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We introduce an optimization approach for solving problems in com- 
puter vision that involve multiple levels of abstraction. Our objective 
functions include compositional and specialization hierarchies. We 
cast vision problems as inexact graph matching problems, formulate 
graph matching in terms of constrained optimization, and use analog 
neural networks to perform the optimization. The method is applicable 
to perceptual grouping and model matching. Preliminary experimental 
results are shown. 

1 Introduction 

The minimization of objective functions is an attractive way to formulate 
and solve visual recognition problems. Such formulations are parsimo- 
nious, being expressible in several lines of algebra, and may be converted 
into artificial neural networks which perform the optimization. Advan- 
tages of such networks including speed, parallelism, cheap analog com- 
puting, and biological plausibility have been noted (Hopfield and Tank 
1985). 

According to a common view of computational vision, recognition 
involves the construction of abstract descriptions of data governed by a 
database of models. Abstractions serve as reduced descriptions of com- 
plex data useful for reasoning about the objects and events in the scene. 
The models indicate what objects and properties may be expected in the 
scene. The complexity of visual recognition demands that the models 
be organized into compositional hierarchies which express object-part 
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relationships and specialization hierarchies which express object-class re- 
lationships. 

In this paper, we describe a methodology for expressing model-based 
visual recognition as the constrained minimization of an objective func- 
tion. Model-specific objective functions are used to govern the dynamic 
grouping of image elements into recognizable wholes. Neural networks 
are used to carry out the minimization. 

Previous work on optimization in vision (Barrow and Popplestone 
1971; Burr 1983; Hummel and Zucker 1983; Terzopoulos 1986) has typ- 
ically been restricted to computations occurring at a single of level of 
abstraction and/or involving a single model. For example, surface inter- 
polation schemes, even when they include discontinuities (Terzopoulos 
1986) do not include explicit models for physical objects whose surface 
characteristics determine the expected degree of smoothness. By con- 
trast, heterogeneous and hierarchical model-bases often occur in non- 
optimization approaches to visual recognition (Hanson and Riseman 1986) 
including some which use neural networks (Ballard 1986). We attempt to 
obtain greater expressibility and efficiency by incorporating hierarchies 
of abstraction into the optimization paradigm. 

2 Casting Model Matching as Optimization 

We consider a type of objective function which, when minimized by a 
neural network, is capable of expressing many of the ideas found in frame 
systems in Artificial Intelligence (Minsky 1975). These "Frameville" ob- 
jective functions (Mjolsness et al. 1988) are particularly well suited to 
applications in model-based vision, with frames acting as few-parameter 
abstractions of visual objects or perceptual groupings thereof. Each frame 
contains real-valued parameters, pointers to other frames, and pointers 
to predefined models (for example, models of objects in the world) which 
determine what portion of the objective function acts upon a given frame. 

2.1 Model Matching as Graph Matching. Model matching involves 
finding a match between a set of frames, ultimately derived from visual 
data, and the predefined static models. A set of pointers represent object- 
part relationships between frames, and are encoded as a graph or sparse 
matrix called m a .  That is, mfil,J = 0 unless frame J is "in" frame a as one of 
its parts, in which case = 1 is a "pointer" from J to a .  The expected 
object-part relationships between the corresponding models is encoded 
as a fixed graph or sparse matrix IW. A form of inexact graph-matching 
is required: m a  should follow ZA4 as much as is consistent with the data. 

A sparse match matrix A4 (0 5 Ma? 5 1) of dynamic variables rep- 
resents the correspondence between model a and frame a. To find the 
best match between the two graphs one can minimize a simple objective 
function for this match matrix, due to Hopfield (1984) (also Feldman et 
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al. 1988; von der Malsburg and Bienenstock 1986), which just counts the 
number of consistent rectangles (see Fig. la): 

(2.1) 

This expression may be understood as follows: For model a and frame 
i, the match value Mnt is to be increased if the neighbors of o! (in the Ih!4 
graph) match to the neighbors of i (in the ina graph). 

Note that E ( M )  as defined above can be trivially minimized by setting 
all the elements of the match matrix to unity. However, to do so will 
violate additional syntactic constraints of the form h ( M )  = 0 which are 
imposed on the optimization, either exactly (Platt and Barr 1988) or as 
penalty terms (Hopfield and Tank 1985) i h 2 ( M )  added to the objective 
function. Originally the syntactic constraints simply meant that each 
frame should match one model and vice versa, as in (Hopfield and Tank 
1985). But in Frameville, a frame can match both a model and one of 
its specializations (described later), and a single model can match any 
number of instances or frames. In addition one can usually formulate 
constraints stating that if a model matches a frame then two distinct parts 
of the same model must match two distinct part frames and vice versa. 
We have found the following formulation to be useful: 

where the first sum in each equation is necessary when several high-level 
models (or frames) share a part. (It turns out that the first sums can be 
forced to zero or one by other constraints.) The resulting competition is 
illustrated in figure lb. Another constraint is that M should be binary- 
valued, i.e., 

(2.4) 

but this constraint can also be handled by a special “analog gain” term in 
the objective function (Hopfield and Tank 1985) together with a penalty 
term cC,, M,,O - M,A. 

In Frameville, the m a  graph actually becomes variable, and is de- 
termined by a dynamic grouping or “perceptual organization” process. 
These new variables require new constraints, starting with zna,,(l -ins,,) = 
0, and including many high-level constraints which we now formulate. 

M d 1  - M A  = 0, 

2.2 Frames and Objective Functions. Frames can be considered as 
bundles of real-valued parameters Ftp, where p indexes the different 
parameters of a frame. For efficiency in computing complex arithmetic 
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Figure 1: (a) Examples of Frameville rectangle rule. Shows the rectangle re- 
lationship between frames (triangles) representing a wing of a plane, and the 
plane itself. Circles denote dynamic variables, ovals denote models, and trian- 
gles denote frames. For the plane and wing models, the first few parameters 
of a frame are interpreted as position, length, and orientation. (b) Frameville 
sibling competition among parts. The match variables along the shaded lines 
(M3.9 and A 4 7 )  are suppressed in favor of those along the solid lines LV12.9 and 
M3.7). 
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relationships, such as those involved in coordinate transformations, an 
analog representation of these parameters is used. A frame contains no 
information concerning its match criteria or control flow; instead, the 
match criteria are expressed as objective functions and the control flow 
is determined by the particular choice of a minimization technique. 

In Figure la, in order for the rectangle (1,4,9,2) to be consistent, the 
parameters F4p and FgP should satisfy a criterion dictated by models 1 
and 2, such as a restriction on the difference in angles appropriate for a 
mildly swept back wing. Such a constraint results in the addition of the 
following term to the objective function: 

where Ha[ ' (E ,  6) measures the deviation of the parameters of the data 
frames from that demanded by the models. The term H can express coor- 
dinate transformation arithmetic (for example, HnB(z,, q) = 1/2[z2 - xJ - 
Az,/j]*), and its action on a frame is selectively controlled or "gated 
by M and ina variables. This is a fundamental extension of the distance 
metric paradigm in pattern recognition; because of the complexity of the 
visual world, we use an entire database of distance metrics H"". 

We index the models (and, indirectly, the database of H metrics) by 
introducing a static graph of pointers IS4,, to act as both a specialization 
hierarchy and a discrimination network for visual recognition. A frame 
may simultaneously match to a model and just one of its specializations: 

(2.6) 

As a result, IS4 siblings compete for matches to a given frame (see Fig- 
ure 2); this competition allows the network to act as a discrimination 
tree. 

Frameville networks have great expressive power, but have a poten- 
tially serious problem with cost: for n data frames and m models there 
may be O(nm + n2) neurons widely interconnected but sparsely activated. 
The number of connections is at most the number of monomials in the 
polynomial objective function, namely n2mf, where f is the fan-out of 
the 11\14 graph. One solution to the cost problem, used in the line group- 
ing experiments reported in section 3.2, is to restrict the flexibility of the 
frame system by setting most A4 and ina neurons to zero permanently. 
The few remaining variables can form an efficient data structure such as a 
pyramid in vision. A more flexible solution might enforce the sparseness 
constraints on the M and ina neurons during minimization, as well as 
at the fixed point. Then large savings could result from using "virtual" 
neurons (and connections) which are created and destroyed dynamically. 
This and other cost-cutting methods are a subject of continuing research. 
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Figure 2: Frameville specialization hierarchy. The plane model specializes along 
IS4 links to a propeller plane or a jet plane and correspondingly the wing model 
specializes to prop-wing or jet-wing. Sibling match variables M6.4 and M44 com- 
pete as do M7.9 and M5.9. The winner in these competitions is determined by 
the consistency of the appropriate rectangles, for example, if the 4-4-9-5 rectan- 
gle is more consistent than the 6-4-9-7 rectangle, then the jet model is favored 
over the prop model. 

3 Experimental Results 

3.1 Recognizing Simple Shapes. Frameville experiments were con- 
ducted in a domain consisting of a two-level compositional hierarchy. As 
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seen in Figure 3a, the input data at the lowest level are unit-length line 
segments parameterized by location 2, y and orientation 8, corresponding 
to frame parameters F,p (p = 1,2,3). We allow only horizontal (8 = 0) and 
vertical (8 = n/2) orientations. There are two high-level models, "T" and 
"L" junctions, each composed of three low-level segments. The task is to 
recognize instances of "T", "L", and their parts, in a translation-invariant 
manner. The high-level models are abstracted by the parameters of a 
designated main part, in this case, the upper vertical segment of each 
model. 

On the model side, there are seven low-level models indexed by 13, 
as shown in Figure 3b. These correspond to seven positional roles that 
a segment may assume in the context of a composite figure. These po- 
sitions are illustrated iconically inside the model nodes in Figure 3b and 
correspond to the positions of segments in the familiar seven-segment 
LED display. The high-level models "T" and "L", indexed by a, are then 
specified by the appropriate set of IN4 links. We distinguish between 
high-level frames, indexed by i, that may match only high-level junc- 
tion models, and low-level frames, indexed by j, that may match only 
low-level segment models. 

For this domain, the parameter check term Hap of Equation 2.5 checks 
the location and orientation of a given part relative to the main part. For 
example, in recognizing a " T ,  if low-level frame 3 is matched to model 5, 
a "middle horizontal" segment, then its parameters (F3.1, F3.2, F3.3 = 23, y3, 
8 3 )  must differ from those of an "upper vertical" mainpart by quantities 
+1, -1, and n/2, respectively. In our design the parameters of a high- 
level frame represent a best fit to the parameters of its mainpart. So if 
high-level frame 7 is matched to model 9, a "T", then an appropriate 
parameter check term is: 

K 
H9,5(F7,F33) = (F7.1 -F3.1 -1>2+(F7.2-F3,2+1)2+(F7,3-F3.3-  ?I2. (3.1) 

The quantities +1, -1, and 7~/2 are thus model information stored in the 
objective function. This kind of objective function also determines the 
best-fit high-level parameters &, even if the low-level mainpart frame 
itself is missing. Note here that a limited form of invariance is achieved 
by analog computation of relative coordinates; instances of "T" and "L" 
are recognized in a manner invariant to translation. (Rotation invariance 
can also be formulated if a different parameterization is used, but no 
experiments have been done.) 

We used the unconstrained optimization technique in (Hopfield and 
Tank 1985) to minimize the objective function. We achieved improved 
results by including terms demanding that at most one model match a 
given frame, and that at most one high-level frame include a given low- 
level frame as its part. These are expressed as additive penalty terms: 
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Figure 3: (a) Input data consists of unit-length segments oriented horizontally 
or vertically. The task is translation-invariant recognition of three segments 
forming a " T  junction (for example, sticks 1,2,3) or an "L" (for example, sticks 5, 
6,7) amid extraneous noise sticks. (b) Structure of network. Models occur at two 
levels. IN4 links are shown for a " T .  Each frame has three parameters: position 
2, y and orientation 8. Also shown are some match and ina links. The bold lines 
highlight a possible consistency rectangle. (c) Experimental result. The value of 
each dynamical variable is displayed as the relative area of the shaded portion of 
a circle. Matrix Mlj3 indicates low-level matches and M,, indicates high-level 
matches. Grouping of low-level to high-level frames is indicated by the in,n 
matrix. The parameters of the high-level frames are displayed in the matrix F& 
of linear analog neurons. (The parameters of the low-level frames, held fixed, 
are not displayed.) The few neurons circumscribed by a square, corresponding 
to correct matches for the main parts of each model, are clamped to a value 
near unity. Shaded circles indicate the final correct state. 
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In addition, we did not include the binary-value constraint (Equation 2.4). 
The linear analog neurons representing parameters in frames were not 
sigmoidally mapped as in (Hopfield and Tank 1985). 

Figure 3c shows results of attempts to recognize the two junctions 
in Figure 3a. When initialized to small random values, the network 
becomes trapped in unfavorable local minima of the fifth-order objective 
function. (With only a single high-level model in the database, the system 
recognizes a shape amid noise given a random start.) If, however, the 
network is given a "hint" in the form of an initial state with mainparts 
and high-level matches set correctly, the network converges to the correct 
stable state. In particular, the linear parameter neurons settle to correct 
analog values corresponding to position and orientation of the mainparts 
of the junctions. Also, the proper dynamic grouping is accomplished 
as the zna neurons achieve the correct values, and the segment frames 
match the proper low-level models. Extraneous "noise" sticks remain 
unmatched. 

There is a great deal of unexploited freedom in the design of the model 
base and its objective functions; there may be good design disciplines 
which avoid introducing spurious local minima. For example, it may be 
possible to use ZSA and IIW hierarchies to guide a network to the desired 
local minimum. 

3.2 Line Grouping. Frameville is also being applied to the problem 
of extracting long straight lines from an image by recursively grouping 
smaller line segments into longer lines. The model base for the initial 
experiments shown in Figure 4a consists of lines at two levels, denoted 
0 and 1. The level-1 line is composed of a left-line and a right-line at 
level 0, which are specializations of the level-0 line. We have conducted 
experiments on problems involving a 3 x 3 grid of level-0 frames and a 
2 x 2 grid of level-1 frames. Each level-1 frame is connected to four level- 
0 frames that are near its spatial location, thus forming an overlapped 
pyramid. The end points of level-0 lines are specified as input data. Each 
level-1 line is denoted by four points, which correspond to the projections 
of the end points of its two component level-0 lines. The points on the 
level-1 line are determined by minimizing the energies of the springs 
shown in Figure 4b. The level-1 line frames contain additional slots that 
are used in the verification of colinearity of the four points on the line. 

The results in Figure 4 were obtained by using the syntactic constraints 
of Equations 2.2 and 2.3 as penalty terms, while exactly maintaining 
the binary-value constraint of Equation 2.4 (both on the M and the m a  
variables). The constrained optimization method described in (Platt and 
Barr 1988) was used. The distance metric H in Equation 2.5 measures the 
energies of the springs shown in Figure 4b. To achieve stability to the 
network, Equation 2.5 was modified by replacing the M and ina variables 
by their squares. The details of our model-base and the constraints as 
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Figure 4: (a) The line model base. The thin lines connecting models represent 
IS4 links and the thick lines represent the IN4 links. (b) The spring-stick model 
of fit. The springs between the level-0 lines and the level-1 line favor colinearity, 
while the spring between the two intermediate points on the longer line favors 
spatial proximity of the component lines. (c) and (d) Experimental results. The 
input data consists of the four vertical line segments and the approximating 
level-1 lines are displayed as three segments connecting the four points . . . Z4 
as seen in (b). In (c) the network is at an intermediate stage, where two of 
the segments have been correctly grouped, while the other two line segments 
appear to become parts of different high-level frames. In (d) the network has 
moved away from the incorrect solution and is close to the correct solution. 
The small extra line segment eventually vanishes. 
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well as planned extensions of this work are described in (Anandan et al. 
1989). 

4 Conclusion 

Frameville provides opportunities for integrating all levels of vision in a 
uniform notation which yields analog neural networks. Low-level mod- 
els such as fixed convolution filters just require analog arithmetic for 
frame parameters, which is provided. High-level vision typically re- 
quires structural matching, also provided. Qualitatively different models 
may be integrated by specifying their interactions, Hal’. 
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