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Abstract 
Probabilistic programming is related to a compositional approach to 
stochastic modeling by switching from discrete to continuous time 
dynamics. In continuous time, an operator-algebra semantics is available in 
which processes proceeding in parallel (and possibly interacting) have 
summed time-evolution operators. From this foundation, algorithms for 
simulation, inference and model reduction may be systematically derived. 
The useful consequences are potentially far-reaching in computational 
science, machine learning and beyond. Hybrid compositional stochastic 
modeling/probabilistic programming approaches may also be possible.1 

 

1 Introduction 
Programming languages typically have semantics that is compositional, deterministic, and defined 
in discrete time and space. “Probabilistic programming” (PP) proposes to change the 
“deterministic” part of this description. If one also changes the “discrete time” part of this 
description, allowing continuous time which is more natural for most scientific applications, we 
arrive at a class of computational modeling languages rather than programming languages: 
compositional stochastic modeling (CSM) languages. Such languages have many attractive 
features for modeling real-world processes: a close match of computational and physical 
semantics, a systematic way to derive algorithms for sampling, inference, and model reduction, 
and relevance to new vistas in biocomputing and abstract mathematics, among others.  

 
Unfortunately the jump between continuous and discrete time seems like a large one – even more 
so if continuous space is also admitted for modeling purposes. On the other hand conventional 
computational “engines” are possible for such languages, so perhaps the gap can be closed. What 
would the consequences be of taking CSM as a model of computation? Obviously such a model 
would be probabilistic. How can it be related to probabilistic programming, to their mutual 
enrichment? After a brief review of one approach to CSM, we discuss various points that bear on 
these questions, and then address the applications that may benefit from CSMs. 
 
2 Operator algebra approach to CSM 
An example of CSM is the “Plenum” implementation of the “Dynamical Grammars” modeling 
language [1], which was developed for developmental systems biology but could be applied to 
many other scientific modeling domains as well [2]. A dynamical grammar (DG) consists of a 
                                                             
1 What follows is an Extended Abstract for the Neural Information Processing Systems (NIPS) Workshop on 
Probabilistic Programming, 2012. 



multiset of reaction-like rewrite rules, each with a computer-algebraically expressed function 
quantifying the rate (or “propensity”) of the corresponding process. Rules can act instantaneously 
or continuously in time, the latter by way of differential equations. Either way, the effects of a rule 
may alternatively be defined by (recursively) calling a subgrammar. The semantics of dynamical 
grammars is defined by mapping each rule to a time-evolution operator that appears in the master 
equation for the evolution of probabilities on states of the system. (The master equation was 
proposed independently as a way to provide the semantics for a “small stochastic process algebra” 
in [3]. However, the present use of operator algebra to express the semantics itself was not part of 
that proposal.) The algebra of possible time-evolution operators is generated by a set of 
elementary object creation and annihilation operators, under the operations of operator addition 
(corresponding to parallel processes), operator multiplication (corresponding to atomic sequential 
events), and scalar multiplication by rate functions in a defined function space eg. Sobolev Banach 
space. 
 
The resulting semantics is “compositional” in that (a) the operator for a (multi-) set of rules is the 
(multiplicity-weighted) sum of their operators, so multiset union maps to operator addition; (b) 
dynamically graph-structured data objects are easily expressed; and (c) subgrammars have suitable 
semantics for the analog of subroutines and/or macros [1]. 
 
The master equation which defines process semantics can be reexpressed in a form, called the 
time-ordered product expansion (TOPE), which maps the possible interaction histories of system 
objects to Feynman diagrams [1,4]. This form also permits the derivation of the Gillespie 
algorithm for stochastic chemical kinetics simulation, and its generalization to DG rewrite rule 
systems. Between interaction events, continuous-time processes expressed in terms of differential 
operators become (under TOPE) differential equations (to be solved numerically by conventional 
discretization) as proved in [4]. Thus the TOPE provides a systematic route for deriving Markov 
chains for simulation and also maximum-likelihood inference algorithms [2,5,4], from the master 
equation and operator algebra semantics. 
 
In addition to the process semantics defined above, CSM languages may also have an object 
semantics describing the mathematical spaces (topological spaces, measure spaces, geometries, 
and/or function spaces) that circumscribe its dynamical objects. Within such constraints, we desire 
type constructors including Cartesian products, disjoint sums, functions (possibly including 
higher-order functions), and quotients. This topic is discussed at greater length in [6]. These type 
constructors are naturally expressed in terms of category theory, potentially bringing an entirely 
different sense of the phrase “algebraic semantics” into play. 
 
Collections of rewrite rules in the form of semi-Thue systems were one of the first formalisms 
shown to be capable of universal computing. DG rules are each much more powerful than semi-
Thue system rules, so DGs are Turing-universal. DGs with unbounded rate functions are capable 
(in principle) of super-Turing computation, by creating a succession of new objects that speed up 
according to progressively faster clocks. If the sum of effective clock times (inverse propensity 
functions) converges, there is an accumulation point through which a conventional computer could 
not simulate the DG.  Accumulation points can themselves accumulate, and so on, creating the 
image of some countable ordinal as in [7]. But it is fairly natural in DGs to eliminate such 
problems by enforcing conservation or monotonic decrease of global finite resource parameters as 
part of the dynamics as well, just as chemical reactions conserve the total amount of each chemical 
element. Most scientific applications already have such parameters. 
 
2 Relat ionship to probabil ist ic  programming 
There is an important mapping of continuous to discrete semantics, by way of the TOPE and the 
Gillespie algorithm. A discrete-time semantics was defined in [1] which essentially throws away 
the real-valued event times in a DG without differential equations (a stochastic parameterized 
grammar or SPG). With this semantics, SPGs in fact comprise an expressive probabilistic 
programming language. If a different PP language can be reduced (efficiently) to SPGs, it can be 



reduced (efficiently) to DG’s by restoring the missing event times using calls to an Erlang 
distribution with parameters that must be computed anyway for the discrete-time SPG semantics. 
In the reverse direction, DGs can be reduced to Turing machines incorporating plentiful calls to 
random number generators, since simulation engines exist for DGs. The main ingredients in one 
such engine [2], derivable from TOPE [4] are: variable-binding to define instantiated rule 
execution probabilities and results, Gillespie stochastic simulation algorithm choice of rule 
execution, a Rete algorithm like data structure for efficient handling of many rules, and calls to a 
differential equation solver. If a PPL can implement these items (efficiently) then DGs are 
reducible to the PPL (efficiently). 
 
Similarities of CSM to PP include the following. Simulation algorithms can be derived in a 
systematic and sometimes automatic way. As in the case of PP, SPGs can have their parameters 
inferred from data about their behavior by a maximum-likelihood algorithm. Such an algorithm 
has been derived from TOPE and demonstrated on a small gene regulation network problem [5]. 
Approximate model reduction is also possible for some SPGs expressed in Plenum. The reduced 
model is of a simpler form than a CSM, being much closer to a graphical model. Such model 
reduction was demonstrated in a synaptic signaling model [8]. 
 
Of the foregoing CSM compositionality properties property (a), summation of rule time-evolution 
operators, is compromised by the move from continuous to discrete time. This fact may result in 
improved technical tractability in the continuous-time case, as well as greater congruence with 
real-world continuous-time and asynchronously parallel applications. Hybrid discrete-
time/continuous-time DG’s are also possible, provided that they are well separated by the 
encapsulation mechanism provided by subgrammar (not macro) calls. 
 
Similar work in the direction of complex continuous-time stochastic models with time-changing 
numbers of random variables is not yet an overpopulated category. Continuous-Time Bayes Nets 
(CTBNs) [9] have a time-invariant number of discrete random variables and therefore are 
described by a fixed-dimension intensity matrix. CTBNs have been generalized to certain 
nonexponential delay distributions P(Δt) eg. Erlang [10]. Coalescent theory in genetics is also 
continuous-time and stochastic, but relies on highly domain-specific assumptions. More general 
continuous-time Markov process frameworks still have a fixed and usually finite or at most 
countably infinite state space. Stochastic pi-calculus [3] has time-changing variable number and 
semantic similarities discussed above, but no rate function spaces, submodels, etc. CTPPL [11] is 
another generalization of CTBNs to arbitrary expressions for delay distributions P(Δt) and also 
time-changing data structures. Such delay distributions may be handled in DG by equivalent time-
varying rate functions ρ(Δt) = P(Δt)/[1-∫0Δ

t P(τ)dτ] ; if P(Δt) is Erlang, for example, then ρ(Δt;n,λ) 
= λntn-1e-λt/Γ(n,tλ) where Γ is the incomplete gamma function and of course Δt is nonnegative. 
None of these frameworks handle continuous variables, nor their possibly continuous evolution in 
time according to differential (or stochastic differential) equations, as does the Dynamical 
Grammar framework. 
 
3  Relevant applicat ion domains   
The kind of compositional stochastic modeling language discussed here has potentially broad 
applicability due to the additive compositionality of its semantics (parallel processes have summed 
time-evolution operators), which along with its continuous-time model makes for a close match of 
computational semantics and dynamics in scientific domains (physical, electronic, biological, 
social, etc.). Algorithms for simulation, inference, and model reduction follow. Biological 
applications have been demonstrated with models of gene regulation, molecular complexes in 
synapses, and tissues comprising plant and animal stem cell niches with cell division and 
diffusible growth factors [2,12]. A schematic example of one such stem cell niche application is 
the dynamical grammar of Figure 1, explained more fully in [6]. 
 
Other SPG-like “rule-based” biochemical modeling languages have been applied to a variety of 
biological modeling problems at the cellular and molecular levels [13,14]. We may expect 



progressively more advanced computational biology and biocomputing applications. Varieties of 
modeling encompassed include stochastic chemical kinetics, dynamical systems given by ordinary 
differential equations, agent-based models, stochastic string, tree and graph rewrite rules, spatially 
continuous models (so far only the diffusion equation and mass-spring elastodynamics), and 
perhaps most importantly, hybrids of all of these types. Thus, CSML’s may function as high-level 
domain-specific languages for computational science. 
 

       

 
Figure 1. Schematic example (from [6]) of a dynamical grammar for a stem cell niche model. This 
model incorporates both discrete events (occurring at a definite instant in continuous time) such 
as cell division “with” a time-varying propensity function, and also extended-duration processes 
modeled by “solving” one or more differential equations. Each object has both discrete-valued 
parameters (cell type) and continuous-valued parameters (cell position, size, and internal 
concentration of growth hormone). Model simplified from the olfactory epithelium model of [2]. 
 
The advantages claimed here for CSML’s over PP languages for scientific modeling are not 
advantages of in-principle generality, except in the potentially problematic sense of super-Turing 
computation, but rather of perspicuity in concisely expressing real-world dynamical models, due 
to the closer of match of continuous-time dynamics to the intended application domains. Thus, 
CSML’s may function as a “higher-level” language in many modeling domains. On the other hand 
occasionally (as in Poincare maps) discrete-time models of continuous-time systems are also 
revealing. Therefore one may predict that the translation path between CSML’s and PPL’s will 
become well-trodden. 
 



 
4  Further Discussion  
One criterion for useful generality in a formal modeling language is that the language should be 
closed under “expected” kinds of model reduction. Model reductions in physics often change from 
deterministic to stochastic dynamics or back, from discrete to continuous variables or the reverse, 
and so on – so we have proposed a framework that encompasses all these variations including 
hybrids. Oddly, model reductions often proceed by taking infinite limits. Approximation of integer 
molecule numbers by continuous-valued concentrations is one example. Another is spatially 
continuous PDE models of elastic materials that are actually composed of discrete atoms and 
molecules. Unfortunately the specter of super-Turing computing will be raised whenever an 
infinite limit is taken which, in applied mathematics, is quite often; therefore a general modeling 
framework must permit this kind of trouble. In practice domain-dependent restrictions such as 
resource constraints, spatial frequency limits, Sobolev norms, and other schemes of regularization 
are used to control these potentially problematic limits. By working with computer algebra 
representations it should be possible to express and analyze these kinds of necessary conditions, as 
indeed has already been achieved for example in PDE packages that support eg. weak forms [15]. 
 
Under further development one may expect the following inherent capabilities to added to the 
practical repertoire of CSM languages with operator-algebra semantics: hybrid discrete-time (PP) 
and continuous-time CSM languages; increasingly general PDEs including dynamic boundaries; 
application to asynchronous parallel computing; and novel learning and evolution methods which 
amplify small signals out of large noise backgrounds to create increasingly complex learned 
algorithms. More speculatively one might also attempt to develop: CSM meta-programming using 
meta-rules (particular meta-rules in Dynamical Grammars are demonstrated in [2]); the use of 
Hausdorff topological spaces in the computational theory of types (where non-Hausdorff spaces 
are usually employed [16]); and perhaps eventually, application of operator algebra semantics to 
mathematical foundations by which a great variety of mathematical objects acquire dynamics and 
become more widely understandable – thus advancing the computational reification of 
mathematics. In all of these projects, compositional stochasticity with operator algebra semantics 
is an essential ingredient. 
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