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Abstract

A fundamental open problem in computer vision—determining pose and correspondence
between two sets of points in space—is solved with a novel, fast, robust and easily implementable
algorithm. The technique works on noisy 2D or 3D point sets that may be of unequal sizes and
may differ by non-rigid transformations. Using a combination of optimization techniques such

as deterministic annealing and the softassign, which have recently emerged out of the recurrent



neural network /statistical physics framework, analog objective functions describing the problems
are minimized. Over thirty thousand experiments, on randomly generated points sets with
varying amounts of noise and missing and spurious points, and on hand-written character sets

demonstrate the robustness of the algorithm.

Keywords: Point-matching, pose estimation, correspondence, neural networks, optimization,

softassign, deterministic annealing, affine.

1 Introduction

Matching the representations of two images has long been the focus of much research in Computer
Vision, forming an essential component of many machine-based object recognition systems. Critical
to most matching techniques is the determination of correspondence between spatially localized
features within each image. Often such features are treated as points in 2 or 3 dimensional space.
The resulting point matching problem is difficult to solve—especially when issues of noise, missing
or spurious data, and non-rigid transformations are tackled (Grimson, 1990).

Using a new technique—the softassign—which has emerged from the recurrent neural net-
work /statistical physics framework, we develop new algorithms for 2D and 3D point matching.
Energy functions are formulated for 2D and 3D point matching problems. These energy functions
are characterized by the use of a match matrix to explicitly denote an assignment (correspondence)
between one set of points and another. The match matrix is a zero-one matrix with one’s denoting
that a point in one set is assigned to (corresponds to) a point in the other set. The match matrix
variables must satisfy assignment matriz constraints, i.e. the rows and columns must add up to
one (except for the row and column holding the slack variables) and the entries must be zero or
one. In the case of a square matrix (where the sets to be matched are equal in size) the match
matrix is a permutation matrix. Assignment matrix constraints may also be described as two-way
interlocking winner-take-all (WTA) constraints.

The original Hopfield-Tank neural network (Hopfield and Tank, 1985) had great difficulty in
satisfying assignment matrix constraints since it used penalty functions with fixed parameters. As
a result the quality of the solutions obtained for many optimization problems, like the traveling
salesman problem, was poor (Wilson and Pawley, 1988; Kamgar-Parsi and Kamgar-Parsi, 1990).
More recently, a number of techniques from statistical physics have been adopted to mitigate these

problems. These include deterministic annealing which convexifies the energy function in order to



avoid some local minima and the Potts glass approximation which results in a hard enforcement of
one-way (one set of) winner-take-all constraints (WTA) via the softmax (Peterson and Soderberg,
1989; Van den Bout and Miller III, 1990; Simic, 1991).

However, when the problem calls for assignment constraints, as does point matching, the re-
sulting energy function must still include a penalty term when the softmax is employed in order
to enforce the second set of WTA constraints. Such penalty terms may introduce spurious local
minima in the energy function and involve free parameters which are hard to set. A new technique
termed softassign eliminates the need for all such penalty terms and their associated free parame-
ters. The first use of the softassign was in an algorithm for the assignment problem (Kosowsky and
Yuille, 1994). It has since been applied to much more difficult optimization problems, including
many special cases of quadratic assignment problems such as graph matching, TSP, and graph par-
titioning (Gold et al., 1996; Rangarajan et al., 1996; Gold and Rangarajan, 1996a; Gold, 1995; Gold
and Rangarajan, 1996b). Here for the first time it is applied to point matching, which is formulated
as a parametric assignment problem. By formulating it in this manner we are able to combine the
estimation of both pose and correspondence by minimizing a single non-linear objective function.

The result is a new, fast, robust and easily implementable algorithm to find the pose and cor-
respondence between noisy 2D or 3D unlabeled point sets despite missing or spurious points. It
is derived by minimizing an analog global objective function using a combination of optimization
techniques incorporating deterministic annealing and the softassign. These new optimization meth-
ods (Rangarajan et al., 1996; Gold and Rangarajan, 1996b; Gold, 1995), not previously applied to
point-matching, result in an accurate and fast algorithm in the presence of substantial noise and a
high percentage of missing or spurious features. Over thirty thousand experiments, on randomly
generated points sets with varying amounts of noise and missing and spurious points, as well as on

hand-written character sets demonstrate the robustness of the algorithm.

2 Related Work

A large number of different approaches have been tried on point matching. Tree-pruning methods
involve searching over a tree of possible matches while eliminating portions of the search space
(Baird, 1984; Grimson and Lozano-Perez, 1987; Umeyama, 1993). The generalized Hough transform
requires the division of the parameter space of possible poses into discrete bins wherein good

matches are registered as votes in the appropriate bin (Ballard, 1981; Stockman, 1987). Geometric



hashing is another voting scheme where discrete bins are created for the possible bases that can
be used to represent the point sets (Lamdan et al., 1988; Hummel and Wolfson, 1988). In the
alignment method (Ullman, 1989) each alignment feature (defined as a set of three distinctive
points) in the image is matched against each alignment feature in the model, from which a pose
is obtained. Subsequently the best such pose is chosen. More recently, probabilistic techniques
have been applied to enhance the speed of this alignment method (Olson, 1995). Considerable
attention has focused on the computation of invariants which characterize small groups of point
features despite unknown geometric transformations (e.g. rigid Euclidean, affine, perspective, and
so on) (Weinshall and Tomasi, 1995; Jacobs, 1994) and which can then be used in matching and
indexing algorithms, such as geometric hashing (Califano and Mohan, 1994; Lamdan et al., 1988).
Efficient matching algorithms between point sets have resulted from minimizing their Hausdorff
distance (Huttenlocher et al., 1993), which can be made robust against missing points but which
does not appear to have a statistical noise model underlying it since one point in one set can be the
closest point to many points in the other set. The method is used on edge images with many points
but little independent point jitter. A related distance measure and matching method in (Besl and
McKay, 1992) also uses closest points.

Techniques more closely related to our neural network algorithms are eigenvector based ap-
proaches, relaxation labeling algorithms, deformable object modeling and other neural network
methods (there is a large overlap in methods and ideas within these four categories). (Scott and
Longuet-Higgins, 1991) have a formulation for point matching that is similar to ours, with a pairing
matrix that indicates matches and a proximity matrix whose elements are the pairwise distance
between points. The proximity matrix is a function of a Gaussian weighted distance metric, with
a parameter o which controls the degree of interaction between the two sets of features. Their
eigenvector based approach computes the modes of the proximity matrix, and they show that for
a value of o large enough, they recover the correct global correspondence. (Shapiro and Brady,
1992) continue this work by including modal shape information to address the weaknesses of (Scott
and Longuet-Higgins, 1991)’s algorithm, primarily its inability to recover large rotations in the
transformations, and also that the assumption of large ¢ may result in algorithmic instabilities.

Deformable object models can be used to define distance measures between point feature sets,
based on the eigenmodes of an underlying unsampled object model (Sclaroff and Pentland, 1995).
These may then be used to solve for correspondence. Deformable template models are elaborated in

(Yuille, 1990; Yuille and Hallinan, 1992) and elsewhere; they provide a physically-based nonlinear



optimization approach to matching but must be separately related to sparse image data such as
point sets, or related directly to images instead. For example elastic “snake” models (Kass et al.,
1988) are now commonly used to represent unknown curves and to pick them out of intensity or
gradient images. Relating models to image intensities rather than to feature points is favored in
face recognition experiments of (Brunelli and Poggio, 1993) and in the more neural network like
approach of (Hinton et al., 1992).

Relaxation labeling algorithms first introduced by (Ranade and Rosenfeld, 1980) have also been
widely applied to point matching. However these methods were originally developed as tools for
classification and consequently in general only impose one-way constraints and not the two-way
constraints required for many point matching problems. That is, there is a constraint that a point
in one set can match to only one point in the other set, but there is no similar constraint for the
points in the second set, i.e. there is no two-way WTA (assignment) constraint. (Ton and Jain,
1989) attempt to impose such a two-way constraint within the relaxation labeling framework but do
not use other key techniques such as deterministic annealing, incorporated in algorithms described
in this paper. (Li, 1992) use a form of deterministic annealing (graduated non-convexity) within
the relaxation labeling framework, but only with a one-way constraint.

More recently, within the neural network community, several researchers have attempted to
formulate and solve the point matching problem by minimizing an objective function which handles
both pose and correspondence. In a series of papers, (Mjolsness and Garrett, 1990; Mjolsness, 1991;
Lu and Mjolsness, 1994), several closely related objective functions containing correspondence and
pose parameters were minimized. None of these methods explicitly handled two-way constraints.
Similarly, in (Hinton et al., 1992), an objective function with affine and correspondence parameters
was minimized but only a one-way constraint was imposed. Similar problems related to two-way
constraint satisfaction beset the objective function based methods of (Vinod and Ghose, 1993; Gee

et al., 1993).

3 2D with Affine Transformations

3.1 Formulating the Objective

In our first point matching problem, we assume we are given two 2D point sets, {X;} and {Y}},
related by an affine transformation {A,¢}. We assume the affine transform is bounded in size—

for example order of magnitude differences in scale between the point sets is not permitted. The



positions of each point in 2D space are noisy; they may be considered as arising from Gaussian
distributions, whose means correspond to the exact x-y coordinates in the absence of noise. Points
can be deleted from or added to each point set, i.e. outliers may be present in each set. We then

define a set of correspondence variables {m}—our match matriz—such that:

_ 1 if point X; corresponds to point Y
k= 0 otherwise,

Now our problem may be defined as: Given two such sets of points {X;} and {Y}} find the
affine transformation {A,t}—the pose—and the match matrix {m;}—the correspondence—that
best relates them. Often a point matching algorithm will attempt to find either the pose or the
correspondence, since knowledge of one relatively easily determines the other; i.e. given the pose
one can determine the correspondence or given the correspondence one can determine the pose.
However, in our algorithm we will determine both simultaneously, producing estimates for first the
correspondence and then the pose and going back and forth between the correspondence and pose in
an iterative manner. This two stage iterative algorithm will naturally arise from the minimization
of an energy function describing the problem, using techniques that have evolved out of the neural
network /statistical physics framework.

Therefore given two sets of points {X;} and {Y};} we formulate the following objective to find
the affine transformation, {4,t}, and correspondence or match matrix, {m;x}, which best maps

some points of X onto some points of Y:

J K J K
Byp(m,t, A) =) Y mllX; —t — AY|* +g(4) —a D" > mys (1)
Jj=lk=1 j=1lk=1

subject to Vj YK, mjp <1, Vk 237:1 mjr <1, Vjkmj, € {0,1} and

g(A) =v(a®> +b* + ) .

A (composed of four separate parameters {a,©,b,c}) is decomposed into scale, rotation, and two

components of shear as follows:
A = s(a)R(©)Shy(b)Sha(c)
where,

et 0 e 0 cosh(c) sinh(c)
s(a) = , Shi(b) = , Sha(c) =
0 e° 0 e sinh(c) cosh(c)



R(©) is the standard 2x2 rotation matrix. g(A) serves to regularize (Girosi et al., 1995) the
affine transformation by penalizing large values of the scale and shear components. Three separate
regularization parameters, v, £ and A\ can also be used for this purpose. If different bounds are
desired for the different components of A we could set g(A) = ya? + kb? + Ac?. However in all the
experiments in this paper, only one parameter -y, was used to set the bound on the scale and shear
components. The constraints on our match matrix, {m;;}, ensure that each point in each image
corresponds to at most one point in the other image. The inequality constraints on {m;} permit
null matches, i.e. permit outliers.

The « term biases the objective towards matches. It acts as a threshold error distance, indicating
how far apart two points must be (or how much noise our system can tolerate) before the points
must be treated as outliers. If for any pair of points {Xj"Yic} and a current estimate of {4,t},

IX; —t — AY;

2 < a then X 5 will not be considered an outlier with respect to Y; and vice versa
since the objective will now favor (be lower in value) m; ;. = 1 over m; ; = 0 assuming all other
m’s in the jth row and kth column are zero.

The decomposition of A in the above is not required, since A could be left as a 2x2 matrix
and solved for directly in the algorithm that follows (Pappu et al., 1996). The decomposition just
provides for more precise regularization, i.e., specification of the likely kinds of transformations.
So, for example, in the experiments in Section 5.2 we ran one set of experiments using the full
affine transformation and another set using just the scale, rotation and translation components
of the affine. Also Shs(c) could be replaced by another rotation matrix, using the singular value
decomposition of A.

In the above objective there are only two parameters, v and a that need to be adjusted—both
of which are dependent upon the problem domain. While for the experiments in this paper we
simply set these two parameters—thereby also fixing the distribution of the population assumed in
those experiments, it is possible to use a maximum likelihood method to estimate these parameters

based on a sample population if our distribution were unknown (Duda and Hart, 1973).

3.2 The Softassigh—An Intuitive Development

The major hurdle in finding good suboptimal solutions to the point matching objective (1) is
satisfying the two-way constraints, i.e. the row and column constraints on the match matrix
(Figure 1) together with the constraint that the individual entries of m be zero or one.

We will ignore the inequality constraints (ignore for the moment the slacks in Figure 1) on
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Figure 1: The match matrix, m

the rows and columns, in order to simplify the following development. Therefore, the constraints
state that our match matrix must be a permutation matrix. (A permutation matrix is a square
zero-one matrix whose rows and columns add up to one.) We now use deterministic annealing
methods (Peterson and Soderberg, 1989; Geiger and Girosi, 1991) to turn our discrete problem
into a continuous one in order to reduce the chances of getting trapped in local minima. This
method consists of minimizing a series of objective functions indexed by a control parameter.
As the parameter is increased the solution to the objective functions approach that of the discrete
problem. The major problem now is the minimization of the point matching objective subject to the
usual two-way constraints on the match matrix and the new constraint that the individual entries
of m lie in the interval [0, 1]. The constraints are relaxed from permutation matrix constraints to
doubly stochastic matriz constraints. A doubly stochastic matrix is a square matrix with all positive
entries and rows and columns summing to one—it may roughly be thought of as the continuous
analog of a permutation matrix.

First, we will examine the case where there is only one constraint. Imagine a subproblem
(within a larger problem) whose objective is to find the maximum element within a set of numbers
(WTA). That is, we are given a set of variables {Q;} where Q; € R!. Then, we associate a variable
m;j € {0,1} with each @, such that ijl mj = 1. Our aim is:

1 if Q; is the maximum number in {Q;}

ms =
0 otherwise,

which is equivalent to finding {m;} which maximize Z]J':1 m;Q;. This discrete problem may now



be formulated as a continuous problem by introducing a control parameter 8 > 0 and then setting

m as follows (Peterson and Soderberg, 1989; Geiger and Yuille, 1991) :

exp(8Q;)
m; = 7 .
> =1 exp(BQ;)

This is known as the softmaz (Bridle, 1990). The exponentiation used within softmax has the effect

of ensuring that all the elements of {m} are positive. It is easily shown that as 3 is increased in the
above, the m; corresponding to the maximum (); approaches 1 while all the other m; approach 0
(except in special cases of ties). In the limit as  — oo, the m; corresponding to the maximum will
equal 1 while all the other m; will equal 0. Therefore an algorithm using a deterministic annealing
method to enforce a constraint which selects the maximum among a group of elements could have
the following form:

Initialize 8 to By

Begin A: (Do A until (8 > §f))

m}) « exp(SQ;)

m?

i
Ej:l m?
Do rest of algorithm - (Q;’s may be updated) . . . .

1
m; <

increase (3

End A

However, in our problem we have two-way WTA constraints: A point in set X must correspond
to only one point in set Y and vice versa. With the adoption of deterministic annealing, m; can
assume values inside the unit hypercube but still has to satisfy doubly stochastic matrix constraints.
Fortunately, doubly stochastic constraints can be satisfied using a remarkable result due to Sinkhorn
(Sinkhorn, 1964). Sinkhorn (Sinkhorn, 1964) proves that a doubly stochastic matrix is obtained
from any square matrix with all positive entries by the iterative process of alternating row and
column normalizations. Imagine a subproblem (within a larger problem) whose objective is to find
the best (maximum) assignment given a square benefit matrix of numbers. That is, we are given a
set of variables {Q;;} where Qi € R'. Then we associate a variable mj € {0,1} with each Qj,
such that Vj Eszl mjr = 1 and Vk Z]J':1 mji = 1. Our aim is to find the matrix m (a permutation

matrix) which maximizes the following:

J K
Eo(m) =Y muQjk
=1 k=1

This is known as the assignment problem, a classic problem in combinatorial optimization



(Papadimitriou and Steiglitz, 1982). Therefore an algorithm using a deterministic annealing method
to enforce a two-way constraint which selects the maximum assignment among a group of elements
could have the following form:
Initialize @ to By
Begin A: (Deterministic annealing) (Do A until (8 > §f))
m0,  exp(BQj1)
Begin B: (Sinkhorn’s method) (Do B until m converges)

Update m by normalizing across all rows:
0
o Mk
ZkK:1 m?k
Update m by normalizing across all columns:

m!

7
Zj:l mjlk

1
Mk

mgk —
End B
Do rest of algorithm - (Q;’s may be updated) . . . .
increase (3
End A
Note that the exponentiation used has the effect of ensuring that all the elements of the match
matrix are positive before Sinkhorn’s method is applied. Just such an algorithm was used in
(Kosowsky and Yuille, 1994) to exactly solve the assignment problem (the global maximum is
found). However, the point matching problem we are trying to solve is much harder than the linear
assignment problem which can be solved in polynomial time (Bertsekas and Tsitsiklis, 1989). Since
we have already described a method to solve the assignment problem, we will find an approximate
solution to our parametric assignment problem by using a deterministic annealing method to solve
a succession of assignment problems. For each assignment the method returns the corresponding
globally optimal doubly stochastic matrix for the current value of the control parameter (Kosowsky
and Yuille, 1994). Since a doubly stochastic matrix (and not a permutation matrix) is returned for
each assignment problem at the current value of the control parameter we term this a softassign.
Recall our point matching problem corresponds to the minimization of the objective (rearranging
terms) 25:1 S myk(||Xj — t — AYk|? — @) + g(A) subject to assignment constraints. For fixed

{A,t} it is easy to see this is just an assignment problem where Q;; = —(||X; — t — AY}|? —

a) = _?951—22' (The sign is reversed because we are minimizing, instead of maximizing as in the
J
canonical form of the assignment problem.) We estimate the values of {A,¢} (our pose parameters),

subsequently used for each new assignment problem by doing one step of coordinate descent on those

10



parameters (resulting in an update to our {Q)} assignment matrix as in the immediately preceding

pseudocode above). See Figure 2 for an overview of the resulting point matching algorithm. Figure 3

details the softassign.

4 N\

Solve for (A,t) via ( _ L 2
[coordinate descent Q=" (IXj- £ - AXil O@

ks

Softassign

__exit upon

convergence

Figure 2: Overview of the point matching algorithm. {A,¢} are the affine parameters updated in

step E in the pseudocode of the algorithm in the text and {m} is the match matrix.

Softassign

Positivity
my, = exp(B Q)

Two-way constraints

Row Normalization
_ Mk

my ~—
ik
mjk

k
Col. Normalization

mi
mjk -—

Ty
. J

Figure 3: The softassign.

The result is a simple two step iterative algorithm. In step 1 we estimate our correspondence

parameters (the match matrix) using the softassign. In the step 2 we estimate our pose parameters

using coordinate descent.

One last detail needs to be resolved. The constraints on m are inequality constraints, not

equality constraints. OQur algorithm must handle unequal point sets! Therefore, we transform the

11



inequality constraints into equality constraints by introducing slack variables, a standard technique

from linear programming (Chvatal, 1983);

K K+1
Vj ijkgl — V_] ZTTij=1
k=1 k=1

and likewise for our column constraints. An extra row and column are added to the matrix m to
hold the slack variables (Figure 1). (This augmented matrix is denoted by m). By incorporating
slack variables, the point matching algorithm can handle outliers (spurious or missing points) in a

statistically robust manner (Black and Rangarajan, 1996).

3.3 Pseudocode for the Algorithm

The pseudocode for the point matching algorithm is as follows (using the variables and constants
defined below):
Initialize O, t, a, b, and ¢ to zero, 8 to By, ;i to (1 +€), v to ¥
Begin A: Do A until (8 > )
Begin B: Do B until m converges or # of iterations > I

Begin C (update correspondence parameters by softassign):

) _9Eyp
ij A 6Mjk

m),  exp(BQjik)
Begin D: Do D until 72 converges or # of iterations > I;

Update m by normalizing across all rows:
m0
Sic vy
Zk:l mgk
Update m by normalizing across all columns:

a1

~JFI 1
Zj:l Mg

71

iy

End D
End C
Begin E (update pose parameters by coordinate descent):

Update © using analytical solution

Update ¢ using analytical solution

Update a using Newton’s method

Update b using Newton’s method

Update ¢ using Newton’s method
End E

12



End B

B BBy v < v/Br
End A

Variable and constant definitions can be found in Table 1.

I} control parameter of the deterministic annealing method

Bo initial value of the control parameter g

B maximum value of the control parameter 3

o rate at which the control parameter 3 is increased

y regularization parameter for scale and shear components of affine
Yo initial value of the regularization parameter -y

Eyp point matching objective, equation (1)

{mjx} | match matrix variables

{m;x} | match matrix variables including the slacks (see Figure 1)

{Qjr} | partial derivative of Eop with respect to mjy

I maximum # of iterations allowed at each value of the control parameter, 0§

I maximum # of iterations allowed for Sinkhorn’s method

(back and forth row and column normalizations)

Table 1: Variable and constant definitions for the point matching algorithm

For the experiments conducted in Section 5.2 on 2D point sets the following values for the
constants were used: By = .00091, By = .2, B, = 1.075, yo = .44, a = .03, Iy = 4, and I} = 30.

These values were determined by trial and error. The criterion for convergence for step D was:

J
2
j=1lk

For step B the convergence criterion was

K
|m2,C —mjk| < €
1

la® —a| + [B° — b+ | — |+ [t° —t| +]0° — O] < ¢

where {a,b,c,0,t} are the affine parameters in (1). In the above the superscript 0 indicates the
intial value of the variable at entry into an iterative loop. In step B ¢; = .005 and in step D e3 = .05

for the experiments in Section 5.2.
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The stopping criterion in step D of the algorithm is a test for convergence as well as a check
to see if the maximum number of iterations have been exceeded. This is more efficient because in
practice it’s unnecessary to always have an exactly doubly stochastic matrix—something close to
one works well also.

In the above algorithm we also are decreasing the value of <y, our regularization parameter for
the scale and shear components of the affine, as the algorithm converges towards a solution. This
is because the scale and shear variables need only be bounded in the beginning of the algorithm,
when the initial range of possible values is unrestricted. As the algorithm progresses the estimates
of pose and correspondence become better and better, narrowing the range of possible values and
thereby gradually eliminating the need to bound these variables.

In the following we let W ef s(a)Shy(b)Sha(c) using (1). Then our update equations for © and

t in step E of the algorithm are:

_1 2 ik (X2 —t2) Wit —(Xj1—t1)Wia)

4%
© = tan 2k Mk (X1 —01) Wi = (Xj2—t2) Wio)

_ Xmi (X —[AY]a)

t
! Z]kmak

b = ij mjk(Xj2—[AY |g2)
2 ij Mk

To update a, b and c in step E, the first and second partial derivatives of (1) are calculated

with respect to a, b, and ¢ and these first and second partial derivatives are then used in Newton’s
method to calculate the fixed points.
3.4 Constructing an Objective that Enforces the Constraints

The dynamics of the algorithm may also be motivated by taking the objective function (1), described
above and adding an zlogz barrier function and Lagrange multipliers to enforce the constraints.

The point matching objective (1) becomes:

J
EQD m t A szijXj —t—AYk||2+g(A) —aZijk

j=1 j=1k=1
| LK+ K+1 K J+1

+- Z > mj(logmjy, — 1) +Z,U] ngk_l Dowk(Domir—1) (2)
J 1 k=1 j=1 k=1 j=1

In the above we are looking for a saddle point by minimizing with respect to m, A and ¢t and

maximizing with respect to u and v, the Lagrange multipliers.

14



The z log z term is a barrier function (also called an entropy term in statistical physics), which
serves to push the minimum of the objective away from the discrete points. It convexifies the
objective, with the parameter 8 controlling the degree of convexity. The objective (2) can be
derived from using techniques from statistical physics (Rangarajan et al., 1996; Elfadel and Yuille,
1993; Yuille and Kosowsky, 1994; Van den Bout and Miller III, 1990; Peterson and Soderberg,
1989).

At first glance, the softassign with its use of iterated row and column normalization may appear
to be unrelated to the energy function in (2). However, this is not the case. Iterated row and
column normalization can be directly related (Rangarajan et al., 1996) to solving for the Lagrange
parameters (u and v) in (2). To see this, examine the fixed point solution for m in the above
objective:

mj = exp (B (Qjk — 1j — k)

where (as before)

def aEQD 2
Qin € — = —(|X; —t — AY|? —
ik ) i (H 7 k” Oé)

The fixed point equation contains the two (as yet undetermined) Lagrange parameters y and v.

The structure of the fixed point solution allows a Lagrange parameter updating scheme where all
the u are updated, followed by all the v. Let the (n + 1) update of the Lagrange parameter p
be associated with the (2n 4 1)™ update of m and the n'" update of the Lagrange parameter v be

associated with the 2n'" update of m. Now,

my ) = exp (8 (@ — u"™ — 147)), and 3)
miy” = exp (B (Q— i — V). (4)
Taking ratios, we get
(2n)
Mik (n) _  (n+1)
gy = o (=8 [ )] 5)
ik
Setting the derivative of the energy function in (2) w.r.t y to zero 9Bxp _ , we solve for the row
op
constraint:
2n+1 n n
;Mg(k +1) =1=exp (ﬂ,ug +1)) :;exp (,8 (ij_’/l(c ))) (6)
From (4), (5), and (6), we get
(2n)
@) My _ (7)
ik = m

15



We have shown that the s update can be replaced by row normalization of m. A similar relationship
is obtained between the v update and column normalization. Note that @) ;; remains constant during
the row and column normalizations. We have demonstrated a straightforward connection between
our constraint energy function (2) and Sinkhorn’s theorem: solving for the Lagrange parameters in
(2) is identical to iterated row and column normalization in the softassign.

The row normalization, column normalization, and geometric update phases of this algorithm
can also be formalized as a “clocked” objective function, related to (2), which optimizes different
subsets of the variables in different clock phases (Rangarajan et al., 1996).

In the above objective we have relaxed one of our original constraints, Vjk mj, € {0,1} to
Vjk mj; € [0,1], i.e. our binary valued correspondence matrix has become a real valued or fuzzy
correspondence matrix which now permits partial matches, as long as the sum of these partial
matches (across any row or column) adds to one. The degree of fuzziness of the correspondence
matrix is controlled by the 8 parameter. In all the experiments in this paper we have permitted
the final correspondence matrix to be fuzzy—however, if an application needed a solution in the
form of a binary valued correspondence matrix a simple post processing heuristic could be added

to convert the fuzzy real valued matrix into a discrete matrix.

4 3D with Rotation and Translation

The second algorithm solves the 3D-3D pose estimation problem with unknown correspondence.
Given two sets of 3D points {X;} and {Y}} find the rotation R, translation T', and correspondence

m that minimize

J K J K
Esp(m,T,R) = szjknxj —T—RY>—a)_ Y m
j=1k=1 j=1k=1

with the same constraint on the correspondence matrix m as in 2D affine matching. Note that
there is no regularization term for the {7, R} parameters. The major difference from the 2-D case
is the absence of the shear and scale parameters.

This structure of this algorithm very similar to the one described for 2D point. The step for
updating m—the softassign (step C in the pseudocode) is the same as in 2D affine matching. In
the routine corresponding to step E in the 2D case, m is fixed, and we have a labeled 3D to 3D pose
estimation problem which is formulated as a weighted least squares problem and solved using a dual

number quaternion representation for rotation and translation according to the method outlined
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in (Walker et al., 1991) and summarized in the next paragraph. The pseudocode for the 3D point
matching algorithm is as follows:
Initialize T', R to zero, 3 to fo, M to (1 +¢)
Begin A: Do A until (8 > §f)
Begin B: Do B until m converges or # of iterations > I
Begin C (update correspondence parameters by softassign):

OF
Qjk < — 522

Mk
mYy, < exp(BQjk)
Begin D: Do D until 7 converges or # of iterations > Iy

Update m by normalizing across all rows:

~0
Yo

ik
ZK—‘,—I ~ 0
k=1 "k
Update m by normalizing across all columns:
Al

ik
TFT 1
Z]’:l Mk

41

i
End D
End C
Begin E (update pose parameters using Walker et al.’s method):
Update R, T as described below.
End E
End B
B B
End A

In Walker et al.’s method for solving the absolute orientation problem the rotation and trans-
lation are represented by a dual number quaternion (r,s),r'r = 1,rts = 0 which corresponds to a
screw coordinate transform. The rotation can be written as R(r) = W (r)!P(r) and the translation

as W(r)'s, where

r = (ry,ro,r3,74)"
T4 T3 —T2 T
—T3 Ta T1 T9
T2 —T1 T4 T3

—ry —Tr2 —T3 T4
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T4 rs —Te T
T3 T4 rL T2
P(r) =
To —T1 T4 T3
—ry —Tre —Tr3 T4
T4 —T3 ) 1
3 Ty —T1 T2
P(r) =
—Tre T T4 T3

—ry —Tr2 —T3 T4

Using these representations, the objective function becomes

J K
Esp =Y myillzj — W(r)ts — W(r)'P(r)ys|?
j=1k=1

where z; = (X;,0)" and y; = (¥4, 0)" are the quaternion representations of X; and Y}, respectively.
Using the properties that P(a)b = W (b)a and P(a)'P(a) = W(a)!W(a) = (a'a)I, the objective
function can be formulated as minimizing

Esp = r'Cir + s'Cys + s'Csr (8)

subject to rir = 1 and rts = 0 where

K
C, = - Z > myeP(ye)' W (z)

j=1k=1
1 LK
02 = 5 Z Z mjkI
j=1k=1
J K
Cy = ) > m(W(z;) — Plyr)
j=1k=1

With this new representation, all the constraint information, including the current fuzzy esti-
mate of the correspondence m is absorbed into the three 4-by-4 matrices C1,C2,C3 in (8). The
objective function is minimized by (r*, s*) where r* is the largest eigenvalue of C§C5 ' C5—3(C1+C?%)

and s* = —2C5 'Csr. (r*,s*) is then used to determine the rotation and translation.

5 Experimental Results

In this section we provide results for the 2D matching problems, including over thirty thousand
experiments on randomly generated point sets as well as experiments on point sets generated from

handwritten characters.
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Figure 4: Correspondence of digits

5.1 Handwritten Character Data

Our first experiment used point sets generated from handwritten characters. The handwritten
characters were created using an X-windows tool which enables us to draw an image on the screen
with the mouse and writing pad. The contours of the images were discretized and are expressed
as a set of points in the plane. In the experiments below, we generated 70 points per character on
average.

The inputs to the point matching algorithm were the x-y coordinates generated by the drawing
program. No other pre-processing was done. The output was a correspondence matrix and a pose.
In Figures 4 and 5, the correspondences found between several images drawn in this fashion are
shown.To make the actual point matches easier to see, we have drawn the correspondences only for
every other image point.

In Figure 4 are several examples, using different digits, of matches between two handwritten
versions of the same digit. Despite large variations between two versions of the same digit, the
algorithm found accurate correspondences. Excellent correspondences are found despite large dif-

ferences in scale. The correspondence was good between distorted digits, as in 3 and 6, or between
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Figure 5: Correspondence: “a” found in “cat”, “o” found in “song”

different forms of a digit as in 4 and 3. We also provided an example of trying to finding the
correspondence between two different digits, a 2 and a 4, which as to be expected, did not work
well.

In another experiment (Figure 5), individual letters were correctly identified within words. Here,
no pre-processing to segment the cursive word into letters was done. The correspondence returned
by the point matching algorithm by itself was good enough for identification. Even similar letters
were differentiated, for example the “a” in cat was correctly identified even though the “c” has a
similar shape and the “o” was correctly identified in “song,” despite the similarity of the “s.” The
time to recognize each character (which could contain over 100 points) was on the order of a minute

on a Silicon Graphics workstation with a R4400 processor.

5.2 Randomly generated point sets

In the second set of experiments (Figure 6), randomly generated point sets were matched. In
each trial one point set, the model, was created by randomly generating with a uniform distribution,
50 points on a grid of unit area. This point set, the model, was then used to create another
point set, the image, by adding noise to the model points, deleting and adding model points and
finally remapping the model points in 2D space by applying a randomly generated affine transform.
The image point set created in this manner was then matched to the model point set, using our
algorithm. The pose parameters, {a, b, c, ©,t} of equation (1), returned by the algorithm were then
compared to the original pose parameters used in the affine transform to create the image point set
by remapping the original model point set. The difference between the two sets of pose parameters
was reported as the error returned by the algorithm in Figure 6. All parameters were selected in a

random fashion and over thirty thousand different trials were conducted.
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Figure 6: 2D results for synthetic data. X axis is o, the noise of independent Gaussian jitter.

To create an image point set from a model point set, independent Gaussian noise N(0,0) is
added to each of the model points creating jittered image points. Then a fraction, pg, of the
points are deleted, and a fraction, ps, of spurious points are added, randomly (with a uniform
distribution) on the unit square. Finally a randomly generated (with a uniform distribution) affine
transformation, is applied to the set of points resulting in the new image point set.

Two sets of experiments, using different transformations were conducted. In the first set (right
plot in Figure 6) a full affine transformation was applied, in the second set (left plot in Figure 6)
a transform composed only of translation, rotation and scale was used. The algorithm detailed
in this paper can be trivially modified to find only scale, rotation and translation (initialize the
shear variables, {b,c} to zero and never update them in step E of the algorithm). Therefore the
transformations we considered in the two sets of experiments were fl,t — (Translation, rotation,
scale) and the full affine transformation, A —,¢ (Translation, rotation, scale, and two components
of shear). The transformation parameters, {t;,1,,0,a,b,c} were from selected from the following
ranges: —0.5 < 15,1, < 0.5, —27° < 6 < 27°, 0.5 < e* < 2 where a is the scale parameter, and
0.7 < elec <1 /0.7 where b, c are the parameters for the two shears (except in the second set of
experiments where b, c were set to zero). Each of the parameters was chosen independently and

uniformly from the possible ranges.
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The error measure (the difference between the pose parameters returned by the algorithm and
the pose parameters used to generate the image point set from the model point set) was computed
with e, = 3|W|, where e, is the error measure for parameter z and width, is the range
of possible values for z. z is one of the pose parameters, {a,b,c, ©,t}, 2%?** is the value of the
pose parameter used to generated the image point set from the model point set, z¢¥%#™mate jg the
value of the pose parameter returned by the algorithm and width, is computed from the ranges
reported in the previous paragraph. Dividing by width, is preferable to dividing by z%¢**%! which

actual

incorrectly weights small z values. Multiplying by 3 normalizes the error measure to give an

actual estimate

expected value of one in the case where z and z are simply selected at random from a
uniform distribution of width width,. The reported error (y axes of Figure 6) is the average error
over all the parameters (4 or 6).

The time to recover the correspondence and pose for a problem instance of 50 points is about
50 seconds on a Silicon Graphics workstation with a R4400 processor. By varying parameters
such as the annealing rate ((,) or stopping criterion, this can be reduced to about 20 seconds
with some degradation in accuracy. For each trial combinations of o € {0.01,0.02,...,0.08} and
pa € {0%,10%,30%,50%} and ps € {0%,10%} were used.

Results are reported separately for transformations A, ¢ and A, t. For each combination of (o-pg-
ps) 500 test instances were generated. Each data point in Figures 6.a and 6.b represents the average
error measure for 500 trial runs, one trial for each test instance; all data points represent a total of
32,000 test instances. Raising the noise in the form of independent Gaussian jitter and/or missing
and extra points increases the error measure monotonically. As expected, the transformation A has

better results than the affine transformation A. The parameter values used in these experiments

are reported in Section 3.3.

5.3 Randomly generated point sets: 3D

The experimental setup for 3D point matching is similar to the setup for 2D (random) point match-
ing described in Section 5.2. Each experimental trial for 3D point matching involves generating a
random 3D point set as the model point set, and then generating an image point set by applying
a random transformation, adding noise of independent Gaussian jitter and then randomly adding
and deleting points.

20 points are generated from a uniform distribution within a unit cube. The parameters for the

transformation are generated as follows: The three Euler angles for determining R are selected from
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a uniform distribution U[20°,70°]. Translation parameters Ty, T,,T, are selected from a uniform
distribution U[2.5,7.5]. Gaussian noise N(0,0) is added to the points. The objective then is to
recover the three translation and three rotation parameters and to find the correspondence between
this and the original point set. The rotation errors in degrees and the translation errors in units
are summarized in Figure 7. These plots show the average differences between the rotations and
translations returned by the algorithm and the rotations and translations used to generate the
image point sets. For each combination of (o-pg-ps) 150 trials were run. These experiments were
conducted with the following parameter values: 8y = .01/S, 8, = 1.053, By = 100/S, Iy = 10 and
I, = 30 where S = JLK >l X5 — Y;||?, the mean distance between points. These experiments on

sets of 20 points took under 5 seconds on a Silicon Graphics workstation.
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Figure 7: 3D results for synthetic data. Rotation is in degrees; the translation error should be

compared to translations € [2.5,7.5]. X axis is o, the noise of independent Gaussian jitter.

6 Conclusion

We have developed a new, fast, robust and easily implementable algorithm for solving 2D and 3D
pose estimation and correspondence problems. It is new—the algorithm incorporates a novel opti-
mization technique, the softassign which has recently emerged from the neural network/statistical

physics framework. The softassign, which allows optimization problems requiring two-way (assign-
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ment) constraints to be solved without the use of any penalty terms in the objective functions, is
applied for the first time to point matching. It is fast—we are able to match sets of 50 or more
points (including missing and spurious points) in a few seconds. Many other point matching meth-
ods, when trying to find affine transformations between noisy point sets with missing and extra
points are much less efficient: For example see tree-pruning (Baird, 1984), alignment (Ullman,
1989), neural network (Gee et al., 1993), Hough transforms (Grimson, 1990), geometric hashing
(Lamdan et al., 1988), and pose clustering (Stockman, 1987). It is robust—its use of slack vari-
ables permit the handling of outliers in a statistically robust manner. Moreover, a large number
of experiments demonstrate it can tolerate a high degree of noise and still recover accurate pose
parameters. It is easy to implement. The optimization techniques are simple; the correspondence
parameters are calculated using the softassign and the pose parameters are calculated using coordi-
nate descent. No gradient descent methods are used, eliminating the need for line searches and/or
gradient projections. No specialized pre-packaged optimization software or routines are required.
Many promising directions for enhancement of this algorithm exist. The affine transform need
not be decomposed; it can be solved for directly in the algorithm, simplifying the procedure even
more (Pappu et al., 1996). Instead of just using location information, feature vectors may be
attached to each point, indicating such low-level visual attributes as edges, curves, color, etc.
(Gold, 1995; Pappu et al., 1996). Multiple affine transformations may be applied to the same
image, allowing a decomposition of the object into parts (Gold, 1995; Pappu et al., 1996; Mjolsness,
1991; Mjolsness, 1994). Finally the algorithm may be used as a distance measure and incorporated

within a clustering algorithm to learn prototypical object shapes (Gold et al., 1996; Gold, 1995).
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