
A Hierarchical Exact Accelerated Stochastic

Simulation Algorithm

David Orendorff1 and Eric Mjolsness∗1,2

1Department of Computer Science, University of California, Irvine, USA
2Institute for Genomics and Bioinformatics and Department of Mathematics

December 17, 2012

Abstract

A new algorithm, “HiER-leap”, is derived which improves on the computational properties
of the ER-leap algorithm for exact accelerated simulation of stochastic chemical kinetics. Un-
like ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organization of reaction
channels into tightly coupled “blocks” and is thereby able to speed up systems with many reac-
tion channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on the
reaction propensities to define a rejection sampling algorithm with inexpensive early rejection
and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done
in parallel. An accept/reject step is used to synchronize across blocks. This method scales
well when many reaction channels are present and has desirable asymptotic properties. The
algorithm is exact, parallelizable and achieves a significant speedup over SSA and ER-leap on
certain problems. This algorithm offers a potentially important step towards efficient in silico
modeling of entire organisms.

Paper accepted for the Journal of Chemical Physics, published as
http://link.aip.org/link/?JCP/137/214104 , DOI 10.1063/1.4766353.

1 Introduction

Computational biology is moving toward ever more complex, comprehensive and detailed biological
models. It is becoming increasingly important to simulate and understand these models compu-
tationally. The Stochastic Simulation Algorithm[11] (SSA) was introduced to exactly sample the
Chemical Master Equation and has seen widespread adoption.

The original SSA iteratively samples reaction events in a way that requires O(R) computa-
tional steps per sampled reaction event, where R is the number of reaction channels. This can be
prohibitively slow when there are a large number of reaction channels or reaction events.

This fact together with the importance of the SSA has inspired a slew of SSA acceleration
techniques [10, 4, 22, 13, 16, 3, 2, 33, 25]. The work of Gillespie[12] and its recent variants [7, 5, 6]
reduces the total number of reaction events that need to be sampled but does so at the cost
of accuracy. Additionally, the work of Gibson and Bruck [10] reduces the amount of work per
simulated reaction event to log R. The work of Slepoy et al.[29] ups the ante further by finding the

∗emj@uci.edu

1

next reaction event to sample in O(1) time using rejection sampling under assumptions reasonable
for biochemical networks.

There have been recent advances in consumer level multi-core CPU technology. There are
indications that next-generation CPU technology is moving from maximizing single-core speed to
increasing the number of cores by orders of magnitude. There has been work on the parallelization
of SSA via GPUs [21, 16, 19] and multicore CPUs [9]. However, the parallelization was used to
speed up sampling of many trajectories rather than speeding up each trajectory in a large system.
Multicore GPUs and CPUs have not been effectively used to speed up the sampling of a single
Chemical Master Equation trajectory exactly. Arguably this becomes the dominant problem when
extremely large systems are being studied. For example, the E. coli genome has been estimated to
have about 4400 gene products[28]. This fact suggests that tens of thousands of molecular species
will needed to be present if an E. coli specimen is to ever be comprehensively modeled in silico.

Relatively little work has succeeded in reducing the number of reaction events sampled without
introducing bias. While the work of Riedel and Bruck[26] is able to skip over cyclic states (eg loops),
this method of reducing work does not apply to reaction networks with little state cycling. The
previous work of the present authors (ER-leap) [25] is a leaping algorithm and was the first known
general method to effectively reduce the number of SSA iterations sampled without sacrificing
accuracy. This method scales well when reducing the number of SSA iterations. However, this
method does not scale well when many reaction channels are present.

The currently proposed work describes a new SSA-equivalent algorithm that can take advantage
of parallel hardware, and additionally provides an algorithmic speedup for systems with many re-
action channels. Like ER-leap, this “HiER-leap” (Hierarchical Exact Reaction-Leaping) algorithm
achieves these advances without the loss of accuracy. The HiER-leap algorithm uses a divide-and-
conquer strategy to independently sample sparsely connected submodules of the reaction network,
in a way somewhat similar to ER-leap. HiER-leap then performs a network-wide synchronization
using rejection sampling. As will be shown, this synchronization step is efficient for ”reasonably”
independent submodules. The acceptance probability associated with synchronization is asymptoti-
cally equal to one as the number of reaction channels goes to infinity. This implies that the majority
of the work will take place during submodule sampling, which may be performed in parallel.

This work therefore presents a potentially important step towards organism-scale simulation.

2 Background Theory

The new HiER-leap algorithm begins its derivation from the state transition distribution defined
by the Chemical Master Equation after L > 0 reaction events. We then algebraically manipulate
the CME until a distribution suitable for parallel sampling and synchronization is found.

In many ways this derivation closely follows the derivation found in ER-leap. Therefore, this
section is dedicated to recalling the notation and key equations from ER-leap [25] that will serve
as a starting point for the algorithm derivation in section 3.

2.1 Notation

We define reaction channels, indexed by r, as a set of input and output species, Ca, with corre-
sponding input (m(ra)) and output (m′(ra)) stoichiometries

{
m(r)

a Ca

}
−→

{
m′(r)

a Ca

}
with reaction rate ρr (1)

2

and the net stoichiometry for a given species and reaction channel as

∆m(ra) = m′(ra)
−m(ra).

Later, we will show the probabilities of state transitions after L “reaction events” occur.
Under the Chemical Master Equation it is assumed that each reaction channel has a small

probability of firing during a small time interval dt with probability equal to ar(n)dt. The vector
n, possibly indexed by α for species type α, represents the quantities of the constituent species in
terms of raw counts. This ar(n) term is also called the propensity or rate of reaction channel r and
is defined as

ar(n) ≡ ρrF
(r)
n ,

a0(n) ≡
R∑

r=1

ar(n) (2)

where

F
(r)
n ≡

∏
n

a|m
(r)
a 6=0

o

na!“
na−m

(r)
a

”
!

if na > m
(r)
a

0 otherwise

 . (3)

Note that superscripts involving “r” and related variables that index reaction numbers occur
here and numerous times in the following. These are enclosed in parentheses “(r)” throughout, to
indicate they are not powers but rather indexes.

In this work, it will be notationally convenient for us to keep the propensity term factored out

into ρr and F
(r)
n .

As a brief aside, the upcoming derivations in this paper may work with other forms for F
(r)
n .

For example, the “umbral transformation” of a Hill function,

F
(r)
n = Umbral[Hill(n;K)]

=
n(k)

(Kn + n(k))
,

may work as propensity function, where the falling factorial n(k) ≡
n!

(n−k)! replaces nk in Hill(n;K)

(or more generally in a rational function) for each power of any integer-valued molecule number n.
This functional form has the advantage of being monotonic and equal to zero for n < k, as required
for a stochastic version of the Hill function with discrete integer numbers of molecules.

Furthermore, we define the total propensity DI for some reaction to occur in state I as

DI ≡
∑

r

ρrF
(r)
I , (4)

which is equivalent to equation (2).
Bounds for F (r) and D, after L reaction events, are computed by bounding species counts after

L reaction events. For each species identifier (ID) a, we bound the number of molecules present
after these reaction events, n′

a, by:

na + L minr

{
∆m(r)

a

}
6 n′

a 6 na + L maxr

{
∆m(r)

a

}
. (5)

3

If we introduce the notation that a tilde superscript or subscript, x̃ or x
˜
, represents upper or lower

bounding values respectively then, we can re-write the above as:

n
˜a ≤ n′

a ≤ ñ.

The corresponding propensities calculated from using the upper and lower bounding states, after
L− 1 reaction events, respectively are written as

F̃
(r)
K,L−1 ≡ F

(r)
ñ

F
˜

(r)
K,L−1 ≡ F

(r)
n

˜
and therefore

D̃K,L−1 =
∑

r

ρrF̃
(r)
K,L−1

D
˜

K,L−1 =
∑

r

ρrF
˜

(r)
K,L−1

for any state K.

2.2 Markov Process

In the ER-leap paper[25] it was shown that the probability of starting at state I0 and ending up in
state IL after τ time elapses is

P (IL, τ |I0, L) =
∑

{Rk|k=1..L−1}

∏

k=L−1↘0

ρRk
F

(Rk)
Ik(R,I0)

exp(−τk(DIk(R,I0),Ik(R,I0)))

 (6)

for every ordered vector {Rk|k = 1 . . . L−1} of reaction channel events. Each state may be uniquely
transformed by a reaction as I0 → I1(R, I0).

Furthermore, it was shown in ER-leap [25] that for any function e(r) summing over all possible
orderings of L reaction events is equivalent to summing over all possible counts of reactions (eg
a multinomial with L draws) and then permuting each of these draws for all unequal reactions,
yielding ∑

{rk|k=1..L−1}

e(r) =
∑

{s|sr∈N,
P

r sr=L}

∑

{σ|σ permutes unequal r’s|s}

e(σ(r)) (7)

which, when combined with equation (6), and introducing the previously defined bounds, separating
out terms in e(r) which are permutation invariant, and after some algebra results in

P (IL, τ |I0, L) =
∑

{s|sr∈N,
P

r sr=L}

(
L

s1 ... sR

)
×

R∏

r=1

ρrF̃
(r)
I0,L

∑
r

ρrF̃
(r)
I0,L

sr

×
(
D
˜

I0L−1

)L

exp

(
−

(
∑

k

τk

)
D
˜ I0L−1

) (
D̃I0L−1

)L

(
D
˜

I0L−1

)L

×

〈

∏

k=L−1↘0

F
(rk)
Ik(σ(r),I0)

F̃
(rk)
I0,L−1

 exp(−τk(DIk(σ(r),I0),Ik(σ(r),I0) −D

˜ I0L−1
))

〉

{σ|s}

. (8)

4

This expression can be interpreted as a rejection-sampling algorithm (last line) that corrects a
multinomial approximate sampling algorithm (first two lines).

2.2.1 Rejection Sampling

Through the lens of rejection sampling, equation (8) represents an algorithm.
Briefly, rejection sampling is a method to sample x from some distribution, x ∼ P (x), by

means of an approximate distribution P ′(x). This can be expressed algebraically since P (x) can
be rewritten as

P (x) = P ′(x)
P (x)

MP ′(x)
+ (1− 1/M) P (x) (9)

assuming M ≥ 1. Equation (9) can be viewed as a mixture distribution with the probability of
sampling from P ′(x) being the “acceptance” A(x):

A(x) =
P (x)

MP ′(x)
(10)

for some constant M such that ∀xA(x) ≤ 1.
It is now possible to see the ER-leap algorithm represented in equation (8). If in equation (8)

we recognize P (x) = P ′(x)MA(x) (equivalent to equation (9)), with M =
(
D̃I0L−1

)L

/
(
D
˜ I0L−1

)L
,

then we will implicitly define a P ′(x). This P ′(x) has the next L reaction events sampled from a
multinomial with the probability pr of choosing the rth reaction channel being equal to

pr =

ρrF̃
(r)
I0,L

∑
r

ρrF̃
(r)
I0,L

 .

Furthermore, our P ′(x) samples τ from an Erlang distribution (equivalent to a Gamma distribution
with integer “shape” parameter) with rate parameter being D

˜ I0,L and shape parameter being
L. Finally, if needed when calculating A(x), a random permutation σ is drawn uniformly and
{τk|τ =

∑L−1
k=0 τk} is sampled from an L-simplex.

The work in section 3 will similarly arrive at an equation representing an efficient and exact
leaping algorithm for sampling L reaction events from an SSA equivalent distribution.

3 Theory

3.1 Hierarchical Notation

The HiER-leap algorithm uses a divide-and-conquer strategy to accelerate SSA. Evidence suggests
that protein-protein interaction (PPI) networks tend to be modular [24]. These networks contain
submodule clusters that interact heavily inside the cluster. Interactions with other clusters of
proteins are less common. Although still an active area of research, evidence [14] suggests that
similar modularity may exist in genetic regulatory networks as well. Additionally, when modeling
spatial interactions [23, 27, 31, 15, 17, 20], events spatially distant must interact through sparse
intermediate diffusion reaction channels. In this way, it is probably common that many reaction
channels are weakly coupled to the majority of other channels. This observation suggests a potential
avenue towards algorithm acceleration and parallelization for large biological networks.

Notation is introduced below to describe a hierarchical organization of reaction channels. Table
(1) provides a comprehensive guide to notation used throughout the following sections. Next,

5

following and generalizing the strategy of section 2, we will derive bounds on propensities and
species. The bounds will be essential for deriving an algorithm for exact speedup of SSA for
systems amenable to hierarchical organization.

Reaction channels must belong to exactly one block. A block is defined as a set of reaction
channels. If reactions are “connected” by shared reactants, it is preferred that reactions should
be more strongly connected within than between blocks. For this work, a two level hierarchy of
reactions and blocks is used. However, it is straightforward to apply this method repeatedly to
multiple levels.

Each reaction channel is indexed by its block ID r1, and its within-block ID r2, and will be
designated as R = (r1r2) for r1 ∈ {1 . . . b} and r2 ∈ {1 . . . br1}. The “block propensity” for block r1

and state I, denoted D
(r1)
I is the sum of propensities of constituent reaction channels. Specifically,

similar to equation (4) this means

D
(r1)
I =

∑

r2∈r1

ρr1r2F
(r1r2)
I . (11)

Furthermore, we denote the number of reaction events occuring within block r1 as ur1. Finally,
the number of events for the reaction channel indexed by R = (r1r2) is denoted by vr1r2.

3.2 Bounds on Propensities and Species Counts

Similar to equation (5), we now develop bounds on species counts and propensities. This enables
us to derive a two-scale rejection sampling algorithm in many ways analogous to ER-leap at each
scale. For reasons that will become evident in section 3.3, we first derive bounds on the block
propensities given L and I0. Afterwards, bounds will be developed on the species molecule counts
and reaction channel propensities given u.

First, recall that in equation (5) we found bounds on species and propensities after L reaction
events. Note that similar to equation (5) we can define

D̃
(r1)
K,L−1 =

∑

r2∈r1

ρr1r2F̃
(r1r2)
K,L−1

and a similar definition for D
˜

(r1)
K,L−1.

3.2.1 Optimized Block Level Bounds

If it is the case that we only need bounds on the block propensities, and not individual reaction
channels, then we can take advantage of “reaction event exclusion”. This means that we only need
to consider the sequence of at most length L reaction events which will result in the most extreme
value for the sum of propensities in block r1. Therefore, we no longer need to assume that all
species counts are at the most extreme value possible after L reaction events.

We want to find a bound closer to the optimal block propensity

D̂
(r1)
(I0L)

∗
= max

vr1 ||ur1=L

∑

r2∈r1

ρr1r2F
(r1r2)
I(I0,vr1). (12)

Unfortunately, näıvely solving this exactly for r1 requires enumerating (br1)
L possible choices for

vr1 upon every iteration. Fortunately the bound we seek, D̂
(r1)
(I0L), is not required to be exactly

optimal. Instead we only require that

D̂
(r1)
(I0L)

∗
≤ D̂

(r1)
(I0L) ≤ D̃

(r1)
(I0L) (13)

6

Symbol Meaning

x̃
Upper bounding value for x after L− 1 reaction events.
Calculated by assuming each species type will be maximal.

x̂
Upper bounding value for x after L− 1 reaction events.
May not depend on bounding all species values and
therefore may be tighter than x̃.

x̄
Upper bounding value given u.
Will often involve inner block calculations.

x
˜
, x
̂
, x Lower bounding versions of the above definitions.

x∗ The optimal value of x with respect to some objective function.

Table 1: Notation: Accents and Meaning

such that D̂
(r1)
(I0L)

∗
≤ D̂

(r1)
(I0L) is required for algorithmic correctness and D̂

(r1)
(I0L) ≤ D̃

(r1)
(I0L) is needed

for improved efficiency.

A heuristic algorithm for D̂
(r1)
(I0L) is developed. We demonstrate this falls between the requisite

values and has ‘nice’ asymptotic properties that will be discussed later.

Derivation The idea is to find the maximum ∆D̂
(r1)
(I0L) possible resulting from one reaction channel

firing sometime during the next L reaction events. If we determine this value, we can upper bound

D
(r1)
(I0...IL−1)

with

D
(r1)
(I0,L) ≤ D

(r1)
I0

+ (L− 1)∆D̂
(r1)
(I0L)

∗
(14)

where
∆D̂

(r1)
(I0L)

∗
= max

Rr1r2||I0..IL−1

∆D̂
(r1)
(I0L).

Note how this is an upper bound on D
(r1)
(I0,L). By construction, ∆D̂

(r1)
(I0L)

∗
is the largest amount that

the block propensity may change for any of the upcoming possible (L − 1) reaction events in r1.

Since there are (L−1) reaction events, and the most any of them may increase D
(r1)
(I0,L) is ∆D̂

(r1)
(I0L)

∗
,

equation (14) will always bound D
(r1)
(I0,L).

This method improves upon our previous methods, which found the maximum ña for all species
and then calculates the block propensity. Each within-block reaction channel propensity will be
larger when ña rather than na is used to calculate the propensity. Therefore, using the increased

bound will result in a block’s propensity being O(br1 ∗L) larger than D
(r1)
I0

. However, by calculating

using equation (14) the bound will be just O(L) larger than D
(r1)
I0

.

Again, näıvely solving for ∆D̂
(r1)
(I0L)

∗
requires an impractical amount of work. But as with our

previous argument, we can upper-bound ∆D̂
(r1)
(I0L)

∗
and still achieve an upper bound for D

(r1)
(I0,L). To

upper bound ∆D̂
(r1)
(I0L)

∗
we use the monotonic nature of D

(r1)
Ik

. If any species increases to n′
a ≥ na

we know that D
(r1)
n′

a
≥ D

(r1)
na . Therefore, if we find the reaction channel that increases the block

propensity the most when ñI0,L is used for positive ∆m
(r1r2)
a , we are guaranteed that there does

not exist a larger ∆D̂
(r1)
(I0L).

7

This yields

∆D̂
(r1)
(I0L) = max

r2∈r1

[
D(r1)(q(ñ, r2))−D(r1)(ñ)

]
(15)

where

q(n, r2)a =

{
na + ∆m

(r1r2)
a if ∆m

(r1r2)
a > 0,

na otherwise
(16)

as our final equation for ∆D̂
(r1)
(I0L). A proof that this bounds the maximum delta possible can be

found in the appendix.
This tighter bound will result in a greater acceptance ratio. The basic reason for this improve-

ment is that we need not overestimate every propensity in r1 by O(L), and add the overestimates
up, since only L and not b1L reactions will occur.

Näıvely finding the reaction channel R = (r1r2) that will increase D(r1)(ñI0,L) by a maximal
amount will cost O(|Rr1 |) steps to compute. To accelerate this step further, blockwise priority
queues (PQ) are used to find this R efficiently. Nodes in the PQ are reaction channels and values

are the ∆D
(r1)
(I(ñ,br1)) caused by each reaction channel firing. Upon acceptance of L reaction events

we must update the priority queue for each block. Only nodes that interact with species which
have changed, need to be adjusted. This, at worst, will be O(log br1) work for each node, although
in practice the order rarely needs to change.

3.2.2 Propensity Bounds Given u

If we know u, the number of reaction events for r1 and adjacent blocks, we can derive even tighter
bounds on the reaction channels Rr1∗. In fact, these tighter bounds help us to efficiently increase
L when larger systems are considered, as will be demonstrated in section 3.3.

We determine F̄ (r1∗) by finding bounds on species counts given u. In other words, we want to
find

nA(r, n0, k) ≤ n̄Ar1(u, n0), for k = 0..[(index of final r1 event)− 1]

which is the maximum possible value of nAr1 prior to the last event in r1 occurring. In this way
nA(r, n0, k) will never exceed the propensity calculated from n̄Ar1(u, n0).

Finding the optimal value for n̄Ar1(u, n0) is straightforward. We first need to consider blocks
other than r1 which may change nAr1. Since the order of reactions is unknown, we must assume
that all reaction events in blocks except r1, written as u\{ur1}, occur prior to those in ur1 . It is
desired that the number of neighbors relative to the total number of blocks will be small. This
will decrease nA(r, n0, k) and ultimately lead to a more efficient algorithm. Secondly, we need to
consider reactions in r1. In calculating the bound, it is assumed that all (ur1 − 1) reaction events
chosen will behave adversarially. This is analogous to the method considered in section 3.2, with
the modification that we will consider a subset of reaction channels. Thus

n̄Ar1(u, n0) ≡ nA +
∑

r1
′

(ur1
′ − δr1r1

′)max
r2

′
∆m

(r1
′r2

′)
(a1a2)

will bound each nAr1 with respect to r1 and u. The Kronecker delta function δ(a, b) or δ(a− b) is
as usual:

δ(a − b) = δab = 1 (a = b) ≡

{
1 if a = b

0 otherwise
.

Finally, the propensities of reaction channels inside of block r1 are bound as,

F̄ (r1r2)(u, n0) ≡ F (r1r2)(u, n̄Ar1).

8

As in ER-leap, lower-bounding the propensities and species is done with the same techniques
as that used for upper-bounding with the restriction that propensities and species molecule counts
cannot go below zero. These derived bounds are used in the following sections.

3.3 Equivalent Markov Process

Similar to section 2.2, we want to algebraically manipulate the distribution represented by the
Chemical Master Equation (a special case of the Kolmogorov-Chapman equation [30]) into a form
suitable for parallelization and acceleration. The hierarchical description from section 3.1 will aid
us in this transformation.

First, note it is possible to rewrite equation (7) into a hierarchical version with u’s and v’s
strictly ordered such that

∑

{Rk |k=1..L−1}

e(R) =
∑

{u|uR∈N,
P

R uR=L}

∑
n
vr1

|vR∈N,
P

r′
2

vr1r′
2
=ur1

o

∑

{σ1|σ1 permutes unequal R′s|u}

∑

{σ2|σ2 permutes unequal R′s|vr1
}

e(σ1(σ2(R))).

By taking an average of e(σ(R)) and weighting by the number of ways the selection may occur we
get

=
∑

{u|uR∈N,
P

R uR=L}

∑
n
vr1

|vR∈N,
P

r′2
vr1r′2

=ur1

o

(
L

R1R2 . . . Rn

)〈
〈e(σ1(σ2(R)))〉σ2

〉
σ1

and analogous to the way shuffling a deck of cards is the same as shuffling by suit and then,
maintaining that order, shuffling by value independently for each suit, we may write

(
L

R1R2 . . . Rn

)
=

L!

R1!R2! . . . Rn!

=
L!

ur1 !ur′1
! . . . ur′′1

∏

r1

ur1!

vr1r2!vr1r′2
! . . . vr1r′′2

!

=

(
L

ur1 . . . ur′1

)∏

r1

(
ur1

vr1r2 . . . vr1r′2

)

and arrive at a useful form for our distribution, which is already suggestive of a block-parallel
algorithm:

∑

{rk|k=1..L−1}

e(r) =
∑

{u|uR∈N,
P

R uR=L}

(
L

ur1 . . . ur′1

) ∑
n
vr1

|vR∈N,
P

r′
2

vr1r′
2
=ur1

o

∏

r1

(
ur1

vr1r2 . . . vr1r′2

)〈
〈e(σ1(σ2(R)))〉σ2

〉
σ1

(17)

To go further, we need to re-examine e(. . .).

9

3.3.1 Introduction of Probability Bounds

We now make use of our previously derived propensity bounds to derive a parallel algorithm. From
equation (6) we have

〈
〈e(σ1(σ2(R)))〉σ2

〉
σ1

=

〈〈
∏

k=L−1↘0

ρRk
F

(Rk)
Ik(R,I0)

exp(−τk(DIk(R,I0),Ik(R,I0)))

〉

σ2

〉

σ1

;

with inclusion of derived bounds,

〈
〈e(σ1(σ2(R)))〉σ2

〉
σ1

=

〈〈
∏

k=L−1↘0

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)

ρRk
F̄ (r1r2)(u, I0)

D̄(r1)(u, I0)

D̄(r1)(u, I0)

D̂
(r1)
(I0L)

D̂
(r1)
(I0L)×

exp(−τk(DIk(R,I0),Ik(R,I0) −D
̂

(I0L)) exp(−τkD
̂

(I0L))

〉

σ

〉

σ1

.

If we separate out terms based on independence of σ1, σ2 and v, then

〈
〈e(σ1(σ2(R)))〉σ2

〉
σ1

= exp(−τD
̂

(I0L))

(
∏

r1

D̂
(r1)
(I0L)

ur1

)(
∏

r1

∏

r2

(
ρRk

F̄ (r1r2)(u, I0)

D̄(r1)(u, I0)

)vr2
)
×

∏

r1

D̄(r1)(u, I0)

D̂
(r1)
(I0L)

ur1

×

〈
∏

k=L−1↘0

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)

〈
exp(−τk(DIk(R,I0),Ik(R,I0) − D̂(I0L))

〉
σ2

〉

σ1

We now substitute the expression for
〈
〈e(σ1(σ2(R)))〉σ2

〉
σ1

into equation (17), combining terms
where appropriate:

∏

k=l−1↘0

Ŵ exp(−τkD)

Il,I0

=

∑

r′1
D̂

(r′1)

(I0L)

D
̂

(I0,L)

L
∑

{u|uR∈N,
P

R uR=L}

(

L

ur1 . . . ur′1

)∏

r1

D̂
(r1)
(I0L)

∑
r′1

D̂
(r′1)

(I0L)

ur1

×

∑
n
vr1

|vR∈N,
P

r′
2

vr1r′
2
=ur1

o

[
∏

r1

(
ur1

vr1r2 . . . vr1r′2

)∏

r2

(
ρRk

F̄ (r1r2)(u, I0)

D̄(r1)(u, I0)

)vr2
]
×

(
D
̂

(I0,L)

)L

exp(−τD
̂

(I0L))×AcceptCoarse(u; I0, L)×
(
∏

r1

AcceptBlock(vr1 , σ2;u)

)
×AcceptF ine(σ1;u, v, I0, σ2) (18)

10

The acceptance probabilities are as follows:

AcceptCoarse(u; I0, L) =
∏

r1

D̄(r1)(u, I0)

D̂
(r1)
(I0L)

ur1

(19)

AcceptBlock(vr1 , σ2;u, r1) =
∏

k∈r1

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)
(20)

AcceptF ine(σ1;u, v, I0, σ2) =
∏

k=L−1↘0

exp(−τk(DIk(R,I0),Ik(R,I0) − D̂(I0L))) (21)

Furthermore, prior to turning these equations into an algorithm, we note that we can lower-
bound these acceptance probabilities. This will enable us to do an early acceptance or rejection
without always doing all of the work to calculate these values exactly.

3.3.2 Lower Bounding Acceptance Probabilities

We begin by lower-bounding AcceptF ine(. . .). This probability requires the most work to calculate
and as we will see may be bound fairly tightly. The bound only requires that τ has been sampled.

The lower bound AcceptF ine
̂

(. . .) is sought such that

AcceptF ine
̂

(. . .) ≤
∏

k=L−1↘0

exp(−τk(DIk(R,I0),Ik(R,I0) −D
̂ (I0L))).

for all possible {τk} and {I0 . . . IL−1}. In the above, note that D
̂ (I0L) is constant with respect to k.

Therefore, when we also upper bound

D̂I0L ≥ DIk(R,I0),Ik(R,I0),

this creates an easily computable expression for the lower bound

AcceptF ine(σ1;u, v, I0, σ2, τ) ≥
∏

k=L−1↘0

exp(−τk(D̂I0L −D
̂ (I0L)))

so that
AcceptF ine

̂

(τ ; I0, L) = exp(−τ(D̂I0L −D
̂ (I0L))) (22)

Furthermore, recall that E[τ] = L/D
̂ (I0,L). If we assume that ∆D̂(I0L) ∝ L when computing D

̂ (I0L)

and D̂(I0L) (see equation (14)) in the limit of many non-zero propensity reaction channels

〈
lim

|R|→∞
exp(−τ(D̂I0L −D

̂ (I0L)))

〉
→ 1

which implies that both AcceptF ine
̂

(. . .) and AcceptF ine(. . .) tend to unity as the number of

reaction channels increases.
Next, we set out to lower-bound AcceptBlock(. . .). This acceptance probability depends on σ2.

Therefore, work will be saved if we can calculate the lower bound without sampling σ2. This can be
accomplished by noting that AcceptBlock(. . .) is a product of fractions. If we have a numerator and

11

denominator that are independent of σ2 we can re-write this equation in terms of r2. Specifically,

using F
(r1r2)
u,I0

allows us to lower-bound the equation.

AcceptBlock(vr1 , σ2;u, r1) =
∏

k∈r1

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)
≥
∏

k∈r1

F (r1r2)(u, I0)

F̄ (r1r2)(u, I0)

yielding

AcceptBlock
̂

(vr1 ;u) =
∏

r2∈r1

(
F (r1r2)(u, I0)

F̄ (r1r2)(u, I0)

)vr2

(23)

3.4 Algorithm

The above equations, along with rejection sampling, allow us to create an efficient algorithm that
will allow much of the work be done in parallel. From equation (18) observe there are two probability
mass function expressions for a multinomial distribution. Specifically,

Multinomial(u;

pr1 =

D̂
(r1)
(I0L)

∑
r′1

D̂
(r′1)

(I0L)

 , L) =

(
L

ur1 . . . ur′1

)∏

r1

D̂
(r1)
(I0L)

∑
r′1

D̂
(r′1)

(I0L)

ur1

is the multinomial distribution for sampling u. And for each r1 the vector vr1 is sampled as

Multinomial(vr1 ;

{
pr1r2 =

ρRk
F̄ (r1r2)(u, I0)

D̄(r1)(u, I0)

}
, ur1) =

(
ur1

vr1r2 . . . vr1r′2

)∏

r2

(
ρRk

F̄ (r1r2)(u, I0)

D̄(r1)(u, I0)

)vr2

which is interesting and implies vr1 is independent of all other block’s vr′1
given u.

The multinomials vr1 may be sampled independently for each block, however it may be the case
that equation (20) needs to be computed by considering multiple blocks simultaneously. Specifi-
cally, computing Ik(R, I0) for block r1 may require knowledge about any neighboring blocks, r′1,
changing the chemical species counts for reaction channels vr1 reacting on the same species. Since
equation (23) is independent of Ik(. . .), this “joint” acceptance probability only needs to be calcu-
lated when (a) blocks r1 and r′1 share a chemically reacting species in their respective vr1 and vr′1
sampled reaction channels and (b) block r1 or r′1 does not pass early block-acceptance. Computing
equation (20) jointly involves computing a σ2 for reaction events in r1 and r′1. Then, Ik(. . .) may be
computed properly. It should be noted that in the pseudocode below some possible optimizations
(eg independent early block accept and some parallel execution) are not shown for clarity. Instead
“connected components”, block groups which may need to be sampled jointly if conditions (a) and
(b) are met, are sampled entirely in “joint” form.

We now present the HiER-leap algorithm, which is a realization of the aforementioned equa-
tions, in pseudocode. First, note that if we have an early global acceptance, then most of the
computational effort will be put into line 12 of the following pseudocode. The subroutine from this
line will be shown later. Notice that this function is independent for all blocks, with the exception
that computing equation (20) may need to be done jointly for neighboring blocks, and needs to be
done for all blocks with at least one reaction event. This is an ideal scheme for parallelization and
is done so with good efficacy as will be shown. Furthermore, for the tests in in section 4.2 the full

12

calculation AcceptF ine(. . .) was rare because in general: AcceptF ine
̂

(. . .) ≥ 0.995. The algorithm

is as follows.

Require: D̂(I0,L),D̂ (I0,L), {D̂
(r1)
(I0,L)} precomputed for L ≥ 1 and I0.

Ensure: Return (IL,∆t) . return updated state and duration of L steps
function HiER-Leap(I0, L)

τ ← Erlang(τ ;D
̂ (I0,L), L)

u←Multinomial(u;

{
pr1 =

bD(r1)

(I0L)

P
r′
1

bD(r′1)

(I0L)

}
, L)

Compute D̄’s . May be done in parallel.
5: . In accordance with equation (19).

if UniformRandom(0,1) ≥AcceptCoarse(u; I0, L) then

return HiER-Leap(I0, L) . Early Rejection. Try again.
end if

10: for all c ∈ ConnectedComponents(u,R, I0) do

. See algorithm below.
(vr1 , σ2)← SampleConnectedComponents(c, u, I0)

. May be done in parallel.
end for

15: z ← UniformRandom(0,1)
if z ≤ AcceptF ine

̂

(τ ; I0, L) then . See equation (22).

return (IL(I0, v, u), τ) . Early Acceptance.
end if

. Computation should be rare; see equation (21).
20: if z ≤ AcceptFine(σ1;u, v, I0, σ2, τ) then

return (IL(I0, v, u), τ)
else

return HiER-Leap(I0, L) . Try again.
end if

25: end function

Ensure: Return each connected component of blocks, where two blocks are in the same connected
component if they share a reaction species and each blocks has at least one reaction event such
that ur1 ≥ 1.
function ConnectedComponents(u,R, I0)

C ← {} . C is a set.
B ← R . B is the set of blocks.

30: while B 6= ∅ do

b← B.ChooseElement()
if ub ≥ 1 then

c← DepthFirstSearch(b, u,B)
. Blocks share an edge iff for each ur1 ≥ 1 and they share a species.

35: B ← B\c . Set operation subtraction.
C ← C.Append(c)

end if

end while

13

return C
40: end function

The pseudocode to sample each connected component is as follows.

Require: The connected component c contains blocks which all have at least one reaction event.
function SampleConnectedComponents(c, u, I0)

pEarly ← 1
for all r1 ∈ c do

vr1 ←Multinomial (vr1 ;

{
pr1r2 =

ρRk
F̄ (r1r2)(u,I0)

D̄(r1)(u,I0)

}
, ur1)

for r2 ∈ r1 and v(r1r2) ≥ 1 do

pEarly ← pEarly ×
(

F (r1r2)(u,I0)

F̄ (r1r2)(u,I0)

)vr2

end for

end for

z ← UniformRandom(0,1)
if z ≤ pBlockEarly then

return (v, σ2) . Early Accept.
end if

pComponent← 1
σ2 ← Permutation(ur1) . Must compute exact acceptance probability.
for all k = 1 . . . |v| do

r′2 ← σ2(v, k)

pComponent← pComponent×
F

(r1r′2)
Ik(σ2(vr1),I0)

F̄
(r1r′

2
)(u,I0)

. Calculating Ik takes the most work.

end for

if z ≤ pBlock then

return (v, σ2) . Accept sample.
else

return SampleConnectedComponents(c, u, I0) . Sample rejected, try again.
end if

end function

4 Numerical Experiments

4.1 CaliBayes Validation

We check the HiER-leap algorithm correctness numerically with the CaliBayes test suite similar to
the work in ER-leap [25]. If is possible to solve analytically for P (X|t), this allows us to compare
many simulated trajectories to the true distribution defined by the CME. Since HiER-leap reduces
to ER-leap when the number of blocks goes to one, and it has already been show that ER-leap
samples the correct distribution, we wish to test across a variety of reaction channel quantities and
organization structure.

The reaction networks in CaliBayes for which we know the analytical solution involve at most
two species types. However, simulating many replicates of these networks on a grid, not connected
with diffusion, will allow us to treat each block as an independent sample. We can then treat the
simulation of many network replicates as many sampled trajectories of a single network.

We perform tests over a number of network replicates m = 2 . . . 1000. The number of blocks
range from b = 1 . . . m. The leap is in the range L = 3 . . . 18, where the leap used depends on the

14

specific reaction network, m and b, but is held constant throughout the simulation.
CaliBayes models 1-01, 1-03, 1-04, 2-01, 2-02, 3-01 and 3-02 [8] are tested, on the spaced defined

by the Cartesian product of the possible values for the m, b and L parameters as described above,
for parameters which result in an acceptance probability greater than about 0.05. These tests pass
on these cases using the criteria of Evans et al. [8]

We now turn to a large, spatially coupled system.

4.2 Acceleration

As an exact algorithm, the key performance metric of relevance to HiER-leap is the amount of
acceleration achievable. As discussed earlier, in principle adding more reaction channels and pro-
cessors should increase the relative speedup over SSA. We can see this trend experimentally in
figure 1 and figure 2.

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Network Replicates

T
im

e

Reaction Channels on 2D Grid vs. CPU Time

HiER−Leap
SSA
ER−Leap

Figure 1: The Williamowski-Rössler model as seen in section 4.2 is used for this experiment. There
are different number of network replicates on a 2D square grid with diffusion rate of 0.1. The
number of replicates ranges from 4 to 8649 which equates to 64 to 189612 reaction channels.

15

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Network Replicates
T

im
e

Reaction Channels on 1D Grid vs. CPU Time

HiER−Leap
SSA
ER−Leap

Figure 2: The same experimental setup as used for figure 1 except 1D diffusion is used.

We test using a spatially coupled version of the Williamowski-Rössler model [32] defined as

X
k1←→
k2

2X Y
k5←→
k6

∅ Z
k9←→
k10

2Z

X + Y
k3←→
k4

2Y X + Z
k7←→
k8

∅

replicated over a d-dimensional grid for d = 1 or d = 2. Diffusion reaction channels for all species
are added between adjacent grid cells with a rate of kd = 0.1. Parameters and initial conditions
for each of the replicated Williamowski-Rössler grid cells are as follows: k1 = 900, k2 = 8.3× 10−4,
k3 = 0.00166, k4 = 3.32 × 10−7, k5 = 100, k6 = 18.06, k7 = 0.00166, k8 = 18.06, k9 = 198,
k10 = 0.00166. X(0) = 39570. Y (0) = 511470. Z(0) = 0.

The following tests are all run on an Apple Macintosh Pro with a Quad-Core Intel Xeon processes
running a total of 8 cores at 2.26 GHz and 13 GB of RAM using OS X 10.6.8. The algorithms
are coded in C++ and Boost.Thread [18] and the Intel Threading Building Blocks [1] are used
for multithreading. Connected components were found using the depth-first search algorithm.
We compiled the code using the LLVM compiler 1.0.2. The HiER-leap code may be found at
http://computableplant.ics.uci.edu/hierleap/.

Results are shown in figures 1 and 2. They show a substantial speedup of HiER-leap over SSA
and ER-leap, around 100x and 10x respectively, as we increase the number of reaction channels
to around 190,000 . The spatial nature of this experiment means that blocks are neighbors with
relatively few other blocks. This leads to a greater “coarse-scale” acceptance probability and
therefore increased efficiency.

Additionally, we see that the slopes of the log-log runtime plots for SSA and ER-leap become
nearly equal as the number of reaction channels increase. This is expected, since ER-leap finds
bounds on individual reaction channels after L reaction events, and this bound is independent of
the number of reaction channels. HiER-leap however does not have this shortcoming and has a
lower slope (eg better asymptotic behavior) as a result.

4.3 HiER-leap Properties

The algorithm parameters, such as leap size and hierarchical organization, require optimization
before the fastest possible execution time is achieved. To find the ideal methods with which to

16

optimize our algorithm, we explore various trade-offs here.
In figure 3 we observe that the optimal b and L are interdependent for a given network. How-

ever, it is interesting to note that for this experiment there is a relatively large plateau of nearly
equivalent optimal running times. This means that the range of reasonably good parameters is
large. Furthermore, the contour plot of figure 3 indicates that there is only one global optimum.
This seemingly convex behavior indicates that finding the optimum requires only a simple hill
climbing algorithm.

Network replicates/block

Le
ap

Contour Plot of Log Time

5 10 15 20 25 30 35

50

100

150

200

250

300

350

400

450

500

550

0.5

1

1.5

2

2.5

3

Figure 3: Log CPU Time vs Leap and Hierarchical Structure. The Williamowski-Rössler model
as seen in section 4.2 is used for this experiment. There are 400 network replicates on a 1D grid
with diffusion rate of 0.1. The model execution time depends on leap and hierarchical organization.
As leap increases the amount of work per iteration goes up but the acceptance ratio goes down.
Furthermore, if there are many reaction channels per block the total acceptance probability of
the system goes down. However, in this situation the inner-block acceptance probability goes up.
When the number of reaction channels per block goes down, the opposite trends occur. In this way
the chosen leap and block organization will determine the total execution time.

Thus, the results from figure 3 indicate that finding the optimal L and hierarchical organization
for a spatially distributed system is an easy optimization problem. These results, and those from
ER-leap, suggest that L will generally have a local optimum that is also a global optimum. How-
ever, the optimal configuration of the blocks and reaction channels for networks not specifically
representing a spatially distributed reaction network remains an open problem.

5 Summary

We have presented a novel accelerated stochastic simulation algorithm which has demonstrated an
ability to sample from the CME without a loss of accuracy. Due to its hierarchical design, this
method (a) scales very well with the number of reaction channels and simultaneously (b) takes
advantage of parallel hardware for single trajectory samples. As far as we are aware, this is the first
exact accelerated algorithm with either property (a) or (b), and is therefore of potential significance
to the computational biology community.

Open questions and future work abound. For example, it is not know how well this method

17

works on ‘real networks’ of substantial complexity taken from biological modeling practice. We
believe that modular structure in biological networks will make the method particularly useful.
Additionally, it is unknown how substantial increases in the parallel architectures of future com-
puters will increase performance.

Acknowledgements

We acknowledge useful discussions with Petros Koumoutsakos. Funding was provided by US NIH
P50-GM76516, R01-GM086883, and US NSF #EF-0330786.

Appendix

We will show that for ∆D̂
(r1)
(I0L)

∗
from equation (14) and ∆D̂

(r1)
(I0L) from equations (15) and (16), it

is the case that ∆D̂
(r1)
(I0L)

∗
≤ ∆D̂

(r1)
(I0L).

Proof by contradiction. Assume there is some r2 ∈ r1 and state I ′ = n′ with ∀an
′
a ≤ ña and

∃an
′
a < ña, reachable from I0 in at most L − 1 reaction events used to find ∆D̂

(r1)
(I0L)

∗
such that

∆D̂
(r1)
(I0L)

∗
> ∆D̂

(r1)
(I0L). Substituting in our definitions for ∆D̂

(r1)
(I0L)

∗
and ∆D̂

(r1)
(I0L) , using equation 4,

and introducing the notation that I(r2) will be the result of r2 applied to I and I(r2
+) is the result

of r2 applied to I only for species which have net gain (∆m
(r1r2)
a > 0), yields

∆D̂
(r1)
(I0L)

∗
= D

(r1)
I′(r2)

−D
(r1)
I′

=
∑

r′′2∈r1

ρ(r1r′′2)F
(r1r′′2)

I′(r2) −
∑

r′′2∈r1

ρ(r1r′′2)F
(r1r′′2)
I′

=
∑

r′′2∈r1

ρ(r1r′′2)

(
F

(r1r′′2)

I′(r2) − F
(r1r′′2)
I′

)

and
∆D̂

(r1)
(I0L) =

∑

r′′2∈r1

ρ(r1r′′2)

(
F

(r1r′′2)

Ĩ(r2
+)
− F

(r1r′′2)

Ĩ

)
.

Therefore, we can equivalently say that we are trying to disprove

∑

r′′2∈r1

ρ(r1r′′2)

(
F (r1r′′2)(n′ + ∆m(r1r2))− F (r1r′′2)(n′)

)
>

∑

r′′2∈r1

ρ(r1r′′2)

(
F (r1r′′2)(ñ + ∆m(r1r2))− F (r1r′′2)(ñ)

)
. (24)

Note that by grouping terms by r′′2 , there is a one-to-one correspondence between the summation
terms on each side of the inequality.

If true, equation (24) implies that there is at least one reaction channel r′2 ∈ r1 for ∆m
(r1r2)
a > 0

such that

F (r1r′2)(n′ + ∆m(r1r2))− F (r1r′2)(n′) > F (r1r′2)(ñ + ∆m(r1r2))− F (r1r′2)(ñ). (25)

18

But we will show that this is impossible for any ña > n′
a ≥ 0. Note that we do not need to consider

∆m
(r1r2)
a ≤ 0 because F is monotonic, the LHS will be decreased and the RHS will not change as

per the definition of ∆D̂
(r1)
(I0L) (negative ∆m

(r1r2)
a are ignored).

Before proceeding we will introduce the forward difference operator, ∆F (i), such that

∆F (i)f(z) ≡ f(z + i)− f(z) (26)

for any function f(z).
Furthermore, F (r1r2)(n) can be decomposed by species into terms including chemical species Ca

and those which do not. Following from equation (3), this allows us to rewrite F (r1r2)(n) as

F (r1r′2)(n) = G(r1r′2)(n\{na})× (na)k

for some constant G(r1r2)(n\{na}) ≥ 0 which does not depend on na, where k = m
(r1r′2)
a is the input

stoichiometry for reaction r′2 and species Ca, and

(n)k ≡
n!

(n− k)!
.

For equation (25) to be true there must exist a species Ca such that

F (r1r′2)(n′
a + ∆m(r1r2)

a)− F (r1r′2)(n′
a) > F (r1r′2)(ña + ∆m(r1r2)

a)− F (r1r′2)(ña) (27)

is true. All of the above F (r1r2) are calculated using nb = n′\{na} and na ∈ {n
′
a, ña}. When we

show that n′
a will not result in a greater delta than that offered by using ña instead, this implies

that equation (25) may never be true.
Equivalent to equation (27), by dividing out G(r1r2)(n′) ≥ 0, using equation (26), and setting

m = ∆m
(r1r2)
a we arrive at

∆F (m)(ña)k −∆F (m)(n
′
a)k < 0. (28)

However, because n′
a < ña, if it is shown that ∆F (m)(n)k is monotonic in n then this will imply

equation 28 is false.
Therefore, it just remains to be shown that ∆F (m)(n)k is monotonic in n. Consider the following

equation which tests for monotonicity

∆F (m)(n + 1)k −∆F (m)(n)k

=
[
∆F (1)(n + m)k + . . . + ∆F (1)(n + 1)k

]
−

[
∆F (1)(n + m− 1)k + . . . + ∆F (1)(n)k

]

= ∆F (1)(n + m)k −∆F (1)(n)k

= k(n + m)k−1 − k(n)k−1

= k

[
(n + m)!

(n + m− k + 1)!
−

n!

(n− k + 1)!

]

= k
n!

(n − k + 1)!

[
n + m

n + m− k + 1
× . . . ×

n + 1

n− k + 2
− 1

]

≥ 0

because k ≥ 1 implies every factor in the long product is ≥ 1. This implies monotonicity. Therefore
equation (27) is false for all Ca, implying equations (25) is false, as was to be proved.

19

References

[1] Thread building blocks. http://threadingbuildingblocks.org/, last accessed May 2012.

[2] B. Bayati, P. Chatelain, and P. Koumoutsakos. D-leaping: Accelerating stochastic simulation
algorithms for reactions with delays. J. Comput. Phys., 228(16):5908–5916, Sept. 2009.

[3] D. Cangelosi. Ssaleaping: Efficient leap condition based direct method variant for the stochas-
tic simulation of chemical reacting system. In Proceedings of the 3rd International ICST
Conference on Simulation Tools and Techniques, SIMUTools ’10, pages 36:1–36:10, ICST,
Brussels, Belgium, Belgium, 2010. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[4] Y. Cao, D. T. Gillespie, and L. R. Petzold. Accelerated stochastic simulation of the stiff
enzyme-substrate reaction. Journal of Chemical Physics, 123(14):144917, 2005.

[5] Y. Cao, D. T. Gillespie, and L. R. Petzold. Avoiding negative populations in explicit Poisson
tau-leaping. The Journal of Chemical Physics, 123(5):054104, 2005.

[6] Y. Cao, D. T. Gillespie, and L. R. Petzold. Efficient step size selection for the tau-leaping
simulation method. The Journal of Chemical Physics, 124(4), 2006.

[7] A. Chatterjee, K. Mayawala, J. S. Edwards, and D. G. Vlachos. Time accelerated Monte
Carlo simulations of biological networks using the binomial τ -leap method. Bioinformatics,
21(9):2136–2137, 2005.

[8] T. W. Evans, C. S. Gillespie, and D. J. Wilkinson. The SBML discrete stochastic models test
suite. Bioinformatics, 24(2):285–286, January 2008.

[9] A. Gabrieli, P. Demontis, F. G. Pazzona, and G. B. Suffritti. Speeding up simulation of
diffusion in zeolites by a parallel synchronous kinetic Monte Carlo algorithm. Physical Review
E - Statistical, Nonlinear and Soft Matter Physics, 83(5 Pt 2):056705, 2011.

[10] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems with
many species and many channels. J. Phys. Chem. A, 104(9):1876–1889, March 2000.

[11] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

[12] D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems.
J Chem Phys, 115:1716–1733, 2001.

[13] D. T. Gillespie and L. R. Petzold. Improved leap-size selection for accelerated stochastic
simulation. The Journal of Chemical Physics, 119(16):8229, 2003.

[14] A. Hintze and C. Adami. Evolution of complex modular biological networks. PLoS Comput
Biol, 4(2):e23, 02 2008.

[15] K. A. Iyengar, L. A. Harris, and P. Clancy. Accurate implementation of leaping in space: The
spatial partitioned-leaping algorithm. J. Chem. Phys., 132(9):094101+, 2010.

[16] D. D. Jenkins and G. D. Peterson. AESS: Accelerated exact stochastic simulation. Computer
Physics Communications, 182(12):2580 – 2586, 2011.

20

[17] M. Jeschke, R. Ewald, and A. M. Uhrmacher. Exploring the performance of spatial stochastic
simulation algorithms. Journal of Computational Physics, 230(7):2562–2574, Apr. 2011.

[18] B. Kempf. The boost.threads library. C/C++ Users Journal, 20(5), May 2002.

[19] G. Klingbeil, R. Erban, M. Giles, and P. K. Maini. STOCHSIMGPU: Parallel stochastic
simulation for the Systems Biology Toolbox 2 for Matlab. Bioinformatics, 27(8):1170–1171,
2011.

[20] W. Koh and K. T. Blackwell. An accelerated algorithm for discrete stochastic simulation
of reaction–diffusion systems using gradient-based diffusion and tau-leaping. The Journal of
Chemical Physics, 134(15):154103+, 2011.

[21] H. Li and L. Petzold. Efficient parallelization of the stochastic simulation algorithm for chem-
ically reacting systems on the graphics processing unit. Int. J. High Perform. Comput. Appl.,
24(2):107–116, May 2010.

[22] H. Lu and P. Li. Stochastic projective methods for simulating stiff chemical reacting systems.
Computer Physics Communications, 183(7):1427 – 1442, 2012.

[23] T. T. Marquez-Lago and K. Burrage. Binomial tau-leap spatial stochastic simulation algorithm
for applications in chemical kinetics. J. Chem. Phys., 127(10):104101+, 2007.

[24] S. Maslov and K. Sneppen. Specificity and stability in topology of protein networks. Science,
296(5569):910–913, 2002.

[25] E. Mjolsness, D. Orendorff, P. Chatelain, and P. Koumoutsakos. An exact accelerated stochas-
tic simulation algorithm. The Journal of chemical physics, 130(14):144110, 2009.

[26] M. D. Riedel and J. Bruck. Exact stochastic simulation of chemical reactions with cycle
leaping. Technical Report ETR007, California Institute of Technology, 2006.

[27] D. Rossinelli, B. Bayati, and P. Koumoutsakos. Accelerated stochastic and hybrid methods for
spatial simulations of reactiondiffusion systems. Chemical Physics Letters, 451(1-3):136–140,
Jan. 2008.

[28] M. H. Serres, S. Goswami, and M. Riley. Genprotec: an updated and improved analysis of
functions of escherichia coli k12 proteins. Nucleic Acids Research, 32(suppl 1):D300–D302,
2004.

[29] A. Slepoy, A. P. Thompson, and S. J. Plimpton. A constant-time kinetic monte carlo algo-
rithm for simulation of large biochemical reaction networks. The Journal of Chemical Physics,
128(20):205101, 2008.

[30] M. Ullah and O. Wolkenhauer. A family tree of Markov models in systems biology. IET SYST
BIOL., 1:247, 2007.

[31] D. G. Vlachos. Temporal coarse-graining of microscopic-lattice kinetic Monte Carlo simulations
via tau-leaping. Phys. Rev. E, 78(4):046713+, Oct. 2008.

[32] H. Wang and Q. Li. Master equation analysis of deterministic chemical chaos. The Journal of
Chemical Physics, 108(18):7555–7559, 1998.

21

[33] W. Zhou, X. Peng, Z. Yan, and Y. Wang. Accelerated stochastic simulation algorithm for
coupled chemical reactions with delays. Computational Biology and Chemistry, 32(4):240–242,
2008.

22

