

Compositional Stochastic Modeling and
Probabilistic Programming

Eric Mjolsness

Department of Computer Science
University of California

Irvine, CA 92697
emj@uci.edu

Abstract
Probabilistic programming is related to a compositional approach to
stochastic modeling by switching from discrete to continuous time
dynamics. In continuous time, an operator-algebra semantics is available in
which processes proceeding in parallel (and possibly interacting) have
summed time-evolution operators. From this foundation, algorithms for
simulation, inference and model reduction may be systematically derived.
The useful consequences are potentially far-reaching in computational
science, machine learning and beyond. Hybrid compositional stochastic
modeling/probabilistic programming approaches may also be possible.1

1 Introduction
Programming languages typically have semantics that is compositional, deterministic, and defined
in discrete time and space. “Probabilistic programming” (PP) proposes to change the
“deterministic” part of this description. If one also changes the “discrete time” part of this
description, allowing continuous time which is more natural for most scientific applications, we
arrive at a class of computational modeling languages rather than programming languages:
compositional stochastic modeling (CSM) languages. Such languages have many attractive
features for modeling real-world processes: a close match of computational and physical
semantics, a systematic way to derive algorithms for sampling, inference, and model reduction,
and relevance to new vistas in biocomputing and abstract mathematics, among others.

Unfortunately the jump between continuous and discrete time seems like a large one – even more
so if continuous space is also admitted for modeling purposes. On the other hand conventional
computational “engines” are possible for such languages, so perhaps the gap can be closed. What
would the consequences be of taking CSM as a model of computation? Obviously such a model
would be probabilistic. How can it be related to probabilistic programming, to their mutual
enrichment? After a brief review of one approach to CSM, we discuss various points that bear on
these questions, and then address the applications that may benefit from CSMs.

2 Operator algebra approach to CSM
An example of CSM is the “Plenum” implementation of the “Dynamical Grammars” modeling
language [1], which was developed for developmental systems biology but could be applied to
many other scientific modeling domains as well [2]. A dynamical grammar (DG) consists of a

1 What follows is an Extended Abstract for the Neural Information Processing Systems (NIPS) Workshop on
Probabilistic Programming, 2012.

multiset of reaction-like rewrite rules, each with a computer-algebraically expressed function
quantifying the rate (or “propensity”) of the corresponding process. Rules can act instantaneously
or continuously in time, the latter by way of differential equations. Either way, the effects of a rule
may alternatively be defined by (recursively) calling a subgrammar. The semantics of dynamical
grammars is defined by mapping each rule to a time-evolution operator that appears in the master
equation for the evolution of probabilities on states of the system. (The master equation was
proposed independently as a way to provide the semantics for a “small stochastic process algebra”
in [3]. However, the present use of operator algebra to express the semantics itself was not part of
that proposal.) The algebra of possible time-evolution operators is generated by a set of
elementary object creation and annihilation operators, under the operations of operator addition
(corresponding to parallel processes), operator multiplication (corresponding to atomic sequential
events), and scalar multiplication by rate functions in a defined function space eg. Sobolev Banach
space.

The resulting semantics is “compositional” in that (a) the operator for a (multi-) set of rules is the
(multiplicity-weighted) sum of their operators, so multiset union maps to operator addition; (b)
dynamically graph-structured data objects are easily expressed; and (c) subgrammars have suitable
semantics for the analog of subroutines and/or macros [1].

The master equation which defines process semantics can be reexpressed in a form, called the
time-ordered product expansion (TOPE), which maps the possible interaction histories of system
objects to Feynman diagrams [1,4]. This form also permits the derivation of the Gillespie
algorithm for stochastic chemical kinetics simulation, and its generalization to DG rewrite rule
systems. Between interaction events, continuous-time processes expressed in terms of differential
operators become (under TOPE) differential equations (to be solved numerically by conventional
discretization) as proved in [4]. Thus the TOPE provides a systematic route for deriving Markov
chains for simulation and also maximum-likelihood inference algorithms [2,5,4], from the master
equation and operator algebra semantics.

In addition to the process semantics defined above, CSM languages may also have an object
semantics describing the mathematical spaces (topological spaces, measure spaces, geometries,
and/or function spaces) that circumscribe its dynamical objects. Within such constraints, we desire
type constructors including Cartesian products, disjoint sums, functions (possibly including
higher-order functions), and quotients. This topic is discussed at greater length in [6]. These type
constructors are naturally expressed in terms of category theory, potentially bringing an entirely
different sense of the phrase “algebraic semantics” into play.

Collections of rewrite rules in the form of semi-Thue systems were one of the first formalisms
shown to be capable of universal computing. DG rules are each much more powerful than semi-
Thue system rules, so DGs are Turing-universal. DGs with unbounded rate functions are capable
(in principle) of super-Turing computation, by creating a succession of new objects that speed up
according to progressively faster clocks. If the sum of effective clock times (inverse propensity
functions) converges, there is an accumulation point through which a conventional computer could
not simulate the DG. Accumulation points can themselves accumulate, and so on, creating the
image of some countable ordinal as in [7]. But it is fairly natural in DGs to eliminate such
problems by enforcing conservation or monotonic decrease of global finite resource parameters as
part of the dynamics as well, just as chemical reactions conserve the total amount of each chemical
element. Most scientific applications already have such parameters.

2 Relat ionship to probabil ist ic programming
There is an important mapping of continuous to discrete semantics, by way of the TOPE and the
Gillespie algorithm. A discrete-time semantics was defined in [1] which essentially throws away
the real-valued event times in a DG without differential equations (a stochastic parameterized
grammar or SPG). With this semantics, SPGs in fact comprise an expressive probabilistic
programming language. If a different PP language can be reduced (efficiently) to SPGs, it can be

reduced (efficiently) to DG’s by restoring the missing event times using calls to an Erlang
distribution with parameters that must be computed anyway for the discrete-time SPG semantics.
In the reverse direction, DGs can be reduced to Turing machines incorporating plentiful calls to
random number generators, since simulation engines exist for DGs. The main ingredients in one
such engine [2], derivable from TOPE [4] are: variable-binding to define instantiated rule
execution probabilities and results, Gillespie stochastic simulation algorithm choice of rule
execution, a Rete algorithm like data structure for efficient handling of many rules, and calls to a
differential equation solver. If a PPL can implement these items (efficiently) then DGs are
reducible to the PPL (efficiently).

Similarities of CSM to PP include the following. Simulation algorithms can be derived in a
systematic and sometimes automatic way. As in the case of PP, SPGs can have their parameters
inferred from data about their behavior by a maximum-likelihood algorithm. Such an algorithm
has been derived from TOPE and demonstrated on a small gene regulation network problem [5].
Approximate model reduction is also possible for some SPGs expressed in Plenum. The reduced
model is of a simpler form than a CSM, being much closer to a graphical model. Such model
reduction was demonstrated in a synaptic signaling model [8].

Of the foregoing CSM compositionality properties property (a), summation of rule time-evolution
operators, is compromised by the move from continuous to discrete time. This fact may result in
improved technical tractability in the continuous-time case, as well as greater congruence with
real-world continuous-time and asynchronously parallel applications. Hybrid discrete-
time/continuous-time DG’s are also possible, provided that they are well separated by the
encapsulation mechanism provided by subgrammar (not macro) calls.

Similar work in the direction of complex continuous-time stochastic models with time-changing
numbers of random variables is not yet an overpopulated category. Continuous-Time Bayes Nets
(CTBNs) [9] have a time-invariant number of discrete random variables and therefore are
described by a fixed-dimension intensity matrix. CTBNs have been generalized to certain
nonexponential delay distributions P(Δt) eg. Erlang [10]. Coalescent theory in genetics is also
continuous-time and stochastic, but relies on highly domain-specific assumptions. More general
continuous-time Markov process frameworks still have a fixed and usually finite or at most
countably infinite state space. Stochastic pi-calculus [3] has time-changing variable number and
semantic similarities discussed above, but no rate function spaces, submodels, etc. CTPPL [11] is
another generalization of CTBNs to arbitrary expressions for delay distributions P(Δt) and also
time-changing data structures. Such delay distributions may be handled in DG by equivalent time-
varying rate functions ρ(Δt) = P(Δt)/[1-∫0Δ

t P(τ)dτ] ; if P(Δt) is Erlang, for example, then ρ(Δt;n,λ)
= λntn-1e-λt/Γ(n,tλ) where Γ is the incomplete gamma function and of course Δt is nonnegative.
None of these frameworks handle continuous variables, nor their possibly continuous evolution in
time according to differential (or stochastic differential) equations, as does the Dynamical
Grammar framework.

3 Relevant applicat ion domains
The kind of compositional stochastic modeling language discussed here has potentially broad
applicability due to the additive compositionality of its semantics (parallel processes have summed
time-evolution operators), which along with its continuous-time model makes for a close match of
computational semantics and dynamics in scientific domains (physical, electronic, biological,
social, etc.). Algorithms for simulation, inference, and model reduction follow. Biological
applications have been demonstrated with models of gene regulation, molecular complexes in
synapses, and tissues comprising plant and animal stem cell niches with cell division and
diffusible growth factors [2,12]. A schematic example of one such stem cell niche application is
the dynamical grammar of Figure 1, explained more fully in [6].

Other SPG-like “rule-based” biochemical modeling languages have been applied to a variety of
biological modeling problems at the cellular and molecular levels [13,14]. We may expect

progressively more advanced computational biology and biocomputing applications. Varieties of
modeling encompassed include stochastic chemical kinetics, dynamical systems given by ordinary
differential equations, agent-based models, stochastic string, tree and graph rewrite rules, spatially
continuous models (so far only the diffusion equation and mass-spring elastodynamics), and
perhaps most importantly, hybrids of all of these types. Thus, CSML’s may function as high-level
domain-specific languages for computational science.

Figure 1. Schematic example (from [6]) of a dynamical grammar for a stem cell niche model. This
model incorporates both discrete events (occurring at a definite instant in continuous time) such
as cell division “with” a time-varying propensity function, and also extended-duration processes
modeled by “solving” one or more differential equations. Each object has both discrete-valued
parameters (cell type) and continuous-valued parameters (cell position, size, and internal
concentration of growth hormone). Model simplified from the olfactory epithelium model of [2].

The advantages claimed here for CSML’s over PP languages for scientific modeling are not
advantages of in-principle generality, except in the potentially problematic sense of super-Turing
computation, but rather of perspicuity in concisely expressing real-world dynamical models, due
to the closer of match of continuous-time dynamics to the intended application domains. Thus,
CSML’s may function as a “higher-level” language in many modeling domains. On the other hand
occasionally (as in Poincare maps) discrete-time models of continuous-time systems are also
revealing. Therefore one may predict that the translation path between CSML’s and PPL’s will
become well-trodden.

4 Further Discussion
One criterion for useful generality in a formal modeling language is that the language should be
closed under “expected” kinds of model reduction. Model reductions in physics often change from
deterministic to stochastic dynamics or back, from discrete to continuous variables or the reverse,
and so on – so we have proposed a framework that encompasses all these variations including
hybrids. Oddly, model reductions often proceed by taking infinite limits. Approximation of integer
molecule numbers by continuous-valued concentrations is one example. Another is spatially
continuous PDE models of elastic materials that are actually composed of discrete atoms and
molecules. Unfortunately the specter of super-Turing computing will be raised whenever an
infinite limit is taken which, in applied mathematics, is quite often; therefore a general modeling
framework must permit this kind of trouble. In practice domain-dependent restrictions such as
resource constraints, spatial frequency limits, Sobolev norms, and other schemes of regularization
are used to control these potentially problematic limits. By working with computer algebra
representations it should be possible to express and analyze these kinds of necessary conditions, as
indeed has already been achieved for example in PDE packages that support eg. weak forms [15].

Under further development one may expect the following inherent capabilities to added to the
practical repertoire of CSM languages with operator-algebra semantics: hybrid discrete-time (PP)
and continuous-time CSM languages; increasingly general PDEs including dynamic boundaries;
application to asynchronous parallel computing; and novel learning and evolution methods which
amplify small signals out of large noise backgrounds to create increasingly complex learned
algorithms. More speculatively one might also attempt to develop: CSM meta-programming using
meta-rules (particular meta-rules in Dynamical Grammars are demonstrated in [2]); the use of
Hausdorff topological spaces in the computational theory of types (where non-Hausdorff spaces
are usually employed [16]); and perhaps eventually, application of operator algebra semantics to
mathematical foundations by which a great variety of mathematical objects acquire dynamics and
become more widely understandable – thus advancing the computational reification of
mathematics. In all of these projects, compositional stochasticity with operator algebra semantics
is an essential ingredient.

Acknowledgements
Research was supported by NIH grants R01 GM086883 and P50 GM76516 to UC Irvine, and by a
Moore Distinguished Scholar visiting appointment at the California Institute of Technology. I also
wish to acknowledge the hospitality, travel support, and research environments provided by the
Center for Nonlinear Studies (CNLS) at the Los Alamos National Laboratory, the Sainsbury
Laboratory Cambridge University, and the Pauli Center for Theoretical Studies at ETH Zürich and
the University of Zürich.

R e f e r e n c e s

[1] Mjolsness E. and Yosiphon G (2006), “Stochastic Process Semantics for Dynamical
Grammars”. Annals of Mathematics and Artificial Intelligence, 47(3-4).

[2] Yosiphon, G. (2009), “Stochastic Parameterized Grammars: Formalization, Inference, and
Modeling Applications”, PhD Thesis, UC Irvine Computer Science Department, June 2009.
Thesis and software : http://computableplant.ics.uci.edu/~guy/Plenum.html .

[3] Cardelli L. (2007). A process algebra master equation. Proc. Fourth International Conference
on the Quantitative Evaluation of Systems, QEST.

[4] Mjolsness, E. (2012) “Time-Ordered Product Expansions for Computational Stochastic
Systems Biology”. arXiv:1209.5231 [q-bio.QM], http://arxiv.org/abs/1209.5231 .

[5] Wang Y, Christley S., Mjolsness E., and Xie X. (2010), Parameter inference for discretely
observed stochastic kinetic models using stochastic gradient descent. BMC Systems Biology 4:99.

[6] Mjolsness (2010), “Towards Measurable Types for Dynamical Process Modeling Languages”,
Eric Mjolsness. Electronic Notes in Theoretical Computer Science (ENTCS), vol. 265, pp. 123-
144, 6 Sept. 2010, Elsevier. DOI 10.1016/j.entcs.2010.08.008.

[7] Barrett, J. A. and W. Aitken (2010), “A Note on the Physical Possibility of Ordinal
Computation,” British Journal for the Philosophy of Science 61(4): 867-874.

[8] Johnson G. T., (2012), “Dependency	 Diagrams	 and	 Graph-‐Constrained	 Correlation	
Dynamics: New	 Systems	 for	 Probabilistic	 Graphical	 Modeling”,	 PhD Thesis, UC Irvine
Computer Science Department UC Irvine, March	 2012.

[9] Nodelman U, Shelton C R, and Koller D (2002). Continuous time Bayesian networks.
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (pp. 378–387).
	
[10] Nodelman U, Shelton C R, and Koller D (2005). Expectation maximization and complex
duration distributions for continuous time Bayesian networks. In Proc. Uncertainty in Artificial
Intelligence.

[11] Pfeffer A., CTPPL: A Continuous Time Probabilistic Programming Language. Proc.
International Joint Conference on Artificial Intelligence, Jun. 2009.

[12] Mironova V.V., Nadya A Omelyanchuk, Guy Yosiphon, Stanislav I Fadeev, Nikolai A
Kolchanov, Eric Mjolsness and Vitaly A Likhoshvai (2010). “A plausible mechanism for auxin
patterning along the developing root”. BMC Systems Biology 4:98.

[13] Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W (2006) Rules for
modeling signal-transduction systems. Science’s STKE 2006:re6.

[14] Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based modelling of cellular
signaling. Lect Notes Comput Sci 4703:17-41.

[15] Logg A and Wells GN (2010), “DOLFIN: Automated Finite Element Computing”. ACM
Transactions on Mathematical Software, Vol. 37, No. 2, Article 20.
	
[16] Hofmann K. H. and M.W. Mislove (1993), “All Compact Hausdorff Lambda Models are
Degenerate”, Fundamenta Informaticae.

