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Prior knowledge constraints are imposed upon a learning problem in 
the form of distance measures. Prototypical 2D point sets and graphs 
are learned by clustering with point-matching and graph-matching dis- 
tance measures. The point-matching distance measure is approximately 
invariant under affine transformations-translation, rotation, scale, and 
shear-and permutations. It operates between noisy images with miss- 
ing and spurious points. The graph-matching distance measure oper- 
ates on weighted graphs and is invariant under permutations. Learning 
is formulated as an optimization problem. Large objectives so formu- 
lated (- million variables) are efficiently minimized using a combina- 
tion of optimization techniques-softassign, algebraic transformations, 
clocked objectives, and deterministic annealing. 

1 Introduction 

While few biologists today would subscribe to Locke’s description of the 
nascent mind as a tabula rasa, the nature of the inherent constraints- 
Kant’s preknowledge-that helps organize our perceptions remains much 
in doubt. Recently, the importance of such preknowledge for learning 
has been convincingly argued from a statistical framework (Geman et ul. 
1992). Several researchers have proposed that our minds may incorporate 
preknowledge in the form of distance measures (Shepard 1989; Bienen- 
stock and Doursat 1991). The neural network community has begun to 
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explore this idea via tangent distance (Simard t’t 01. 1993) and model learn- 
ing (Williams r t  n / .  1993). However, neither of these distance measures 
has been invariant under permutation of the labeling of the feature points 
or nodes. Permutation-iiivariaiit distance measures must solve the corre- 
spondence problem, a computationally intractable problem fundamental 
to object recognition systems (Grimson 1990). Such distance measures 
may be better suited for the learning of the higher level, more complex 
representations needed for cognition. In this work, we introduce the use 
of more powerful, permutation-invariant distance measures in learning. 

The unsupervised learning of object prototypes from collections of 
noisy 2D point-sets or noisy weighted graphs is achieved by clustering 
with point-matching and graph-matching distance measures. The point- 
matching measure is approximately invariant under perniutations and 
affine transformations (separately decomposed into translation, rotation, 
scale, and shear) and operates on point-sets xvith missing or spurious 
points. The graph-matching measure is invariant under permutations. 
These distance measures and others like them may be constructed using 
Bayesian inference on a probabilistic model of the visual domain. Such 
models introduce a carefully designed bias into our learning, which re- 
duces its generality outside the problem domain but increases its ability 
to generalize within the problem domain. From a statistical viewpoint, 
outside the problem domain it increases bias while within the problem 
domain it decreases variance. The resulting distance measures arc similar 
to some of those hypothesized for cognition. 

The distance measures and learning problem (clustering) are formu- 
lated as objective functions. Fast minimization of these objectives is 
achieved by a combination of optimization tecliniclues-softassign, al- 
gebraic transformations, clocked objectives, and deterministic annealing. 
Combining these techniques significantly increases the size of problems 
that may be solved with recurrent network architectures (Rangarajan rt a/ .  
1996). Even on single-processor workstations, nonlinear objectives with 
a million variables can be minimized relatively quickly (a few hours). 
With these methods we learn prototypical examples of 2D point-sets and 
graphs from randomly generated experimental data. 

2 Relationship to Previous Clustering Methods 

Clustering algorithms may be classified as central or pairwise (Buhmann 
and Hofmann 1994). Central clustering algorithms generally use a dis- 
tance measure, like Euclidean or Mahalonobis, that operates on feature 
vectors within a pattern matrix (Jain and Dubes 1988; Duda and Hart 
1973). These algorithms calculate cluster centers (pattern prototypes) 
and compute the distances between patterns within a cluster and the 
cluster center he., pattern-cluster center distances). Pairwise clustering 
algorithms, in contrast, may use only the distances between patterns and 
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may operate on a proximity matrix (a precomputed matrix containing all 
the distances between every pair of patterns). Pairwise clustering algo- 
rithms need not produce a cluster center and do not have to recalculate 
distance measures during the algorithm. 

We introduce central clustering algorithms that employ higher-level 
distance measures. In the few cases where higher-level distance mea- 
sures have been used in clustering (Kurita et d. 1994) they have all, to 
our knowledge, been employed in pairwise clustering algorithms, which 
used precomputed proximity matrices and did not calculate prototypes. 
Consequently, while classification was learned the exemplars were not. 

As is the case for central clustering algorithms, the algorithm em- 
ployed here tries to minimize the cluster center-cluster member distances. 
However, because it uses complex distance measures it has an outer and 
inner loop. The outer loop uses the current values of the cluster center- 
cluster member distances to recompute assignments (reclassify). After 
reclassification, the inner loop recomputes the distance measures. The 
outer loop is similar to several other algorithms employing mean field 
approximations for clustering (Rose ef al. 1990; Buhmann and Kuhnel 
1993). It is also similar to fuzzy ISODATA clustering (Duda and Hart 
1973), with annealing on the fuzziness parameter. The clustering algo- 
rithm used here is formulated as a combinatorial optimization problem, 
however, it may also be related to parameter estimation of mixture mod- 
els using the maximum likelihood method (Duda and Hart 1973) and 
the expectation-maximization (EM) algorithm (Dempster ef al. 1977; Hath- 
away 1986). The inner loop uses the newly discovered distance measures 
for point (Gold ef al. 1995) and graph matching. In the following we will 
first describe these new distance measures and then show how they are 
incorporated in the rest of the algorithm. 

3 Formulation of the Objective Functions 

3.1 An Affine Invariant Point-Matching Distance Measure. The first 
distance measure quantifies the degree of dissimilarity between two un- 
labeled 2D point images, irrespective of bounded affine transformations, 
i.e., differences in position, orientation, scale, and shear. The two images 
may have a different number of points. The measure is calculated with 
an objective that can be used to find correspondence and pose for unla- 
beled feature matching in vision. Given two sets of points {X,} and {Yk}, 
one can minimize the following objective to find the affine transforma- 
tion and permutation that best maps some points of X onto some points 
of Y 
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A is the affine transformation, which is decomposed into scale, rotation, 
and two components of shear as follows: 

where 

coshic~ sinhic) i sinh(c) coshici SIl-iC) = 

Ri(-))  is tlie standard 2 x 2 rotation matrix. g ( A )  serves to regularize tlie 
affine transformation by bounding the scale and shear components. 1 1 1  

is a possibly fuzzy correspondence matrix that matches points in one 
image with corresponding points in the other image. The constraints 
on iii ensure that each point in each image corresponds t o  at most one 
point in the other image. However, partial matches are allowed, in which 
czje the sum of these partial matches may add up to no more than one. 
The inequality constraint on 111 permits a null match or multiple partial 
matches. [Note: simplex constraints on in ,  and its linear appearance in 
Ei Iii I, imply that any local minimum of ( n r .  A.  t )  occurs at a vertex in the 
m simplex. But 177's trajectory can use the interior of the i i l  simplex to 
avoid local minima in the optimization of A and t . ]  

The (1 term biases the objective toward matches. The decomposition 
of A in the above is not required, since A could be left as  a 2 x 2 matrix 
and solved for directly in the algorithm that follows. The decomposition 
just provides for more precise regularization, i.e., specification of the 
likely kinds of transformations. Also Slrl (c)  could be replaced by another 
rotation matrix, using the singular value decomposition of A. 

Then given two sets of points {X,) and {Yk} the distance between 
them may be defined as 

D({X,}. {Yk}) = min[Ep,,,im.t.A) 1 constraints on in ]  
rir.t.:2 

This measure is an example of a more general image distance measure 
derived from mean field theory assumptions in (Mjolsness 1993): 
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where 

( x  IY 1 d(x. y) = - log 
max, Pr(x, y) 

and T is a set of transformation parameters introduced by a visual gram- 
mar (Mjolsness 1994) and Pr is the probability that x arises from y without 
transformations T. 

We transform our inequality constraints into equality constraints by 
introducing slack variables, a standard technique from linear program- 
ming: 

K K f l  

Vj  c m , k I  1 -+ Qj C m , k = l  
k=l k = l  

and likewise for our column constraints. An extra row and column is 
added to the permutation matrix m to hold our slack variables. These 
constraints are enforced by applying the Potts glass mean field theory 
approximations (Peterson and Soderberg 1989) and a Lagrange multi- 
plier and then using an equivalent form of the resulting objective, which 
employs Lagrange multipliers and an x log x barrier function (Yuille and 
Kosowsky 1994; Rangarajan et al. 1996; Mjolsness and Garrett 1990): 

I K  I K  

1 K +c& c mik - 1 + uk cn7,k - 1 (3.2) 
,=I [+' k=l k=1 (::I ) 

In this objective, we are looking for a saddle point. Equation 3.2 
is minimized with respect to m, t ,  and A, that are the correspondence 
matrix, translation, and affine transform, and is maximized with respect 
to p and v, the Lagrange multipliers that enforce the row and column 
constraints for m. m is fuzzy, with the degree of fuzziness dependent 
on $. 

The above defines a series of distance measures, since given the de- 
composition of A it is trivial to construct measures that are approximately 
invariant only under some subset of the transformations (such as rota- 
tion and translation). The regularization, g(A), and o terms may also 
be individually adjusted in an appropriate fashion for a specific problem 
domain. For example, replacing A with X(0) in equation 3.1 and remov- 
ing g(A) would define a new distance measure, which is invariant only 
under rotation and translation. 
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3.2 Weighted Graph-Matching Distance Measures. The following 
distance measure quantifies the degree of dissimilarity between two un- 
labeled weighted graphs. Given two graphs, represented by adjacency 
matrices Gi, and gkp, one can minimize the objective below to find the 
permutation which best maps G onto g (Rangarajan and Mjolsness 1994; 
von der Malsburg 1988; Hopfield and Tank 1986): 

l2  P 
Exnl(  ))I) = C C c G,ifilif - c ) 7 7 , 1 J ~ p ~  

j=l  ' k = l  Y L  / = I  p=  I 

Vj C,"=, m,i; = 1, with constraints: Vjk 1i7,k 2 0. 
These constraints are enforced in the same fashion as in equation 3.2 
with an x log x barrier function and Lagrange multipliers. The objective is 
simplified with a fixed point preserving transformation of the form X' 3 
20X-rr2. The additional variable (01 introduced in such a transformation, 
described as a reversed neuron in Mjolsness and Garrett (19901, is similar 
to a Lagrange parameter. A self-amplification term is also added to push 
the match variables toward zero or one. This term (with the 7 parameter 
below) is similarly transformed with a reversed neuron. The resulting 
objective is 

V k  $, ??ilk = 1, 

As in Section 2.1, we look for a saddle point. Equation 3.3 is minimized 
with respect to i n  and r r ,  which are the correspondence matrix and re- 
versed neuron of the transform, and is maximized with respect to h, A, 
and 1 1 ,  the Lagrange multipliers that enforce the row and column con- 
straints for 172 and the reversed neuron parameter enforcing the first fixed 
point transformation. m may be fuzzy, so a given vertex in one graph 
may partially match several vertices in the other graph, with the degree 
of fuzziness dependent upon ,I; however, the self-amplification term dra- 
matically reduces the fuzziness at high ,d. 

A second, functionally equivalent, graph-matching objective is also 
used in the clustering problem (as explained in Section 3.3): 

I L K P  

(3.4) 
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3.3 The Clustering Objective. The object learning problem is for- 
mulated as follows: Given a set of I noisy observations {XI} of some 
unknown objects, find a set of B cluster centers { Yi,} and match variables 
{MI!,} defined as 

Mril = 
1 if XI is in Y[,'s cluster { 0 otherwise 

such that each observation is in only one cluster, and the total distance 
of all the observations from their respective cluster centers is minimized. 
The cluster centers are the learned approximations of the original objects. 
To find {Yi,} and {M,b> minimize the cost function, 

I B  

Ecluster(Y*M) = CCMr[iD(Xi. Yb) 
r=l h = l  

with constraints: b'i CbMlb = 1, b'ib Mrb 2 0. D(X,.Yb), the distance 
function, is a measure of dissimilarity between two objects. This problem 
formulation may be derived from Bayesian inference of a set of object 
models {Y} from the data {X} they explain (Mjolsness 1993). It is also a 
clustering objective with a domain-specific distance measure (Gold et al. 
1994). 

The constraints on M are enforced in a manner similar to that de- 
scribed for the distance measure, except that now only the rows of the 
matrix M need to add to one, instead of both the rows and the columns. 
The Potts glass mean field theory method is applied and an equivalent 
form of the resulting objective is used: 

(3.5) 

Here, the objects are point-sets or weighted graphs. If point-sets are used, 
the distance measure D(X,. Yb) is replaced by equation 3.1; if graphs are 
used it is replaced by equation 3.3, without the terms that enforce the 
constraints, or equation 3.4. For example, after replacing the distance 
measure by equation 3.1, we obtain 
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(3.6) 

A saddle point is required. The objective is minimized with respect to 
Y, M, 111, t ,  and A, which are, respectively, the cluster centers, the cluster 
membership matrix, the correspondence matrices, the translations, and 
other affine transformations. I t  is maximized with respect to A, which en- 
forces the row constraints for M, and / /  and I / ,  which enforce the column 
and row constraints for H I .  M is a cluster membership matrix, indicating 
for each object i which cluster b it falls in, and m , ~ ,  is a permutation matrix 
that assigns to each point in cluster center Y,, a corresponding point in 
observation X,. (A!/,. t,li) gives the affine transform between object i and 
cluster center b. Both M and ?TI are fuzzy, so a given object may partially 
fall in several clusters, with the degree of fuzziness depending on I,,, 
and &. 

Therefore, given a set of observations, X, we construct EclLlbter and 
upon finding the appropriate saddle point of that objective, we will have 
Y, their cluster centers, and M, their cluster memberships. 

An objective similar to equation 3.6 may be constructed using the 
graph-matching distance measure in equations 3.3 or 3.4 instead. 

4 The Algorithm 

4.1 Overview-Clocked Objective Functions. The algorithm to min- 
imize the clustering objectives consists of two loops-an inner loop to 
minimize the distance measure objective (either equation 3.2 or 3.3) and 
an outer loop to minimize the clustering objective (equation 3.5). Using 
coordinate descent in the outer loop results in dynamics similar to the EM 
algorithm for clustering (Hathaway 1986). The EM algorithm has been 
similarly used in supervised learning (Jordan and Jacobs 1994). All vari- 
ables occurring in the distance measure objective are held fixed during 
this phase. The inner loop uses coordinate ascent/descent, which results 
in repeated row and column normalizations for m. This is described as a 
softassign (Gold rt 01. 1995; Gold and Rangarajan 1996; Rangarajan et rrl. 
1996) (see Section 4.2). The minimization of m, and the distance measure 
variables (either t ,  A of equation 3.2 or /I,, (T of equation 3.31, occurs in 
an incremental fashion-that is, their values are saved after each inner 
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loop call from within the outer loop and are then used as initial values 
for the next call to the inner loop. This tracking of the values of the 
distance measure variables in the inner loop is essential to the efficiency 
of the algorithm since it greatly speeds up each inner loop optimization. 
Most coordinate ascent/descent phases are computed analytically, fur- 
ther speeding up the algorithm. Some poor local minima are avoided by 
deterministic annealing in both the outer and inner loops. 

The resulting dynamics can be concisely expressed by formulating the 
objective as a clocked objective function (Mjolsness and Miranker 1993), 
which is optimized over distinct sets of variables in phases, as [letting 
2) be the set of distance measure variables (e.g., {A$} for equation 3.2) 
excluding the match matrix], 

with this special notation employed recursively: E ( x ,  y)@, coordinate de- 
scent on x, then y, iterated (if necessary); xA, use analytic solution for x 
phase. 

The algorithm can be expressed less concisely in English, as follows: 

Initialize D to the equivalent of an identity transform, Y to random values 
Begin Outer Loop 

Begin Inner Loop 
Initialize D with previous values 
Find rn, D for each ib pair : 

Find m by softassign 
Find 2) by coordinate descent 

End Inner Loop 
If first time through outer loop increase $,t, and repeat inner loop 
Find M,Y using fixed values of rn, D, determined in inner loop: 

Find M by softmax, across i 
Find Y by coordinate descent 

increase &, Ptll 
End Outer Loop 

When the distances are calculated for all the X-Y pairs the first time 
through the outer loop, annealing is needed to minimize the objectives 
accurately. However, on each succeeding iteration, since good initial 
estimates are available for D (namely the values from the previous iter- 
ation of the outer loop), annealing is unnecessary and the minimization 
is much faster. 

The speed of the above algorithm is increased by not recalculating the 
X-Y distance for a given ib pair when its M,b membership variable drops 
below a threshold. 

4.2 Inner Loop. The inner loop proceeds in two phases. In phase 
one, while D are held fixed, rn is initialized with a coordinate descent 
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step, described below, and then iteratively normalized across its rows 
and columns until the procedure converges (Kosowsky and Yuille 1994). 
This phase is analogous to a softmax update, except that instead of en- 
forcing a one-way, winner-take-all (maximum) constraint, a two-way, as- 
signment constraint is being enforced. Therefore, we describe this phase 
as a softassign (Gold et al .  1995; Gold and Rangarajan 1996; Rangarajan 
ef  a / .  1996). In phase two ni is held fixed and 2) are updated using coordi- 
nate descent. Then /All is increased and the loop repeats. Let be the 
distance measure objective (equations 3.2 or 3.3) without the terms that 
enforce the constraints ke., the x logx barrier function and the Lagrange 
parameters). 

In phase one n7 is updated with a softassign, which consists of a 
coordinate descent update: 

m i b ] k  = eXP[-i/jriraEdmioc(X,. Y b ) / a l f l r b , k ]  

And then (also as part of the softassign) m is iteratively normalized across 
j and k until C!=, Cf='=, I h z , [ , ] k l  < 6 :  

Using coordinate descent, the 2) are updated in phase two. If a member 
of V cannot be computed analytically (such as the terms of A that are 
regularized), Newton's method is used to compute the root of the func- 
tion. So if d,, is the rzth member of V then in phase two we update d,,,,, 
such that 

Finally ;$, ,  is increased and the loop repeats. 
By setting the partial derivatives of E,~,,,  to zero and initializing the 

Lagrange parameters to zero, the algorithm for phase one may be derived 
(Rangarajan et al. 1996). 

allows minimization over a fuzzy cor- 
respondence matrix m, for which a global minimum is easier to find. 
Raising /$,, drives the ins closer to 0 or 1, as the algorithm approaches a 
saddle point. 

Beginning with a small 

4.3 Outer Loop. The outer loop proceeds in three phases: (1) dis- 
tances are calculated by calling the inner loop, (2) M is projected across 
b using the softmax function, (3) coordinate descent is used to update Y. 

Therefore, using softmax, M is updated in phase two: 
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Y, in phase three, is calculated using coordinate descent. Let yn be the 
nth member of {Y}. yn is updated such that 

(4.2) 

Then DM is increased and the loop repeats. 
When learning prototypical point-sets, Ybrl in equation 4.1 will be ei- 

ther the x or y coordinate of a point in the prototype (cluster center). If 
weighted graphs are being learned then ybtl will be a link in the clus- 
ter center graph. When clustering graphs, equation 3.3 is used for the 
distance in equation 4.1 while equation 3.4 is used to calculate Ybll  in 
equation 4.2. This results in a faster calculation of equation 4.1, but for 
equation 4.2 results in an easy analytic solution. 

5 Methods and Experimental Results 

Five series of experiments were run to evaluate the learning algorithms. 
Point sets were clustered in four experiments and weighted graphs were 
clustered in the fifth. In each experiment, a set of object models was used. 
In one experiment handwritten character data were used for the object 
models and in the other experiments the object models were randomly 
generated. From each object model, a set of object observations was cre- 
ated by transforming the object model according to the problem domain 
assumed for that experiment. For example, an object represented by 
points in two-dimensional space was translated, rotated, scaled, sheared, 
and permuted to form a new point set. An object represented by a 
weighted graph was permuted. Independent noise of known variance 
was added to all real-valued parameters to further distort the object. 
Parts of the object were deleted and spurious features (points) were 
added. In this manner, from a set of object models, a larger number of 
object instances were created. Then, with no knowledge of the original 
object models or cluster memberships, we clustered the object instances 
using the algorithms described above. 

The bulk of our experimental trials were on randomly generated pat- 
terns. However, to clearly demonstrate our methods and visually display 
our results, we will first report the results of the experiment in which we 
used handwritten character models. 

5.1 Handwritten Character Models. An X-windows tool was used 
to draw handwritten characters with a mouse on a writing pad. The 
contours of the images were discretized and expressed as a set of points 
in the plane. Twenty-five points for each character were used. The four 
characters used as models are displayed in row 1 of Figure 1. Each char- 
acter model was transformed in the manner described above to create 32 
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Figure 1: Row (1): Handwritten character models used t o  generate character 
instances. These models were not part of the input to the clustering algorithm. 
Rows (2-5): 16 character instances that (with 112 other characters) were clus- 
tered. 

character instances (128 characters for all four). Specifically (in units nor- 
malized approximately to the height of b in Fig. 1): .C’(0.0.02) of gaussian 
noise was added to each point. Each point had a lo%, probability of being 
deleted and  a 5% probability of generating a spurious point. The com- 
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ponents of the affine transformation were selected from a uniform dis- 
tribution within the following bounds; translation: 50.5, rotation: f27@, 
log(scale): * log(0.7), log(vertical shear): f log(0.7), and log(obliqire shenr): 
i log(0.7) .  Note in equation 3.1, a = log(scale), h = log(zJertical shear), 
and c = log(oblique skenr). In rows 2-5 of Figure 1, 16 of the 128 charac- 
ters generated are displayed. The clustering algorithm using the affine 
distance measure of Section 2.1 was run with the 128 characters as input 
and no knowledge of the cluster memberships. Figure 2 shows the re- 
sults after 0, 4, 16, 64, 128, and 256 iterations of the algorithm. Note that 
the initial cluster center configurations (row 1 of Fig. 2) were selected 
at random from a uniform distribution over a unit square. The original 
models were reconstructed to high accuracy from the data, up to affine 
transformations within the allowed ranges. 

5.2 Randomly Generated Models. In the next four experiments, the 
object models (corresponding to the models in Row 1 of Fig. 1) were gen- 
erated at random. The results were evaluated by comparing the object 
prototypes (cluster centers) formed by each experimental run to the ob- 
ject models used to generate the object instances for that experiment. The 
distance measures used in the clustering were used for this comparison, 
i.e., to calculate the distance between the learned prototype and the orig- 
inal object. This distance measure also incorporates the transformations 
used to create the object instances. The mean and standard deviations 
of these distances were plotted (Fig. 3) over hundreds of trials, varying 
the object instance generation noise. The straight line appearing on each 
graph displays the effect of the gaussian noise only. It is the expected ob- 
ject model-object prototype distance if no transformations were applied, 
no features were deleted or added, and the cluster memberships of the 
object instances were known. It serves as an absolute lower bound on 
the accuracy of our learning algorithm. The variance of the real-valued 
parameter noise was increased in each series of trials until the curve 
flattened-that is, the object instances became so distorted by noise that 
no information about the original objects could be recovered by the al- 
gorithm. 

In the first experiment (Fig. 3a), point set objects were translated, 
rotated, scaled, and permuted. Initial object models were created by 
selecting points with a uniform distribution within a unit square. The 
transformations to create the object instance were selected with a uni- 
form distribution within the following bounds; translation: f0.5, rota- 
tion: f27”, log(scale): f log(0.5). For example, within these bounds the 
largest object instances that are generated may be four times the size of 
the smallest. One hundred object instances were generated from 10 ob- 
ject models. All objects contained 20 points.The standard deviation of the 
gaussian noise was varied from 0.02 to 0.16 in steps of 0.02. At each noise 
level, there were 15 trials. The data point at each error bar represents 150 
distances (15 trials times 10 model-prototype distances for each trial). 
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Figure 2: Row (1): initial cluster centers (randomly generated). Rows ( 2 4 ) :  
character prototypes (cluster centers) after 4, 16, 64, 128, and 256 iterations. 
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Figure 3: (a) Ten clusters, 100 point sets, 20 points each, scale, rotation, transla- 
tion, 120 trials; (b) 4 clusters, 64 point sets, 15 points each, affine, 10% deleted, 
5% spurious, 140 trials; (c) 8 clusters, 256 point sets, 20 points each, affine, 10% 
deleted, 5% spurious, 70 trials; (d) 4 clusters, 64 graphs, 10 nodes each, 360 
trials. 

In the second and third experiments (Fig. 3b and c), point set objects 
were translated, rotated, scaled, sheared (both components), and per- 
muted. Each object point had a 10% probability of being deleted and a 
5% probability of generating a spurious point. Object points and trans- 
formations were randomly generated as in the first experiment, except 
for these bounds; log(scale): & log(0.7), log(vertical shear): f log(0.7), and 
log(oblique shear): f log(O.7). In experiment 2, 64 object instances and 4 
object models of 15 points each were used. In experiment 3, 256 object 
instances and 8 object models of 20 points each were used. Noise levels 
as in experiment 1 were used. Twenty trials were run at each noise level 
in experiment 2 and 10 trials run at each noise level in experiment 3. 

In the fourth experiment (Fig. 3d), object models were represented by 
fully connected weighted graphs. The link weights in the initial object 
models were selected with a uniform distribution between 0 and 1. The 
objects were then randomly permuted to form the object instance and 
uniform noise was added to the link weights. Sixty-four object instances 
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were generated froni 1 object models consisting of 10 node graphs with 
100 links. The standard deviation oi the noise was varied from 0.01 to 
0.13 in steps of 0.01. There were 30 trials at each noise level. 

In most experiments, at low noise levels (5  0.06 for point sets, 5 0.03 
for graphs), the object prototypes learned were Lwy similar to the object 
models. As an example of \That the plotted distances mean in terms of 
visual similarity, the average model-prototype distance in tlie handwrit- 
ten character example (row 1 of Fig. 1 and row 6 of Fig. 2) was 0.5. Even 
at higher noise le~els ,  object prototypes similar to the object models are 
fcxnied, though less consistently. Results from about 700 experiments 
are plotted, which took several thousand hours of SGI R4400 worksta- 
tion processor time. The objecti1.e for experiment 3 contained close to one 
million variables and converged in about 1 hr. The convergence times of 
the objectives of experiments 1, 2, and 4 were 120, 10, and 10 min, respec- 
tively. In these experiments the temperature parameter of the inner loop 
equaled the temperature parameter of the outer loop ( i,,, = iZ.1) and both 
were increased by a factor of 1.03 on each iteration of the outer loop. In 
the point set experiments, each trial was a best of four series. The object 
models and object instances were the same for each ot the four executions 
xcithin the trial, but the initial randomly selected starting cluster centers 
(Rmc 1 of Fig. 2) were varied for each execution and only the result from 
tlie execution with the lowest ending energy was reported. 

The time for recognition, which simply involved running the distance 
measures alone, was at most a few seconds for the largest point-sets, 
which contained 25 points. 

6 Conclusions .- 

It has lung been argued by many that learning in complex domains typ- 
ically associated with human intelligence requires some type of prior 
structure or knowledge. We have begun to develop a set of tools that will 
allow the incorporation of prior structure within learning. Our models 
incorporate many features needed in complex domains like vision: pa- 
rameter noise, missing and spurious features, nonrigid transformations. 
They can learn objects with inherent structure, like graphs. Many ex- 
periments have been run on experimentally generated data sets. Several 
directions for future research hold promise. One might be the learning 
of OCR data. Second, a supervised learning stage could be added to 
our algorithms, i.e., we may include some prior knowledge regarding 
the classification or labeling of our objects. While the experiments in this 
paper incorporated only a few missing points within the object sets, the 
point-matching distance measures are capable of matching objects arising 
from real image data with large amounts of occlusion and with feature 
points that do not necessarily lie in one-to-one correspondence with each 
other as did the artificially generated point sets of this paper (Gold et a / .  
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1995). Supervised learning algorithms may be better able to exploit the 
power of these distance measures. Finally, more powerful, recently de- 
veloped graph-matching distance measures (Gold and Rangarajan 1996) 
may be used that are able to operate on graphs with attributed nodes, 
multiple link types, and  deleted or spurious nodes and  links. 
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