (transient + control terms)
o Elv{x}] (subspace terms)
(69)
Here “start” is initialized tounity and almost immediately changed to zero (in the second phase of
the first clock cycle), and Nbr;; is a constant 0/1 matrix recording whether neurons v: and v; are
adjacent in the network or not:
O*E
o if max
Frwle

Nbr,= N lf maxv()d)”(v D+ 17351« Yo ikl =0; (70)
{1 otherwise.
Note that at the end of the first phase,w; = —F;[V]. That’s because (a) in the first cycle,

start; = 1, and every variable w; is initialized to —¥,; and (b) in subsequent cycles, either w; is
again set to the proper value, or else Xi = O and} Nbr;;x; = O. In the latter case we know that
w; is unchanged from the previous cycle (since it is only changed in the first phase of any cycle),
and also that £ is unchanged from the previous cycle because it is unchanged by the dynamics of
Elv{x}]’s relaxation:

d . d (OF
it = aGeregw)|
d 0]/ - oL AE dv; -
= ' - (6v, ) (K ~ o —K u,) o —dT]\,U
—~ O%FE dv; dr; . OF . dv; d‘r, oF -
- ( 7 E)Ux'avj Eij) (h 31, Go w) tan dr; dt dv; Do (71)
~| 8%k dv; . dv, OF
- (214 ;9vj(9v_, drj ) K- (') k w| X Ovi 7o

= O (since Xi + Z Nbrijx;= O).
J
So throughout the second phase when X is being determined, @; =—£;([v].

Also note that in accordance with the definition in equation ( 11), the expression that controls the
clamping of a variable such aswi is implicitly held constant and need not be explicitly clamped.
Only the second phase of equation (69) above has O(N) variables, and it can be replaced by
a priority queue data structure with update cost O(n 10§ N + ¢N), where k depends on digita
hardware details and where ¢ <<1 reflects the cost of storing w; in inactive memory for future use,
presumed to be relatively small.

Equation (69) assumnes that n is constant. This assumption may be removed, if the coarse-scale
cost of each nis modeled explicitly as mentioned in section 3.2.3. 1o a first approximation we
may take the cost of a focus of attention to be proportional to its size, n, and ignore the effects of
various different border shapes on the actual cost (these effects would tend to favor a focus with
asmall-boundary.) But what should the proportionality factor be between cost and benefit (AE)
terms? To get sensible results we'll answer this question in an ad hoc way, not (yet) derived from
fundamental considerations. Suppose that the cost of updating a neuron is dominated, not by space
and time costs, but by the A E benefit foregone by not saving those same space-time resources to
update some other neuron in the following iteration. To estimate that cost, per focal neuron, we
multiply the average available A per neuron by a constant f which must be meta-optimized.
Thenwe have the following functionality expression.

Flx,n) = Z\""" 14+ kWTA(x, n) + %Z[[;';i[v]|+¢o/l(n/N). (72)



Optimizing this I’ may be achieved by (a) sortingiaccording to £, for exampleincrementally with
a priority quene data structure, and (b) turning on all\i for which |k ,|/(N7'S2 Ei[v])) > f.
The focus of attention then consists of neurons whose single-neuron estimated contribution to A/
is more than ftimesthe average; it canrange fromnone to al of theneurons. The potential
function ¢g;1(n/N)can aso be chosenso that the minimumn focus size is oue, rat her thannone, of
the neurons.

The focus of attention equation (67) provides maximal flexibility, since any subset of nout of
N neurons in the network canbeinthe focus at one time. however, efficiency requires ahidden
priority queue representation of m(x), so that x can be represented with only a marginal increment
of space to encode this focus over that required by the n actual neurons in the focus at any time.

Generally such a representation is based on the binary addressing capabilities of a general-

) . . . N
purpose computer. In fact the number of hits required in X to specify such a focus is log, ( 7Ly

For large N and << N, this is approximately nlog, N bits. \Ve can easily encode x with this
many bits, for example using the binary addresses of the n neurons in the unrestricted focus of
attention. (Other efficient addressing schemes, such as Gray codes, would work tco.)In radix (e.g.
binary) notation for whichi ==i,...4:

1
= YT 6% (s ®) (73)

a b=1

(where Xab are binary-valued and §% is the Kronecker delta), or equivalently,

ZH\ab‘b’ with ZXubxt,: . (74)

a b=1

If such a representation is substituted directly into a neural network objective function, rather
than used in a hidden digital implementation of a stereotyped objective function such as the priority
queue, then we get relatively intractable high-order objectives for X (see (MG90] for an example
of a sorting network using a similar high-order representation). Until this problem is solved by
expressing some specia- or general-purpose addressing and communication algorithms with simple
clocked objective functions, we must appea to non-neural switching circuits as necessary, taking
care to estimate their costs. The clocked objective with brace notation v{x} still specifies the use
we make of such switching hardware, and would remain a useful notation even if we knew how to
eliminate it in terms of clocked objectives without brace notation.

4.2 Multiscale Attention

The 7 (X) = Xi representation of a focus of attention has the disadvantages of requiring a hidden,
digital implementation (e.g. a priority queue) in order to be efficient, ancl of alowing foci without
any coherent structure that might decrease the number of border neurons that are outside the
focus but involved in the computational decision to move the focus, Both of these problems may be
eliminated by restricting the focus of attention to a choice of one or severa blocks of neurons, from
afixed partition of all the neurons into equal-sized blocks with low connectivity between the Mocks.
An example of such a partition would be the division of the 2-d grid of the region-segmentation
network (equation (19) in Part 1) into A << N uuiform rectangular sub-grids. Any such partition
can be represented by a sparse, non-square 0/1 matrix B for which 3", Bia== 1. Given such
a partition, only one focus indication neuron Xa is needed for each blocka€ {1, .... A << N},
rather than one per neuron index i€ {1, .. .. N}. Inreturn for increased efficiency in the attention
mechanism as compared with the previous case, one gives up flexibility in the shape of the focus of
attention. Some of that flexibility can be reacquired by generalizing the partition scheme described
below to many levels in a recursive algorithm.

For a single level of partitioning, in which neurons v; are grouped into fixed blocks @ which enter
or leave the focus together according to indicator neurons xa,

= Z”ia/\ay (75)



where I3 1S the constant partition matrix.

We could just substitute this expression for \i (or 7i(x))into equation (69) (or (65)),inwhich
case the most active blocks of the partition /3 wouldbe the focus of attention. Attention would
be a very affordable computation, a k-wi[lncr-take-all (kW' T'A)network. One clocked objective is

siinply
Fylock = 9. Xa P Biali[v]+@ (Z Yo — n(A/N)) + > dos1(Na)

®  EN{D Biaxal]

which can again be improved by storing ;i as wi, to be recalculated only as necessary, and which
can be further improved by storing w,=73_,; Biawi.

But here we will push the method a little farther, by choosing the 4 blocks not only based
on their internal gradients but also on their predicted synergies with each other. The synergy is
predicted by using the second order expansion for £, equation (46), which may be affordable now
that we have only A focus-control neurons:

(76)

2 d°F
A% () ™

Ex] = Arv( [V{Hx}] +
Then the clocked objective analogous to (69) is
Eilock = Z (w {start + ZB'GXG + ZNbr,m} ‘.-[‘7])2 2
+ Z (u»,_,{start + Z io + Bja)Xa + Z (Nbrie + Nbric)xe } = , ,J[v]) /2
® Z (wa{start + Xa + Z NbrabXb} Z Biqt; )

a

+ Z (wab{start + Xa 4 X6+ Z (Nbrac 4 Nbrec)x } ZB,aB,bw,,) /2

@  start?/2+ Zfawa - ATV Z&:Ebwab + @ (Z &a — n( A/N)) + Z bo/1(€a)

@ —Zrlaka+¢<z7]a"rl A/N>+Z¢O/l 1a)
& - Z Xa(7la = 0) + Z¢0/1(Xu
) E[V{Z BtaXa}]

(78)
where we have introduced constant sparse matrices
Nbriy = ©( D7 BjeNbryj - 1/2) (79)
J
ant]
Nbres = O 3 BiaBjNbry; — 1/2). (80)

LN

In (78), as in its prototype (46), the main departure from other clocked objective functions for
attention is the quadratic objective function for & which expresses a nontrivial scheduling problem:
which k& neuron-blocks should be active simultaneously in order to maximize the expected sum of
single-block and block-pair contributions to |A E{? This quadratic optimization could be as hard as
the original optimization problem E, were it not for the fact that it involves far fewer variables &,.
So it is crucial to have a separate restoration phase for X in case the £ analog scheduling optimization
does not finish within its clock phase.In fact if the convergence time of the scheduling network
isn't known well enough, we may need two restoration phases. one which restores & to an analog
kWTA solution 7, and a subsequent phase to ensure discrete 0/1 values X for the attention control
variables. T'his conservative approach to restoration is incorporated in eguation (78).



Figure 2: A rolling window of attention.

The scheduling network is a kind of auxiliary, coarse-scale network which controls attention at
the level of blocks. Its connection matrix is surprisingly similar to part of a previously studied
multiscale optimization neural network [M GM91], which also had an auxiliary coarse-scale network
a the level of blocks of neurons. In that case the coarse-scale network was not for the purpose
of control, but rather to accelerate the convergence of the much more expensive fine-scale network
(which was simulated without any attention mechanism). In this regard the coarse-scale attention-
control connection matrix wg,, May be taken (as discussed in section 3.2.2) to be the negative
of equation (50) after substituting (75) for mi(x); then it becomes identical to the coarse-scale
acceleration connection matrix from [MGM91],

Tav = Y BiaBjng' (wi)g' () B4 E ;T (81)

ij
43 Jumping and Rolling Windows of Attention

The block-attentive neural network algorithm of equation (78) is equipped with a focus of attention
that jumps from one block or combination of blocks to another in successive clock cycles. These
jumps are rather expensive, since they involve storing the values of whole blocks of neurons which
used to be in the focus of attention but no longer are, and retrieving from static memory the blocks
of neurons which are newly promoted to the focus. A more gradual migration of neurons to and
from the focus of attention is studied in this section, for networks with such a regular topology
that the focus of attention can roll (i.e. move incrementally) from one region to another as well as
jump.

A rolling focus of attention is one which moves incrementaly, keeping most of its neurons
assigned to the same implementation hardware.For example, consider a two-cl imensional mesh of
neurons with local connectivity, as occurs for example in the region-segmentation objective function
(19) of Part I. A small piece of such a mesh could be implemented by a two-dimensional VLS| chip
in which a fraction of the chip area is devoted to end-around connections, giving the circuit the
topology of a torus, together with some form of secondary storage for the many neuron values which
are clamped and stored off-chip. The torus can roll in any direction. The situation is illustrated in
figure 2. Consider aso the assignment of physical (chip-implemented) neurons to the much larger set
of virtual neurons comprising the neural network. A rolling motion allows this assig nment to remain
unchanged everywhere except at the boundaries of the chip, or equivaently the boundaries of the
focus of attention. This minimizes the need for off-chip communication and on-chip analog shifting
circuitry everywhere in the chip, at the expense of requiring dynamic boundary circuitry (probably
digital) throughout the chip. An alter-native would be to alow the focus of attention to “dlide”
around the ncural net instead, inwhich case the dynamic boundary circuitry may be eliminated
in favor of the analog shifting circuitry. Our clocked objective function can beimplemented either
way. For clarity we will discuss therolling case.



‘1’0 describe the focus of attention mathematically, we just need w(x). We want to use a set
of blocks of neurons as insection 4.2, so that they can jump under the control of {y .}, except
that the blocks also roll (or slide) around the mesh.Fach block’s position canbe characterized
by its center. Block e has center ¢, + x,,inwhich ¢, is a home position for block a defined by
afixed coarst’-scalc grid, and x, is a dynamical displacement variable. The reason for including
the homne positions is to alow unused blocks to stay near theirhome positions, providing coverage
of the alternative locations that the focus of attention can jump to. (This capability would not
be necessary if blocks were only allowed to roll, but that would introduce spurious local minima
into the attentionmechanism, for example when a rolling window encounters its own or another
window’s path. ) Then w(x)isas in section 4.2, with Bia = b;(ca + x4):

= 3 bi(ca + xo)xe. (82)

We may scale our two-dimensional coordinates so that a block is a unit square, and we may
assign addresses cin this coordinate system to each neuron i. We take ¢, and x, to be measured
in this coordinate system aso. Then the window boundary function b,becomes

bi(ca+%a) = b(ca +%Xa— C), (83)
where ,
dimx
b(x) = JIe/2—1xal). (84)
a=1
We will also have occasion to use a soft (differentiable) version of this window boundary function,
I;;(ca + Xa) = b(cq + Xq — ¢5), (85)
where
dim X R
= [T 00/2~ lza)) (86)
and
R 0, r<—w/2
Oz)= =z/w+ V2 -111/2 <x <w/2 (87)
{5 r<w/2

Then a clocked objective function for the rolling and jumping window of attention is

Eje v, & x] = Z (w,-{start + Zb;(ca + Xa)Xa + ZNbribXb} — E';;[V])Z/Q
1 b

(compute the gr;dicnts)
& 3 [ n(start + xa + 3 Nbrasge — 1/2) + dosa (ma)]

a b
(clamp unaffected windows)

2
D Z (wa{na} - Zb,-(ca -+ x,,)ti)g) /2
(;ggregate the g,radients) (88)
@ start?/2+ Z [H(r.a{na}) + ZNbraji)j(a:a{na})ﬁ;j
J

(roll unclamped windows)

® Zn[ﬂ Fa) + 3 bj(ca + %o)il; ] + KWTA(x, nA/N)

j
(sc.lcct k best windows & jump there),
d [‘,'[v{ Zxﬂb;(ca + xn)}] (descent within windows),

where as before

KWTA(x, k) (Z Yo = A) + qu (Xa) (89)



Figure 3: Spring function H(z) = €|z| + c1p(|z] — 1/2) + ¢11(ﬁ5),solid curve. Iirst term restores
|z| to zero when block is out of the focus of attention. Second term favors hand-of'to a neighboring
block (neighboring block spring functions shown in dotted curves.) Thethird term is a barrier term,
limiting the number of blocks that can be attracted to an attractive focal region of the network.

A crucia ingredient is the spring potential function A which allows a block 0 to move freely
away from its home position until it is more than halfway into another block’s territory, then to
hand off the rolling window to a neighboring block 6 by turning off x,and turning on xs, and then
to return to the borne position x, = O t0 compute its expected AE and compete for another chance
in the focus of attention.

A spring function that makes this possible is illustrated in figure 3. An explicit expression for

His
dir_xLX .
H(x)= > H(za), (90)
a=1
where A 2
H(z) = e|z|+ cipllx]—1/2) 4+ 4% 1m), (91)
and where . 0
0, <
o(r) = / O)dr= O 127, (92)
— 00 { d —_

4.4 Sparse Networks and Spreading Activation

‘I'he attention mechanisms of the previous sections are designed to limit the number of active vari-
ables at any time, including both problem variables v and attention-control variables X-However
there is no attempt to limit the number of inactive variables whose values must still be stored and
which therefore still occupy some hardware at al times. By imposing such a limit, we may be able
to achieve far greater efficiency for optimization problems whose solutions are constrained to be
sparse. What is required is that most of the variables outside the focus of attention should take on
default values, such as zero, which need not be stored at all. The strategy is to enforce sparseness
of v at every phase in every cycle, not just at the end of the computation. To achieve this we will
allow mild expansions in the number of active neurons at some phases within a cycle, and enforce
counterbalancing contractions in the number of active neurons at other phases in the cycle.
Suppose Vv is a set of N variables, constrained to be sparse in the sense that al but n << N
of them take (possibly identical) default values default(i) at any valid configuration. The default
values may be zero or any number easily computed from the index r' aone, without the use of a
large table of values (which would have to be stored). Let E(v) be an objective which includes
penalty terms for sufficient sparseness constraints on at least some of the variables v, andwhich
has the property that at any sparse configuration in which cn variables are unclamuped in a focus of
attention, al but n of the variables must approximate their default values at any local minimum.
(Herec > 1 is a constant, ) Also suppose it is possible to initialize the network so that the focus of



attention contains al non-default. variables (of which there are <n)and also all neighbors of such
variables (of which there arc <en).

T'henat the beginning of a relaxation phase for F[v{x}],all <nunon-default variables and all
their <en neighbors are included in the focus of attention At the end of the relaxation phase,
some new set of <n variables have non-default values; the rest have near default values which can
be reset to their default values without introducing much error, and which therefore do not need to
be stored explicitly. In this way a limited front of activation relaxation, will propagate through the
network of possible neurons which we shall refer to as latent neurons. The dynarnics iS reminiscent
spreading activation or “marker propagation” algorithms in artificia intelligence [Fah79, ‘1lou86],
and could perhaps be developed in that direction by using objective functions proposed in [MGA&89].
Latent neurons are to be distinguished from the virtual neurons of previous sections (e.g. section
4.1), the latter requiring storage even when out of the focus of attention.

A suitable clocked objective function for such a spreading activation network, with many latent
neurons, is

Idspread = Z\i{\"}+ Z¢0/1 Xi{Yf
& ZX:{S; + Nbr,]sj} + Z¢0/l (xi{si + Nbryjs;})

o Llv {X} 71, €]
@ D sebxi (s - defaultli) /et 1) 4 37 gopa(si i) )

+7(I>(ZS,'{X,’ -n) +7L3|{X:}[";l["x"]
@ —(1/2) }j(1’i{Xi($i 1)} 'd'efault(i))z + Zd’O/l(vi{Xi(Si D).

|

Here the first phase serves simply to find all nonzero x’sand to set their values to zero. The
second phase sets the focus of attention to include all non-default v;’s (for which s; = 1) and
their neighbors in the network topology. The third phase relaxes the network within the focus of
attention, which we assume produces a new set of <n variables vi’s which are not close to their
default values. The fourth phase finds these variables and updates sto record them. Optionally,
we can set v > 0 to ensure what is aready supposed to be guaranteed by F,that s== 1 for nonzero
gradients and that Y, s<n. The fifth phase truncates near default values to exact default values,
because neurons taking their default values do not need to be stored. (So in an implementation the
fifth phase would not physically perform a truncation; it would simply de-allocate the hardware
used to support the affected neurons.) The five phases together constitute one iteration of sparsity -
preserving dynamics.

As an example of a suitable objective function F, we discuss a simple network for finding roots
of a continuous function f(z) of one variable z € [0, 1], by the bisection method. This network
dynamically constructs a tree of at most n nonzero indicator neurons @i, taken from an infinitely
large tree of latent neurons. The network seeks large negative values of f(z) f(z+¢), and then bisects
the interval [z,z + ¢]. Using multiple index notation i=11%214;, the search tree consists of al the
latent O/1 neurons ail.. i, which take a value close to one if the search currently includes that node
of the treg; also each node has a census neuron™i, .. i, € [0, n] which counts the number of neurons
(including a’s and m’s)active at or below that node in the tree. These sets of variables would include
the I = O versions, a andm without any indices, which are associated with the root of the search
tree. The bisection search interval boundaries arc o= 0O, 1 =1, oo= O, To1= 210 = .5, Z11=1,
and in general, zi,.inb =Y oe i, 277 + 427

Then a sparse objective {ﬁm:tton for this problem is

Eiree = Z Z i, @ uqi(( f(Tn 'lo)f(r'.l-vill))
I=11,...4;,=0,1
<) )
+(A/‘2)Z L (aiy i+ Ger(my, )+ oy o by g — )T (94)
{=01,...1,=0,1
o0

+(A/2)(m/n - 1) + M Z ¢osi(ai, . +L Z Gosi(miy i /1),

{=01d,...4;,=0,1 1=01,...1;=0,1



where g4 is an odd monotonic function with slow asymptotic growth, e.g.logarithmnic growth. T'he
network could be initializedwithaga, 1 and svariables taking near-zero (O{e) << ) values, except
at the root where s = 1. At initialization al the non-zero gradients of £ (which arise fromthe
k-winner-take-all terms) are concentrated at the root and its immediate childreni=0and: = 1.

A noteworthy property of the objective (94)isthat the sparseness constraints are not global,
but rather distributed over the topology of the network in such a way that an actua neuron ais
involved in every term of the sparseness constraint. T'his prevents many census variables i from
being given non-zero values in an effort to find one non-zero a variable. Instead, only as many
census variables will be activated as needed. Thea; + §41(m:) summand in the k-winner term
serves to include both a; and ™i in the count of activated variables: §41(m) is asigmoid with
values ~ 771 for m<« 1, and & 1 for m > 1. The g+1(m) expression could be replaced by another
Oll-valued neuron whose sole connection is to m.

We speculate that it may be possible to give a similar treatment of the conventional objective
functions for inexact graph matching, such as [11'1' 86]

Emach{M] = = GijganMiaMjp + (A/2) L Z Mia = 1) 4 (A/2)> 0" Mg — 1)?
a i

1jab

+BY " Mia(17 Miq +L¢0/1 M.a ).

(95)
However it is again necessary to localize the winner-take-all constraints, for example by embedding
them in spanning trees for both G and g, in which each variable Mia enters into each WTA constraint
a its own location in the spanning tree. An additional attraction of such a sparse graph-matching
network is that the E-relaxation phase of the clocked objective could actually be a nested loop
which performs deterministic annealing in order to avoid loca minima, Since successive cycles
would have different foci of attention, the successive annealing procedures would be different - the
high-temperature part of an annealing relaxation would not erase the progress towards a solution
encoded in the focus of attention. A related technique for accelerating the convergence of matching
networks by exploiting their sparseness was used in [LM94, GLR*95].

45 Orthogonal Windows

As suggested in [Mjo87], we can take advantage of the fact that some or all of the neurons in many
hand-designed neural nets fall into natural cross-products, e.g. vi=vi,,i,- An example is the
graph-matching objective function of equation (95). In such cases we can greatly decrease the cost
term by decomposing X and hope to retain functionality since it is only X, not v, whose information
content is thereby reduced. An obvious decomposition to try is:

mi(x) = X5y X5) (96)

(1)

n(x) - xF oxi?, 97)

3o Z Xi Z X < (98)

1 i1=1 i=1

where

‘I'he last may be ensured by constraining

}_4 x,b) <np (be{1,2} and niny < nj. (99)

;=1

For more than two terms in the cross product, al this generalizes to

H\ff), (100)
where
Ny
Z ,\Ef) < ny and Z m(x) = H ny < n. (101)
1s=1 1 ]



Following equation (68), we can use the clocked objective function

Forthog = Ex[x, V] @ Elv{x" & x®}], (102)

24\11 \l;?')[’m +(I’ L\l — 1y +(I)ZX __”2
B (103)

L¢0/1 (l) +L¢0/1 (xi,)

A major problem with this scheme is that al the 1/;.'[VJ derivatives must be calculated, even though
we want a small window of attention. A simple solution is to window the control variables X aso,
and only calculate the few that are necessary. There may be only O(Ny+ N2) of those, rather than
O(N). One possibility is the disjoint union focus of attention 7T(X) (), 72y for x- We will
apply transformation (68) twice: first to v, substituting mi(x)= \_, xz) for x;,and then to X
itself, using a straightforward focus of attention:

(o) (1) = 0\, where anf) < cnp. (104)

i

where

JFrom equations (41) and (42), we can calculate

EQ) [, v] = By, VIXS = gl (5 x,,)))(zx,f)f,.[vH ) (105)
and
[izt)z (X, ‘1 = Fxilx, V]§}:‘~g;(gx X,2 Zk,l Eilv] + ) (106)

Thenthe doubly attentive clocked objective function becomes
Eorthog = vali)l [x, v] + Px u[Xv v+ Z vl —emp) + @(Z ,(22) cngy)
1 iz
Zd’u(l/(l)) + Z d)u(l’(?)

I
@ Lx,f){vff)+x,l P + x Py Bl

+ @ § X(l){l’,(ll) + X! 1)} )+ @ ZX'Z){V (?)} - n3)
+ Z%/l X,,){V(l)‘FX,ll)} +Z¢ o/1( X.,){V(z) (2)})

o Ev{x"ex®)}).

The first phase may be traded in as before for a priority queue implementation; but the space
cost of the default circuit implementation is aready so small (O(n;+ n,) for the kWTA network)
that the priority queue is not necessary. In the second phase at most (c+ 1)2n? gradients £ must
be calculated, As in previous networks, one could make the efficient calculation of all gradients
explicit by adding extra phases and variables.

The focus of attention introduced in this section applies when the neuron index : takes values in
some domain which is a cross product of other domains, domain(i) =domain(i; ) xdomain(zz). ‘1’his
is of interest for building complex network architectures by composing simpler elements. Another
natural operation on index domains is the digoint union i = (b,%) - The E, example above showed
how to compose a focus of attention for this case as well (see equation (104), with Y, cnp<the
number n of active neurons allowed), though that case is much simpler than for the cross product.

(107)

5 DISCUSSION AND CONCLUSIONS

In part 1of this work wc introduced a l.agrangian formulation of the relaxation dynamics of
neural networks which comnpute try optimizing an objective function in a standard neural network



form. The Lagrangian formulation akes novel use of a greedy functional derivative, which we
defined and computed. With these tools we demonstrated the use of three levels of optimizationin
the design of relaxation neural network dynainics: the original objective £/, the Lagrangian /., and
a lllcta-objective M whichmecasures cost and functionality over many triais of the network.

In part I here we deal with a secoud group of more ramified applications. For these we intro-
duced a clocked objective function and an associated notation. These constructs have the capability
to clamp or unclampnet variables depending on the values of other of thenet variables. Thisno-
tation and tile stepwise refinement strategy for designing clocked objective functions sufliced to
obtain computational attention mechanisms. Analogous to virtual memory or virtual processors
in digital computers, such computational attention mechanisins have a focus of attention quality
which can take a variety of forms. These include a priority queue, a set of coarse-scale blocks of
neurons which could be scheduled according to their expected synergies in optimization, a set of
jumping and rolling rectangular windows in a two-dimensional network, a sparse set of active neu-
rons for which the excluded latent neurons require N0 memory, and the cartesian product of several
simpler foci of attention. Bach of these cases was concisely expressed using simple analytic notation
with clocked objective functions. Reference was made to a number of experiments, application aucl
computation, which employ the greedy variational and clocking calculus which we have introduced
here.
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