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Abstract

This paper describes an integrated system for co-
ordinating multiple rover behavior with the overall
goal of collecting planetary surface data. The Multi-
Rover Integrated Science Understanding System com-
bines concepts from machine learning with planning
and scheduling to perform autonomous scienti�c ex-
ploration by cooperating rovers. The integrated system
utilizes a novel machine learning clustering component
to analyze science data and direct new science activi-
ties. A planning and scheduling system is employed to
generate rover plans for achieving science goals and to
coordinate activities among rovers. We describe each
of these components and discuss some of the key inte-
gration issues that arose during development and in-
uenced both system design and performance.

Introduction
Landmark events have recently taken place in the ar-
eas of space exploration and planetary rovers. The
Mars Path�nder mission was a major success, not only
demonstrating the feasibility of sending rovers to other
planets, but displaying the signi�cance of such missions
to the scienti�c community. Future missions are be-
ing planned to send additional robotic vehicles to Mars
as well as to the outer planets and an asteroid (JPL
1999). In order to increase science return and enable
certain types of science activities, future missions will
require larger sets of rovers to gather the desired data.
These rovers will need to behave in a coordinated fash-
ion where each rover accomplishes a subset of the over-
all mission goals and shares any acquired information.
In addition, it is desirable to have highly autonomous
rovers that require little communication with scientists
and engineers on Earth to perform their tasks. An au-
tonomous rover will be able to make decisions on its
own as to what exact science data should be returned
and how to go about the data gathering process.
This paper presents the Multi-Rover Integrated Sci-

ence Understanding System (MISUS) which provides
a framework for autonomously generating and achiev-
ing planetary science goals. This system integrates
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techniques from machine learning with planning and
scheduling to enable autonomous multi-rover behavior
for analyzing science data, evaluating what new sci-
ence observations to perform, and deciding what steps
should be taken to perform them. These techniques
are also integrated with a simulation environment that
can model di�erent planetary terrains and science data
within a terrain.

Science data analysis in MISUS is performed using
machine-learning clustering methods, which use image
and spectral mineralogical features to help classify dif-
ferent planetary rock types. These methods look for
similarity classes of visible, rock image regions within
individual spectral images and across multiple images.
Speci�cally, clustering is performed by a distributed al-
gorithm where each rover alternates between indepen-
dently performing learning computations using its local
data and updating the system-wide model through com-
munication among rovers. Output clusters are used to
help evaluate scienti�c hypotheses and also to prioritize
visible surfaces for further observation based on their
\scienti�c interest." As the system builds a model of
the rock type distribution, it continuously assembles a
new set of observation goals for a team of rovers to col-
lect from di�erent terrain locations. Thus, the clusterer
drives the science process by analyzing the current data
set and then deciding what new and interesting obser-
vations should be made.

A planning and scheduling component is used to
determine the necessary rover activities required to
achieve science goals requested by the learning system
(Rabideau, Estlin, & Chien 1999). Based on an input
set of goals and each rover's initial conditions, the plan-
ner generates a sequence of activities that satisfy the
goals while obeying each of the rover's resource con-
straints and operation rules. Plans are produced by
using an \iterative repair" algorithm which classi�es
conicts and resolves them individually by performing
one or more plan modi�cations. Planning is distributed
among the individual rovers where each rover is re-
sponsible for planning for its own activities. A central
planning system is responsible for dividing up the goals
among the individual rovers in a fashion that minimizes
the total traversing time of all rovers.



The components described above are also integrated
with a simulation environment that models multiple-
rover science operations in a Mars-like terrain. Di�erent
Martian rockscapes are created for use in the simulator
by using distributions over rock types, sizes and loca-
tions. When science measurements are requested from
a terrain during execution, rock and mineral spectral
models are used to generate sample spectra based on
the type of rock being observed.
The remainder of this paper is organized in the fol-

lowing manner. We begin by characterizing the cooper-
ating rovers application domain and describing our sci-
ence scenario. Next, we present the MISUS integrated
system framework and describe each of its components.
We then discuss design decisions and system require-
ments that arose during integration and any general
lessons learned. In the �nal sections, we discuss related
work, planned future work, and present our conclusions.

Cooperating Rovers for Science
Utilizing multiple rovers on planetary science missions
has many advantages. First, multiple rovers can col-
lect more data than a single rover. A team of rovers
can cover a larger area in a shorter time where sci-
ence gathering tasks are allocated over the team. Sec-
ond, multiple rovers can perform tasks that otherwise
would not be possible using a single rover. For in-
stance, rovers landed at di�erent locations can cover
areas with impassable boundaries. Also, with several
rovers, one rover can a�ord to take more risk and
thus attempt tasks that usually might be be avoided.
Third, more complicated cooperative tasks can be ac-
complished, such as taking a wide baseline stereo image
(which requires two cameras separated by a certain dis-
tance). Finally, multiple rovers can enhance mission
success through increased system redundancy. If one
rover fails, then its tasks could be quickly taken over
by another rover. In all cases, the rovers should behave
in a coordinated fashion, dividing goals appropriately
among the team and sharing acquired information.
Coordinating multiple distributed agents for a mis-

sion to Mars or other planet introduces some interest-
ing new challenges for the supporting technology. Issues
arise concerning communication, control and individual
on-board capabilities. Many of these design decisions
are related, and all of them have an impact on any on-
board technologies used for the mission. For example,
for an on-board science analysis system, the amount
of communication available will determine how much
science data can be easily shared. This factor will also
a�ect a planning system by determining how much each
rover can coordinate with other rovers to perform tasks.
The control scheme will determine which rovers execute
what science gathering tasks which a�ects the on-board
components. For instance, some rovers may be utilized
only for science data gathering, while other may be used
for planning and/or science analysis. Decisions on the
on-board capabilities of each rover can also determine
the independence of a rover.
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Figure 1: MISUS Architecture Diagram

For the framework presented in this paper, we have
initially chosen the con�guration of a team of three
rovers where each rover has a planning and learning
tool on-board. Each rover can thus plan for its assigned
goals, collect the required data, and perform science
analysis on-board which will direct its future goals. In
addition, a central planner and learner are assumed to
be located on either a lander or one of the rovers, which
are used to coordinate science data and goals.
We evaluate our framework by testing its ability to

build a model of the distribution of terrain rocks, clas-
si�ed according to composition as measured by a bore-
sighted spectrometer. To perform testing for di�er-
ent planetary terrain models, di�erent rock �elds are
generated by using distributions over rock types, sizes,
and locations. Science goals consist of requests to take
spectral measurements at certain locations or regions.
These goals can be prioritized so that if necessary low
priority goals can be preempted (e.g. due to resource
constraints such as low battery power).
Science goals are divided among the three rovers.

Each rover is identical and is assumed to have a spec-
trometer on-board as well as other resources including a
drive motor, a solar panel that provides power for rover
activities, and a battery that provides backup power
when solar power is not available. The battery can also
be recharged using the solar panel when possible. Col-
lected science data is immediately transmitted to the
lander where it is stored in memory. The lander can
only receive transmissions from one rover at a time.

Multi-Rover Science Architecture

The overall MISUS architecture is shown in Figure 1.
The system is comprised of three major components:

� Data Analysis: A distributed machine-learning sys-
tem which performs unsupervised clustering to model



the distribution of rock types observed by the rovers.
This system is designed to direct rover sensing to con-
tinually improve this model of the scienti�c content
of the planetary scene.

� Planning: A distributed-planning system that pro-
duces rover-operation plans to achieve input rover
science goals. Planning is divided between a central
planner, which eÆciently divides up science goals be-
tween rovers, and a distributed set of planners which
each plan for operations upon an individual rover.

� Environment simulator: A multiple rover simula-
tor that models di�erent geological environments and
rover-science operations within them. The simulator
manages science data for each environment, tracks
rover operations within the terrain, and reects read-
ings by rover science instruments.

MISUS operates in a closed-loop fashion where the
data analysis system can be seen to take the role of
the scientist driving the exploration process. Spectra
data are received by individual rover clustering algo-
rithms, which attempt to locally model the distribution
of rocks according to broad classi�cations of rock com-
positions. This information is then sent to a central
clusterer which integrates all gathered data into an up-
dated global model and broadcasts the new model back
to the distributed clusterers. A prioritization algorithm
uses the clustering output to generate a new set of ob-
servation goals that will further improve the accuracy
of the model. These goals are passed to a central plan-
ner which assigns individual rovers to goals in a fashion
that will most eÆciently serve the requests. Then each
rover planner produces a set of actions for that rover
which will achieve as many of its assigned goals as pos-
sible. These action sequences are sent to the simulator
where they are executed and any gathered data is sent
back to the rover clusterers. This cycle continues until
enough data is gathered to produce distinct clusters for
any observed rock types.
In the next few sections, we discuss each of the

MISUS system components in more detail.

Data Analysis System

To perform science analysis, we use a machine-learning
system which performs unsupervised clustering to
model the distribution of rock types in the observed
terrain. A primary feature of the MISUS is that the sep-
arate rovers cooperate to form a joint consensus for the
observed distribution of rock types. Through a learning
process, the global distribution model keeps improving
as more data is observed over time. For this demonstra-
tion prototype, the model used for this distribution is
a simple K-means-like unsupervised clustering model,
where each cluster represents a di�erent rock type in
the sensor space. In the present simulation, each sen-
sor reading is a spectral measurement returning values
at 14 wavelengths; learning takes place in the full 14-
dimensional continuous space.
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Figure 2: Example spectra feature space

Distributed Clustering At any given time, each
rover has a di�erent location on the planetary surface
and is sensing di�erent targets. So each rover has its
own distinct segment of the overall dataset, stored lo-
cally in its data bu�er. Over time, each rover collects
a new set of data points, or 14-dimensional spectrum
readings, adding it to its existing store of data points.
Clustering is initiated after each rover has obtained new
observations. A sample cluster model (shown for 2 of
14 dimensions) is shown in Figure 2.
Clustering based on the EM (Expectation-Max-

imization) algorithm, an iterative optimization proce-
dure, normally requires several passes over the entire
data. Since rovers must share information through a
power-expensive communication channel. Rather than
send its local dataset to one or more other rovers, the
distributed clustering algorithm allows a rover to send
only a small set of parameters which summarizes its
local data. Each rover's model parameters are com-
puted locally, then sent to a central clusterer which
integrates them into an updated global model (which
is also a small set of parameters) and broadcasts that
model to all rovers in the system. Each rover takes
this global model into account when making its local
estimate. This process continues iteratively until con-
vergence. This scheme trades o� some accuracy in the
global model in order to minimize communication. In
the limit of large datasets, this scheme approximates
the equivalent non-distributed clustering model (where
one processor may examine all the data at once) more
and more closely.
The algorithm is very homogeneous, i.e. each proces-

sor performs the same computation with the exception
of the central clusterer, which performs a few additional
computations to compute the global model and broad-
cast it to the other processors. It also tolerant to pro-
cessor dropouts, i.e. a circumstance in which one or
more rovers contributes zero data to the clustering, for
any reason such as a rover malfunction.
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Figure 3: Clustering objective function

Model and Optimization Our clustering model is a
special case of the general mixture of Gaussians studied
extensively in statistics (Redner & Walker 1984). The
K-means clustering model also corresponds to a special
form of Gaussian mixture where a hard class member-
ship restriction is made (Bishop 1995). Our model is
similar but lifts the restriction.

Hathaway (Hathaway 1986) shows an equivalence be-
tween probabilistic and statistical mechanics-style ob-
jective functions for mixture distributions. This trans-
formation allows us to generalize the probabilistic ob-
jective function to include a temperature variable, al-
lowing us to use deterministic annealing to perform
global optimization of the model parameters.

The distributed version of the clustering model fol-
lows a development similar to that in (Tsioutsias &
Mjolsness 1994) for partitioned neural networks. The
entire dataset (across all rovers) X contains N vectors
x = (x1; : : : ; xD) indexed by n. Denoting each of the R
rovers with an index r, each rover has a subsetX

r
of the

data, containingNr sensor readings. The global, shared
clustering model consists ofK centroids, �

k
. Each rover

stores its own local estimates of the centroids, �̂r
k
, based

on its subset of the data. Mnk denotes the membership

of datum x
n
in cluster k, where

PK

k=1
Mnk = 1. Cluster

membership is determined by a softmax over the dis-
tance of a datum to each cluster mean. We will write
Mr

nk
since memberships are only computed and stored

locally on each rover.

The clustering algorithm adjusts the values of the
centroids in order to minimize the objective function
shown in Figure 3, by alternating between a centroid re-
laxation step, where the cluster means are re-estimated
based on the current membership weights, and a mem-
bership relaxation step, where the memberships are re-
estimated based on the means. � is the reward for
committing to cluster k and each �n corresponds to a
Lagrange multiplier enforcing non-negativity of mem-
berships. T is the temperature parameter.

The �rst term in this objective function can be identi-
�ed with minimizing the distance between centroids and
the data associated with them and keeping the R esti-
mates of the centroids close to each other. The second
serves to prevent negative memberships. The third en-
forces that memberships sum to unity across the classes.

Goal Selection The clustering model in this initial
prototype system may be viewed as the scienti�c end-
product of the exploration. The overall purpose of
the system is to increase the accuracy of the cluster-
ing model by obtaining sensor readings in regions that
are likely to improve the model. An update of the clus-
tering model determines new planetary locations to be
explored by the rovers. These locations are sent as for-
mal goals by the learner to the planner.
Recall that clusters are de�ned in a high-dimensional

spectra space in which unsupervised learning will iden-
tify di�erent rock types. Every datum also has an asso-
ciated position in physical space, on the planetary sur-
face. Assuming there is some (perhaps very noisy) cor-
respondence between rock type and spatial location, the
purpose of goal selection is to direct exploration toward
certain rock types by specifying new spatial targets (co-
ordinates in 3-space at which to take sensor readings)
according to the observed rock type distribution.
A very simple heuristic for goal selection is used in

the current system. A constant number G of new spa-
tial targets will be speci�ed for each cluster. For each
cluster, two of the G spatial targets are chosen by �rst
�nding the two mutually most distant points (in phys-
ical space) of that rock type, then selecting a point in
space stochastically from within a neighborhood of each
of those 2 points. These goals are given high priority.
The rest of the G targets are chosen from neighbor-
hoods of randomly selected rocks in the cluster, and
are given lower priority. The idea of this heuristic is
to bias the system toward exploration in extremal di-
rections, as well as to explore the rock distribution in
a way which balances e�ort equally between rock types
(thus avoiding, say, spending undue energy on a very
common rock type at the expense of rare rock types).

Planning System

To produce individual rover plans, we used a distributed
version of the ASPEN (Automated Scheduling and
Planning Environment) system (Fukanaga et al. 1997).
ASPEN is a con�gurable, generic planning/scheduling
application framework that can be tailored to speci�c
domains to create conict-free plans or schedules. Its
components include:

� An expressive modeling language to allow the user to
naturally de�ne the application domain

� A constraint management system for representing
and maintaining domain operability and resource
constraints, as well as activity requirements

� A set of search strategies and repair heuristics

� A temporal reasoning system for expressing and
maintaining temporal constraints

� A graphical interface for visualizing plans/schedules

ASPEN employs techniques from planning and
scheduling to automatically generate the necessary
rover activity sequence to achieve the input goals. This
sequence is produced by utilizing an iterative repair



Figure 4: Example ASPEN plan

algorithm (Zweben et al. 1994) which classi�es con-
icts and attacks them each individually. Conicts oc-
cur when a plan constraint has been violated where
this constraint could be temporal or involve a resource,
state or activity parameter. Conicts are resolved by
performing one or more schedule modi�cations such as
moving, adding, or deleting activities.
A rover that is at the incorrect location for a sched-

uled science activity is one type of conict. Resolving
this particular conict involves adding a traverse com-
mand to send the rover to the designated site. Other
conicts may include having more than one rover com-
municating with the lander at a time or having too
many activities scheduled for one rover, which over sub-
scribed its power resources. The iterative repair algo-
rithm continues until no conicts remain in the sched-
ule, or a timeout has expired. Figure 4 shows an exam-
ple rover-plan displayed in the ASPEN GUI interface.

Distributed Planning To support missions with
multiple rovers, we developed a distributed version of
ASPEN where it is assumed each rover has an on-
board planner. This allows rovers to plan for them-
selves and/or for other rovers. If communication is
slow, it may be useful to have rovers construct their
own plans (and to plan dynamically when necessary,
which is discussed in future work). Also, by balancing
the workload, distributed planning can be helpful when
individual computing resources are limited.
The approach to distributed planning utilized in

MISUS is to include a planner for each rover, in addi-
tion to a central planner. The central planner develops
an abstract plan for all rovers, while each rover planner
develops a detailed, executable plan for its own activi-
ties. The central planner also acts as a router, taking a
global set of goals and dividing it up among the rovers.
For example, a science goal may request an image of
a particular rock without concern for which rover ac-
quires the image. The central planner could assign this
goal to the rover that is closest to the rock in order to
minimize the traversals of all rovers.

Plan Optimization One of the dominating charac-
teristics of the multi-rover application is rover traversals

to designated waypoints. Decisions must be made not
only to satisfy the requested goals, but also to provide
more optimal schedules. ASPEN can consider optimiza-
tion goals during the repair process. As certain types
of conicts are resolved, heuristics are used to guide
the search towards making decisions that will produce
higher quality schedules. In other words, when several
options are available for repairing a conict, these op-
tions are ordered based on predictions on how favorable
the resulting schedule will be.
For this application, we have implemented heuristics

based on techniques from the Multi-Traveling Sales-
men Problem (MTSP), which is similar to the Trav-
eling Salesman Problem (TSP) (Johnson & McGeoch
1997). For MTSP, at least one member of a sales team
must visit each city such that total traveling time is
minimized. Both the central and rover planners utilize
the MTSP heuristics. These heuristics are used to se-
lect what rover should be assigned a particular science
goal and a temporal location for the science activity. In
previously reported results, they were shown to make
a signi�cant impact in reducing overall traversal dis-
tance and expected execution time (Rabideau, Estlin,
& Chien 1999).

Environment Simulator

The environment simulator is designed to provide a
source of data for the science analysis system by sim-
ulating the science gathering activities of the rover.
Given the current science scenario, this entails the gen-
eration of an environment and the simulation of rover
data gathering activities within the environment.
Generation of the environment requires producing a

�eld of rocks for the rovers to traverse. The rock �eld
is generated as a plane with rocks of various sizes em-
bedded at various depths. The simulator maintains in-
formation about the mineral composition of each rock,
and the spectrum that would correspond to its mineral
composition. The size and spatial distributions of the
rock�eld were developed by examining distributions of
rocks observed by the Viking Landers, Mars Lander and
Mars Path�nder. The distribution of minerals that can
occur in rocks was developed in collaboration with plan-
etary geologists at JPL, and the spectra associated with
rocks are generated from the spectra of the component
minerals via a linear-mixing model.
The simulation of the rover activities was done at

a coarse level. Such considerations as kinematics and
obstacle avoidance were not modeled in this simula-
tion. Other considerations, such as power consumption
and memory management were modeled by the plan-
ner for plan generation but not simulated by the sim-
ulator. The rovers were essentially modeled as roving
spectrometers by the simulator. Figure 5 shows sev-
eral rovers and their spectrometer reaches modeled in
a sample rockscape. The simulation of rover activi-
ties was accomplished by executing the plan generated
by the planner, consisting of a list of movement, rota-
tion, and instrument commands. The simulator would



Figure 5: Overhead view of simulated rockscape. Wedges
denote di�erent rovers' spectrometers' �elds of view.

then, from the location and direction speci�ed by the
movement and rotation commands, determine whether
or not a rock was visible by the boresighted spectrom-
eter. If so, the simulator would perturb the spectra
in an amount proportional to the distance of the rover
from the rock in order to simulate instrument noise,
and store the spectrum for later communication to the
relevant clusterer. After all of the activities in a plan
were executed by the simulator (i.e. moves, turns, and
data gathering activities), the data was communicated
to each clusterer via synchronization agents. The sim-
ulator would then wait for the next plan.

Integration Issues

The integration of two AI problem solvers and a sim-
ulated environment involved a number of decisions. In
this section, we review some of the interesting and chal-
lenging issues that arose in performing this integration;
we particularly focus on the areas of system and inter-
face design and system performance.
One major integration issue is interfacing between

the di�erent components. For instance, the planner
was required to produce plans in a format compatible
with the action representation required by the simula-
tor. Also, the learner required the ability to ingest any
science data returned from the simulator. A more com-
plicated interface arose between the learning and plan-
ning components. Issues such as shared representation
of goals and objectives had to be resolved.
When specifying a new science goal, the learning

component usually requested additional measurements
be taken from a particular rock. However, this gen-
eral request had to be grounded in the form of terrain
coordinates in order to represent the goal in the plan-
ner's modeling language. In addition, the planning and
learning components had to agree on a priority repre-
sentation that was expressive enough to represent the
information required by the learner but that could also
be easily utilized during planning to remove goals if nec-
essary due to resource constraints. Another important
issue was interfacing between science and engineering

representations. Within the planner, constraints may
deal with sets of goals, resources and/or states which
are primarily scienti�c, primarily engineering, or which
form part of the interface between these two layers.
A separate design consideration was that the interac-

tions between the modules of the integrated system be
asynchronous. In other words, each module needed to
signal the next module when appropriate, rather than
designating one process a control process, which would
then control the actions of the others. For instance, the
planner would be not begin planning until receiving a
new set of science requests from the science analysis
module. To that end, we designed a synchronization
architecture that would facilitate interprocess signaling
and also communication of data. Essentially, each mod-
ule acted as both a server process and a client process.
A process would wait in server mode until the client
initiated contact, do its processing, and then initiate
contact with the server process of the next system as a
client. After the process �nished communicating to the
next process, it would go back to server mode until it
had new data to process.
One important decision is the design of the overall

planner, execution, and learner feedback. How often
the system loop is run is one issue. Increasing the fre-
quency of feedback improves the responsiveness of the
overall system to changes in the inputs (e.g. changes
in the observed science data) but increases the compu-
tation cost of running the constituent algorithms (e.g.
planner, learner). Additionally, due to the design of
the algorithms, one may know how much change in in-
formation is needed to likely change the results of the
computation (e.g. for the learner how much new data is
likely to change the collection goals, for the planner how
much of a change in execution state or goals is likely to
require another plan). While not critically sensitive to
the amount of new data it receives, the more data ob-
tained by the science analysis module on a given system
cycle, the more its model of the rock type distribution
will improve, resulting in useful new exploration goals.
If, say, the learner obtains little new information, the
targets it decides upon will not be much more useful
than those it produced on the last iteration.
A second issue related to system feedback is the

length of the horizon (i.e. the allowed plan execution
time period) that is considered by each cycle. If this
horizon is short, it imposes constraints on how long the
cycle must be run (e.g. if the horizon is two hours, the
cycle must be run at least every two hours). If the hori-
zon is long, the individual modules may take longer to
run (e.g. a planner takes longer to plan for a longer
horizon). The number of goals that are requested per
iteration also (to some degree) drives the size of the
planning horizon since only a certain number of goals
can be solved in any set length of time.
The frequency and horizon of each cycle is not con-

strained by our architecture. However, for our scenario,
we chose to have the cycle invoked once per local day
and to include a horizon of one day. This time scale



is reasonable because science activities are not possible
during the night period (as the rover is mainly solar
powered) but computation is possible during such peri-
ods (using the battery). Thus possible execution time is
not expended during planning. However, other choices
for cycle frequency and horizon are possible, and may
make sense for di�erent mission parameters.

Related Work

The idea of having a scienti�c discovery system direct
future experiments is present in a number of other sys-
tems. Work on learning by experimentation, such as
IDS (Nordhausen & Langley 1993) and ADEPT (Raja-
money 1990), varied certain quantitative and qualita-
tive values in the domain and then measured the e�ects
of these changes. MISUS di�ers from these systems in
that it interacts with an environment simulator to per-
form experimentation and it is specialized to particular
problems and scenarios in planetary science. MISUS is
also integrated with a planning system which constructs
the detailed activity sequence needed to perform each
experiment based on a domain model.
Other work has used experimentation to learn from

the environment but experiments have not been scien-
ti�cally driven. EXPO (Gil 1993) integrates planning
and learning methods to acquire new information by in-
teracting with an external environment. However, while
MISUS learns classi�cation models of new geological
features, EXPO tries to improve its planning-related
domain knowledge.
The distributed clustering presented in this paper

bears some similarity to other distributed learning
methods, such as (Provost & Hennessy 1999), which are
constrained by low-bandwidth communication between
processors to share relatively concise data models.
There has also been a signi�cant amount of work on

cooperating robots. One related system is GRAMMPS
(Bummit & Stentz 1988), which coordinates multiple
mobile robots visiting locations in cluttered, partially
known environments. GRAMMPS also has a low-level
planner on each robot and uses a similar approach to
distribute targets, however GRAMMPS does not look
at multiple resources or exogenous events. Most other
cooperative robotic systems utilize reactive planning
techniques (Mataric 1995; Parker 1999). These systems
focus on behavioral approaches and do not explicitly
reason about assigning goals and planning courses of
actions. Furthermore, none of these systems utilize a
learning component to drive the system goals.

Future Work

A number of extensions are planned for each component
of MISUS. One major extension already under way is
to interface with a multiple rover execution architec-
ture (Estlin, Hayati, & et al. 1999) being developed at
JPL that includes a number of additional components
including: a real-time multi-rover hardware simulator
which models rover kinematics and sensor feedback and

control software from the NASA JPL Rocky 7 rover.
MISUS is intended to provide the science layer for this
architecture, which will allow for more realistic testing
of the MISUS framework. In the rest of this section
we describe extensions planned for each MISUS com-
ponent.

Future Work for the Data Analysis System

The learning component described here represents an
initial model intended primarily to bring out system is-
sues. The most straightforward of the improvements
under consideration are concerned with strengthening
the clustering model to include outlier handling, covari-
ance modeling, incremental updating, model size deter-
mination, robustness to failure and missing data, and
multiple parent representation.
An important area for future work is in goal selection.

Combining spectral with spatial distribution models
may allow for better-informed targeting. A combined
clustering objective function would be more sensitive to
novel data in some locations than others. The system
could attempt to select target data which maximizes
improvement of the data model. This is similar to the
saliency measure for an attentive, relaxation-based neu-
ral network (Tsioutsias & Mjolsness 1996) To improve
the system's applicability to planetary science, we are
working to select targets which maximally aid discrimi-
nation between two competing hypotheses of geological
processes, in collaboration with JPL geologists (Davies
et al. 1999). One approach is to use stochastic parame-
terized grammars (Mjolsness 1997) to create a more de-
tailed spatial-spectral model of rock distributions than
a mixture of Gaussians.

Future Work for the Planning System

One improvement for the planning component is to en-
able dynamic planning capabilities. To accomplish this
we will utilize a dynamic version of ASPEN, which mon-
itors plan execution and allows re-planning when nec-
essary (Chien et al. 1999). To perform autonomous
rover-operations, an on-board planning system must be
able to respond in a timely fashion to a dynamic, un-
predictable environment. Rover plans may often need
to be modi�ed due to events such as traverses com-
pleting early and setbacks such as failure to reach an
observation site.
We also intend to extend the planning model to be

more robust to failure situations. For instance, if failure
occurs, the planning system should recognize it (e.g.
the rover has not responded for a certain amount of
time), not send any new goals to that rover, and re-
assign any current goals assigned to that rover.

Future Work for the Simulator

We are interested in improving the environment simula-
tor by adding di�erent data sources, and by improving
the sophistication of the hypotheses investigated.
The visual texture of a rock's surface can give clues

to the composition and geological history of the rock,



and is a source of information that should be used when
attempting to sample from the distribution of rock com-
positions rather than the spatial distribution of rock lo-
cations. We intend to incorporate visual texture as a
source of information for the rovers to help them choose
a sampling strategy.
Modeling the distribution of rock compositions is a

task that can yield useful information for geologists.
Consider the scenario where an impact excavates an
ancient hydrothermal system, in which there was a sta-
ble supply of hot water beneath the surface of Mars
at some time in the past. It may be possible to deduce
the existence of such a system from study of the impact
ejecta scattered on the surface, and examination of the
crater interior walls and rim deposits; hydrothermal ac-
tivity would have altered the mineral characteristics of
the excavated deposits.

Conclusions

This paper outlines a framework for coordinating mul-
tiple rover behavior in generating and achieving geo-
logical science goals. This system integrates techniques
from machine learning and planning and scheduling to
autonomously analyze and request new science data and
generate the action sequences to retrieve that data. We
discuss a number of integration issues including devel-
oping shared goal and plan representations, coordinat-
ing systems asynchronously, and adjusting interface pa-
rameters to best serve the overall system goal. We hope
the techniques and issues presented in this paper will
prove useful to other designers of integrated systems.
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