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Abstract

Variable-structure systems are those for which the available objects and their relationships can enter or
leave the problem as a function of time or depending on the values of other variables. We seek to define probabilis-
tic  generative  models  for  variable-structure  systems  in  sufficient  generality  for  use  in  complex  scientific  and
pattern  recognition  applications.   We  define  a  semantic  map,  Y,  by  which  model  specifications  map  to  model
semantics  for variable-structure  systems. The specification takes the form of (a) a labelled graph or “dependency
diagram” (some of whose nodes are labelled with random variables), or (b) a context-sensive stochastic parameter-
ized  grammar (SPG), a particular kind of “dynamical grammar”. The semantics takes the form of a joint probabil-
ity  density  function  (pdf),  in  the  case  of  a  graph,  or  an  infinite-dimensional  time  evolution  operator  on  joint
probability  density  functions  for  a dynamical  grammar.   We illustrate  these  frameworks by  treating,  with depen-
dency  diagrams  and  dynamical  grammars,  an  elementary  example:  context-free  but  resource-bounded  trees  of
conditionally  dependent  feature  vectors.   This  model  can  serve  as  a  scaffold  for  many  other  variable-structure
systems.

Fixed-structure  Dependency  Diagram (DD) classes include graphical  models  such as Markov Random
Fields,  Bayes  Nets,  and  Factor  Graphs,  as  well  as  Constraint  Networks.  By  adding  new kinds  of  node  and  link
labels to the graph specification we can extend such DD classes to efficiently represent variable-structure systems
and  other  highly  structured  probabilistic  architectures,  with  a  formal  semantics.  The  DD  notation  extensions
proposed here include: interaction-gating links (for conditional  links and nodes); index nodes and links (with and
without  weight  sharing  for  structured  architectures)  that  generalize  “Plates”  with multiple  levels  of indexing and
controllable  scope;  undirected  constraint  links;  and  derived  types  such  as  node  existence  and  time  delay  links.
Diagrams for the feature tree model illustrate the differences in principle between dependency diagrams for fixed
and variable-structure systems.

For SPG’s we relate the probability distributions on continuous-time and discrete-time execution results
for such grammars, and show how they express resource-limited feature trees.  We show how perturbation theory
gives rise to an approach both to analysing and to simulating continuous-time executions of dynamical grammars.
Finally  we  discuss  the  relationships  between  DD and  SPG frameworks,  including  their  synergistic  use in  multi-
scale modeling.
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B O D Y

1 Introduction

Probabilistic  models  of complex dynamical  systems are the basis  for much progress  in machine learn-
ing, pattern recognition, decision theory, and scientific inference.   In all of these fields, there is a basic distinction
between problems with static structure  and variable structure.    From the graph theory point of view, the distinc-
tion  corresponds  to  that  between  dynamics  of  variables  related  by  a  fixed  graph,  and  dynamics  that  governs  a
varying graph connectivity structure as well as the values of variables defined on its nodes.  Examples in scientific
modeling  include  the  production  of  particular  molecules  as  a  result  of  chemical  reactions,  and  their  dynamic
association into loosely bound multimolecular complexes or their enclosure within compartments.  A  cell biology
example is the birth and death of cells, and their spatially contingent mechanical and signaling relationships within
a  developing  organism.   Examples  in  vision  and  robotics  result  from  common-sense  reasoning  about  movable
extended objects and their relationships. 

Variable-structure systems are more difficult to model and infer than are dynamical systems with static
structure.  The  existence  of  domain  objects,  and  their  relationships,  vary  over  time;  typically  this  means  that
mathematical  equations  expressing  such  models  change  over  time  or  take  a  more  elaborate  form  than  do  fixed-
structure  systems.  In  addition,  variable-structure  systems  can  also  be  potentially  infinite  ones,  although  intrinsic
resource constraints can be included to prevent this.

Dependency  diagrams  (DD’s,  [1])  are  defined  here  as  labelled  graphs  with  enough  label  information
that there exists a single standard semantic function Y  that acts on each member of a DD class and produces, as its
value,  a  joint  probability  distribution  for  the  random  variables  that  label  selected  nodes  in  the  diagram.   For
example,  Factor Graphs (FGs)  provide a semantics  (in the form of factored probability distributions)  that encom-
passes Markov Random Fields (MRFs) and Bayes Nets (BNs), provided that the probability factor nodes are each
labelled  with  a  member  of  a  suitable  function  space  .  Fixed-structure  Dependency  Diagram  classes  include
graphical models such as MRFs, BNs, and FGs [1], as well as Constraint Networks. 

In  this  paper,  by  adding  new  kinds  of  node  and  link  labels  to  the  graph  specification  we  will  extend
Dependency  Diagram  (DD)  classes  to  efficiently  represent  variable-structure  systems,  with  a  formal  semantics.
We  will  illustrate  this  procedure  with  a  simple  example  of  a  variable-structure  system in  Section  2:  a  resource-
bounded but otherwise arbitrarily shaped tree of locally interrelated feature vectors, created by a context-free birth-
and-death process (Proposition 1). This feature tree can serve as a generative model for hierarchical clustering, for
phylogenetic trees, or for noninteracting cell lineages in biology. In Section 3 we define the Dependency Diagram
framework and show how it expresses the feature tree and other variable-structure systems (Section 3.6, Proposi-
tion 2). This and other resource-bounded variable structure systems can be reduced to fixed-structure factor graphs
by  what  turns  out  to  be  an  inefficient  albeit  uniform  mapping,   (Section  3.6,  Proposition  2,  and  Section  3.8,
Proposition  3).  We  hypothesise  that  the  non-uniformity  of  efficient  reduction  reflects  essential  differences
between fixed  and  variable-structure  DD’s.   Related but  inequivalent  formalisms  for  extending graphical  models
have  been  proposed  in  [2][1,3-4].  Related  but  inequivalent  frameworks  for  modeling  variable-structure  systems
are  defined  in  [5]  (branching  or  birth-and-death  processes),  [6]  (marked  point  processes),  [7]  (MGS  modeling
language  using  topological  cell  complexes),  [8]  (interacting  particle  systems),  [9]  (BLOG  probabilistic  object
model) [10] (adaptive mesh refinement with rewrite rules), and colored Petri Nets [11].
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It  is  also  possible  to  provide  a  mathematical  definition  (and  derive  some  of  its  consequences)  for  the
semantics  of a very  different and  more dynamical  notation  for  variable-structure  probabilistic  models:  Stochastic
Parameterized Grammars (SPG’s), a subclass of “dynamical grammars”.  The key function of interest for the SPG
framework  is  again  a  semantic  map  Y  from  syntactic  expressions  of  grammars  to  time  evolution  operators  on
probability  distributions.  We  show  that  SPG’s  are  also  capable  of  expressing  the   context-free  random  tree  of
feature vectors generated by an arbitrary fixed distribution qHnL  on the number of branches or children, n , branch-
ing from each node.  In Section 2 we introduce a grammar for this especially  simple example of a variable-struc-
ture system. We show how the size-conditioned  tree distribution can be sampled efficiently  by transforming it to
another  context-free  SPG.   In  Section  4  we  define  the  semantics  of  context-sensitive  SPG’s  in  both continuous-
time and serial discrete-time execution models, relate the two, and show they specialize to the context-free feature
tree  (Section  4.3,  Proposition  4).  In  Section  5  we  relate  the  DD  and  SPG  frameworks  for  variable-structure
systems and discuss their implications.

2 The Hierarchical Feature Tree

We consider a simple example of a variable-structure system: a (probabilistic) context-free feature tree,
with a fixed arbitrary distribution qHnL  on the number of children at each node.  We will impose a resource limita-
tion on this tree,  by conditionalizing  on the size of the generated  tree defined as its  number of nodes.   We show
(Proposition 1) that the resulting resource-bounded variable-structure  system is equivalent to another context-free
stochastic parameterized grammar and its distribution on feature trees.

2.1 Unbounded model formulation

Consider  a  (probabilistic)  tree  of  feature  vector  nodes  with  only  local   dependencies  between  the
features,  and  an  arbitrary  fixed  distribution  qHnL  on  the  number  n  of  children  at  each  node.   We  will  impose  a
resource limitation on this tree, by conditionalizing on the size of the generated tree defined as its number of nodes
N .   This  model  incorporates  a birth-and-death  process [5]  for  the tree  nodes and  has  applications  to hierarchical
clustering  in  d ,  cell  lineage  trees  with  a  state  vector  for  each  cell,  and  evolutionary  phylogeny  trees  with  a
genotype  (e.g.  a  discrete  sequence  string  in 2

d or 4
d )  for  each  species.   It  can  also serve  as a  scaffold structure

(e.g.  a cell  lineage  tree) for  many  other more  complex  variable-structure  dynamical  systems. We show (Proposi-
tion 1) that if we conditionalize on tree size, the resulting resource-bounded variable-structure system is equivalent
to  another  context-free  SPG  and  distribution  on  feature  trees.   The  size-conditionalized  feature  tree  is  an  effi-
ciently  computable  object  with  an  exchangeable  distribution,  and  is  important  both  for  practical  use and  for  the
basic theory of variable-structure systems.  Any potentially infinite system raises a computational obstacle, and we
demonstrate here a strategy (size conditionalization by grammar transformation) to removing such obstacles.

A tree  of  feature  vectors  is  “context-free”  in  our  terminology  if  it  can  be  generated  by  a  context-free
stochastic  grammar,  i.e.  one  in  which  each  rule  has  only  one  term  on  the  left  hand  side.   In  the  first  grammar
below, this means each node in the tree has a feature vector that is conditionally independent  of all others except
for the feature vector of its parent node, and the number of child nodes is conditionally independent of everything
except  the existence of the parent node within the tree.  What  is novel in this Section is the highly generalizable
grammar syntax (to be generalized in Section 4), the introduction and use of a grammar-level transformation  to a
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closely related resource-bounded  system (proving Proposition 1), and (as far as we know) the relation between q
and new probability distributions r , Q ,  and R  in that variable-structure system.

Figure  1  shows  two  randomly-generated  feature  trees.   The  probability  of  the  first  structure  is
qH1L qH2L2  qH0L3  because  is  has  one  node  with one  child,  two nodes with  two children  and  three nodes with  zero
children.   Likewise  the  probability  of  the  second  structure  is  qH3L qH2L qH1L qH0L4 .   Given  the  structure,  we  can
compute  feature  probabilities.   The  conditional  probability  density  of  the  feature  vectors  in  the  first  tree  is
fHx1 » xL fHx11 » x1 L fHx12 » x1 L fHx111 » x11 L fHx112 » x11 L ,  and  that  for  the  second  tree  is
fHx1 » xL fHx2 » xL fHx3 » xL fHx11 » x1 L fHx12 » x1 L fHx21 » x2 L , according to the usual rules of a BN with fixed structure.

Figure 1:   Two  feature  trees  generated  by  the  clustergen  stochastic  parameterized  grammar.
Pr = qH1L qH2L2  qH0L3  äf Hx1 » xL fHx11 » x1 L fHx12 » x1 L  ä fHx111 » x11 L fHx112 » x11 L .   (b)  Pr = qH3L qH2L qH1L qH0L4

äf Hx1 » xL fHx2 » xL fHx3 » xL  äfHx11 » x1 L fHx12 » x1 L fHx21 » x2 L .

In the classic programming style of rule-based expert systems, we can generate clusters or other random
objects  hierarchically  with  a Stochastic  Parameterized  Grammar  [12].  The following grammar  has  two rules  R1
and R2, and it operates on three kinds of objects: “node” objects (the final output tree nodes), “nodeset” objects (a
single one of which is the input nodeset object), and intermediate “child” objects that eventually become nodesets
(via R2) that give rise to nodes and more children (via R1). Each rule is eligible to “fire” (to transform its left hand
side into its  right  hand side)  whenever  an object matching its  left  hand side is  present.   Only one  rule-firing can
occur at each discrete time step. The probability of each eligible rule-firing (i.e. each combination of a rule and a
set  of  objects  that  matches  its  left  hand  side)  is  uniform  for  this  particular  grammar,  since  both  rule-specific
distributions q  and f  are normalized.  However, the relative probabilities of the results of a rule firing, i.e. of the
right-hand-side  of  a  rule,  are  given  by  the  conditional  probability  distributions  q  and  f  specified  in  the  “with”
clause of each rule.  The grammar is:

grammar (serial discrete-time context-free) clustergen (nodesetHxL Ø 8nodeHxi L<) {

R1 : nodesetHxL Ø nodeHxL, 8childHxL » 1 b i b n<  with qHnL, n r 0. 

R2 : childHyL Ø nodesetHxL  with fHx » yL
}
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In  the  syntax  above,  “grammar”  is  a  keyword  that  declares  what  follows  to  be  a  grammar;   “(serial
discrete-time context-free)” specifies the algorithm for rule firing appropriate  for context-free grammars i.e. those
in  which  the  left  hand  side  (LHS)  of  each  rule  consists  of  a  single  term.  (A  formal  semantics  for  all  SPG’s  is
exhibited  in Section  4.)  “clustergen”  is  the  name  of  the  grammar;  and   “nodesetHxL Ø 8nodeHxi L<” specifies  that
the input of the grammar is a single nodeset object and its output is a set of node objects each with a value for a
random variable xi  (arbitrarily  numbered).   Thus  the grammar  implements  a single rule  which  could be invoked
recursively by this or another grammar, using the via keyword (not shown) in place of the with keyword.  R1 and
R2 are the two rules  whose function has  been outlined.  The rule labels  “Rr:” are  optional  and rule  order is arbi-
trary.   Thus  a  branching  stochastic  process  starts  with  a  “nodeset”  with  feature  vector  x ,  and  (under  rule  R1)
generates  a  terminal  “node”  term  along  with  n  “child”  terms  according  to  a  probability  distribution  qHnL .   For
example,  qHnL  could  follow  a  power  law.  Each  child  (under  rule  R2)  changes  its  real-valued  feature  vector  x
according  to  the  conditional  distribution  f ,  becoming  a  nodeset  object  eligible  to  reproduce  under  (R1).  With
clustergen, we have thus defined the context-free feature tree family Hq, fL  as a probability distribution on trees
of all sizes.

As  examples,  for  real-valued  feature  vectors  x  the  conditional  distribution  could  be
fHx » yL = Gaussian GHx - yL  resulting in a hierarchical  mixture of Gaussians  model; for binary (Boolean) vectors
x  it  could  be  a  Bernoulli  distribution  on  whether  xa = ya  or  xa = Ÿ ya = 1 - ya .  Another  example  f  suggested
above uses the tree generation number or depth to look up a fixed ratio sêêê

ratio  by which the standard deviation of a
Gaussian changes in each generation.   The formulae for these distributions are:

fHx » yL= Gaussian GHx - yL
fHx » yL= Bernoulli BrHx1 - y1 ; pL    // for binary-valued vectors

fHx » yL= Gaussian GHHx1 - y1 L ê y2 L dHx2 - y2  sêêê
ratio Hy3 LL dHx3 - Hy3 + 1LL

Such  grammars  are  “stochastic”,  owing  to  the  use  of  probability;  they  are  “parameterized”  since  the
terms  produced carry  numeric  or  other  parameters;  they  are  “context-free”  since  each  rule  has  only one  term on
the  left  hand  side.   Hence:  they  are  particular  examples  of  context-free  Stochastic  Parameterized  Grammars  or
SPG’s. Distributions defined by such grammars can be randomly sampled using an interpreter we have written in
the Mathematica computer algebra environment.

A  key  feature  of  the  clustergen  grammar  is  that  because  it  is  context-free,  every  subtree  behaves
independently  of its  siblings.   That is, the presence  of sibling subtrees only serves  to postpone,  not to alter,  sam-
pling of the distribution of the tree size and shape of a particular child node’s descendants.

Next,  we  define  a  family  Hq, f, NL  of  feature  trees  with  a  fixed,  finite  size  N .  The  “clustergen”
grammar  results  in  a  certain  joint  distribution  PrH8nodeHxI L » 1 b I b N<, NL .    Let  us  design  a  resource-limited
version of the grammar, so that PrH8nodeHxI L » 1 b I b N< » NL  is the same as for the foregoing grammar.  Thus, we
conditionalize on N , the total number of nodes in the feature tree.  For this we need to compute PrHNL  for Hq, fL .

2.2 Size distribution calculations: Pr(N) and Pr(n, N)

  PrHNL  is  determined  by  the  function  q .   Its  derivation  requires  an  understanding  of  birth-and-death
processes [5], which can be provided by the generating function point of view. Let gHzL  be the generating function
for qHnL .  Also define the generating function f HxL  for PrHNL :
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gHzL = ‚
n=0

¶

zn  qHnL and f HxL = ‚
N=1

¶

xN  PrHNL

For  example,  if  q  is  a  geometric  distribution,  gHzL = H1 - pL ê H1 - p zL .  The  power  law is  of particular  interest
for many applications.: if q  is a power law with power -a , gHzL = p0 + H1 - p0 L Lia HzL ê z HaL . f HxL  is the generat-
ing function for PrHNL  for  finite integer values of N  only; 1 - f H1L  is the probability of obtaining N = ¶ . Some
important pairs Hg, f L  are listed in Table 1. 

Table 1. Generating functions for qi

Distribution name Distribution qHnL Generating function gHzL Generating function f HxL


Geometric qi =pi (1-p) gHzL = 1-pÅÅÅÅÅÅÅÅÅÅÅÅÅ1-p z f HxL = 1-
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1-4 pH1-pL xÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 p


Linear Fractional
  qn = di 0  1-b-pÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-p +

H1 - dn0 L b pn-1

 H1-b-pL+Ib-p+p2 M z
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1-pL H1-p zL

f HxL =
IH1 - pL - Hb - p + p2 L x2 -

,IHp - 1L2 + 2 Hp -

1L Hb + 2 b p +
3 Hp - 1L pL x +
Hb + Hp - 1L
pL2 x2 MM ë

H2 pH1 - pL L


Binomial qn = I N
n M pi H1 - pLN-n

xn gHzL = HH1 - pL + p zLn

f HxL =

H1 - pLn  x + n H1-pL2 n p x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅp-1 +

IH1 - pL3 n H-n p2 +

3 n2 p2 L x3 M ë
I2 Hp - 1L2 M

+ ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

binary binomial tree
qn = I 2

n M pn H1 - pL2-n xn

n œ 80, 1, 2< gHzL = HH1 - pL + p zL2 f HxL = 1-
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1-4 xH1-pLêpÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 x - 1-pÅÅÅÅÅÅÅÅÅÅp



Power law
qn =

; p0 n = 0
H1 - p0 L n-a ê zHaL n > 0

gHzL =
p0 + H1 - p0 L Lia HzL ê zHaL

f HxL = p0  x + H1-p0 L p0 x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅzHaL +

H2-a Hp0 - 1L p0

H-2a + 2a p0 -
p0 zHaLL x3 L ë

HzHaLL2 + ...

Surprisingly, the fundamental relationship between f  and g  is given by the beautiful functional equation [13]
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(1)f HxL = x gH f HxLL .

This follows from the recursion relation

PrHNL = „
n=0

¶

qHnL „
loooom
n
oooo

Ni

ƒƒƒƒƒƒƒƒƒƒƒƒ
1bibn Ô 1bNi

Ô „
i=1

n
Ni =N -1

|oooo}
~
oooo

‰
i

PrHNiL

This functional equation can be solved iteratively using Taylor series expansions and

fL+1 HxL = x gH fL HxLL and f0 HxL = 1 .

Convergence is observed to be reliable: one new coefficient is fixed per iteration. 

An  even  more  effective  solution  is  by  reversion  of  power  series   [Pitman  98].    Solve  the  functional
equation to find:

f HxL = gè -1 H1 ê xL, where
gè HyL = gHyL ê y

 In  Mathematica  or  other  computer  algebra systems  this  can  be implemented  (either  numerically  or  symboli-
cally) in a single line.

Example: for g = H1-pLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1-p xL  in Mathematica, the input

InverseSeriesBSeriesB
1
ÅÅÅÅ
y

 
i
k
jjj

H1 - pL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 - p yL

y
{
zzz, 8y, 0, 10<FF@@3DD

yields the result

91 - p, H1 - pL2 p, 2 H1 - pL3 p2, 5 H1 - pL4 p3, 14 H1 - pL5 p4,
42 H1 - pL6 p5, 132 H1 - pL7 p6, 429 H1 - pL8 p7, 1430 H1 - pL9 p8,
4862 H1 - pL10 p9, 16796 H1 - pL11 p10, 58786 H1 - pL12 p11=

The appearance of the Catalan numbers 1ÅÅÅÅÅÅÅÅÅÅÅN+1  I 2 N
N M  in the case of the exponential distribution can be understood

from the standard  bijection  between arbitrary  and  binary trees,  whose  number is  counted by these  integers.   The
exact solution for this example is:

f HxL =
1 -

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 - 4 pH1 - pL x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p

,

and for the linear fractional case it is

f HxL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 pH1 - pL  

KH1 - pL - Ib - p + p2 M x2 -
"################################################################################################################################Hp - 1L2 + 2 Hp - 1L Hb + 2 b p + 3 Hp - 1L pL x + Hb + Hp - 1L pL2 x2 O .

Note also that the joint distribution PrHn, NL = PrHN » nL qHnL  satisifes the recursion relation
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PrHn, NL = qHnL PrHN » nL = qHnL „
loooom
n
oooo

Ni

ƒƒƒƒƒƒƒƒƒƒƒƒ
1bibn Ô 1bNi

Ô „
i=1

n
Ni =N-1

|oooo}
~
oooo

‰
i

‚
ni =0

¶

PrHni , Ni L

and therefore has generating a function

f Hx, yL = „
N=1

¶

xN  ‚
n=0

¶

yn  PrHn, NL

which satisfies the functional equation

f Hx, yL = x gHy f Hx, 1LL.

These two generating functions are related by f Hx, 1L = f HxL .  So, given f HxL , we can very simply compute

(2)f Hx, yL = x gHy f HxLL.

Example: for gHxL = H1-pLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1-p xL  we find

PrHn, NL = H1 - pLN  pN+2 n-1  
n

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N - 1

 K2 N - n - 3

N - 2
O QHn < NL .

where QHPL = 1 if proposition P  is true, and QHPL = 0 if proposition P  is false.

To be very clear: the recursion equations can now be solved by direct power series calculations to any
order desired,  and the results used in an algorithm.  What we don’t have yet is just the closed form expression or
the  asymptotics  for  all  useful  node  degree  distributions  q HnL .   Further  calculations  and  comparisons  to  other
approaches are given in the Appendix.

2.3 Resource bounded model

The  clustergen  grammar  above  results  in  the  joint  distribution  PrH8nodeHxI L » 1 b I b N<, NL .    Let  us
design  a  resource-limited  version  of  the  grammar,  rclustergen,  by  choosing  r  and  Q  below  so  that
PrH8nodeHxI L » 1 b I b N< » NL  is the same as for the clustergen grammar:

grammar (serial discrete-time context-free) rclustergen (nodesetHx, NL Ø 8nodeHxi L<) {

R1 : nodesetHx, NL Ø nodeHxL, 8childHx, NiL » 1 b i b n<
with rHn » NL QH8Ni <1

n » N - 1, nL, n r 0. 

R2 : childHy, NL Ø nodesetHx, NL  with fHx » yL
}

A further grammar refinement  sequentializes the emission of children according to deterministic Q , so
that  we  get  an  efficient  (few-variable)  procedure  for  the  resource-limited  generation  of  samples  from  the  same
conditional  probability  PrH8nodeHxI L » 1 b I b N<, » NL  as  that  of  the  original  grammar.    The distribution  R  must
again be chosen accordingly.

grammar (serial discrete-time context-free) rseqclustergen (nodesetHx, NL Ø 8nodeHxi L<) {
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R1 : nodesetHx, NL Ø nodeHxL, childrenHx, n, N - 1L » 1 b i b n<
with rHn » NL  

R2 : childrenHx, n, NL Ø childHx, N£ L, childrenHx, n - 1, N - N£ L
with RHN£ » n, NL

R3 : childrenHx, 0, NL Ø Ø

R4 : childHy, NL Ø nodesetHx, NL  with fHx » yL
}

Given  the  arbitrary  distribution  q ,  we  seek  r ,  Q ,  and  R  such  that  the  conditional  distributions
PrH8nodeHxI L » 1 b I b N< » NL  that  emerge  from  these  three  grammars  are  identical,  for  any  f.   Given  f HxL  and
f Hx, yL  from Section 2.1, we can compute rHn » NL :

rHn » NL = PrHn » NL = PrHn, NL êPrHNL
in  terms  of  quantities  PrHNL  and  PrHn, NL  known  from the  functions  f HxL and f Hx, yL  respectively.   Note  that

rHn » 0L = dn,0 . Next solve for Q :

(3)

QH8Ni <1
n » N, nL = PrH8Ni <1

n » N, nL = PrH8Ni <1
n , N » nL ê PrHN » n L, i.e.

QH8Ni<1
n » N, nL = d

i

k
jjjjjN - ‚

i=1

n

Ni

y

{
zzzzz 
i

k
jjjjj‰

i=1

n

PrHNi L
y

{
zzzzz 

qHnL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
PrHN, n L .

This distribution Q  is manifestly exchangeable.  It remains to find the distribution R .  For n = 1  we must have
RHN£ » 1, NL = dHN£ , NL  to conserve nodes. For n > 1,we calculate that

QH8Ni <1
n » N, nL = d

i

k
jjjjjN - ‚

i=1

n

Ni

y

{
zzzzz 
i

k
jjjjj‰

i=1

n

PrHNi L
y

{
zzzzz 

qHnL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
PrHN, n L

= d
i

k
jjjjjN - Nn - ‚

i=1

n-1

Ni

y

{
zzzzz 
i

k
jjjjj‰

i=1

n-1

PrHNi L
y

{
zzzzz PrHNn L K

qHn - 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
PrHN - Nn , n - 1L  

PrHN - Nn , n - 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

qHn - 1L O 
qHnL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
PrHN, n L

= QI8Ni<1
n-1 … N - Nn , n - 1M PrHNn L 

PrHN - Nn , n - 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

PrHN, n L  
qHnL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
qHn - 1L

Therefore

(4)QH8Ni <1
n » N, nL = QI8Ni<1

n-1 … N - Nn , n - 1M RHNn » n, NL

where

(5)RHNn » n, NL = PrHNn L 
PrHN - Nn , n - 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

PrHN, n L  
qHnL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
qHn - 1L ,

which is again given in terms of quantities known from the generating functions f HxL, f Hx, yL, and gHzL .

2.4 Summary

Thus we have established
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Proposition  1.  There exists a size-bounded version Hq, f, NL  of the context-free cluster tree distribu-
tion Hq, fL , which shares the same probability distribution conditioned on tree size N , and is also generated by a
context-free grammar whose single-rule probability distributions can be calculated from the distribution q .

Proof:  The  context-free  stochastic  parameterized  grammar  “clustergen”  for  hierarchical  clusters  has  a
joint probability density  function which,  when conditionalized on the total number of descendant nodes N , is the
pdf of the context-free stochastic parameterized grammar “rclustergen”. 

This establishes the existence of the resource-bounded context-free cluster tree distribution Hq, f, NL ,
along with  an efficient  procedure “rseqclustergen”  for  sampling  it  requiring  only the few-parameter  distributions
rHn » NL  and RHN£ » n, NL .  We use Hq, f, NL  as a paradigmatic variable-structure system, even though it is much
simpler  than  most  we  need  to  study.   Simplifications  include:  it  is  context-free,  and  the  relationships  between
random  variables  are  determined  upon  their  birth.   However,  more  complex  variable-structure  systems  can  be
constructed mathematically by starting with Hq, f, NL .

In  Section  4  we will  introduce  a  formal  semantics  for  all  context-free  stochastic  parameterized  gram-
mars  that  covers  the  three  grammars  introduced  above,  as  a  special  case  of  a  much  broader  family  of  context-
sensitive stochastic parameterized grammars or the still broader family of “dynamical grammars”.  First, however,
we consider the relationship of the context-free tree Hq, f, NL   to Boltzmann distributions and graphical models.

3 Semantics for Variable-structure systems: Dependency 
Diagrams

Based on standard algebraic notation for domain-specific probability distributions and for the energy functions
of  Boltzmann  distributions,  we  propose  an  augmented  class  of  graphical  models  to  describe  the  architecture  of
variable-structure  systems.  These  models  are  specified  by  a  labelled  graph  or  “dependency  diagram”,  some  of
whose nodes are labelled with random variables. But the diagram also includes new node and link types to express
highly structured dependency network architectures (i.e. those of low Kolmogorov complexity, generatable from a
short computer program) including but not limited to variable-structure systems.

Dependency  diagrams  (DD’s)  are  defined  here  as  labelled  graphs  with  enough  label  information  that
there  exists  a  single  standard  semantic  function  Y  that  acts  on  each  member  of  a  DD class  and  produces,  as  its
value,  a  joint  probability  distribution  function  for  the  random variables  that  label  selected  nodes  in the  diagram.
For  example,  Factor  Graphs  provide  a  semantics  (in  the  form  of  factored  probability  distributions)  that  encom-
passes  Markov  Random  Fields  (MRF’s)  and  Bayes  Nets  (BN’s),  provided  that  the  probability  factor  nodes  are
each labelled with a member of a suitable function space .

A  major  motivation  for  formalising  the  semantic  map  Y  is  to  create  software  and  algorithms  that
generate  problem-specific  machine  learning  and  pattern  recognition  algorithms.   Another  is  to  search  for  more
powerful  mathematical  frameworks  to  assist  human  generation  of  such  algorithms.   The  properties  of  Y  will  be
summarized in Proposition 2 of Section 3.7 below.

With  fixed-topology  networks  it  is  possible  to  express  the  resource-bounded  cluster  tree  of  N  nodes,
Hq, f, NL , using a graphical  model  of 2N - 1  random variable nodes and 2N-1  dependency  links.   This is done

by  preallocating  a  full  binary  tree  of  depth  N  and  standardly  encoding  the  nonbinary  tree  in a  binary  tree.   We
should expect,  however,  to be able to express this  model more efficiently  using not  much more than OHN log NL
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random variable  nodes and a constant  OH1L  amount of specification or “program” information,  as for example in
the grammar itself.  We will instead provide an OHN2 L , OH1L  solution as summarized in Proposition 3 below.  

Clearly,  the  feature  tree  has  a  highly  structured  architecture  since  the  amount  of  model  specification
information  is  far  less  than  the  number  of  random  variables.  In  general,  a  variable  stucture  system  has  a  set  of
variables and dependencies which is potentially very large or infinite, compared to the constant amount of informa-
tion required to specify the nonrandom aspects of the dependency link structure.  Thus, the graph of dependencies
is highly structured  as measured  by Kolmogorov information  content:  there is a short  program to specify  a large
object,  except  for  the  random  variable  values  that  also  influence  the  structure.   For  these  reasons,  we  require  a
flexible way to specify highly structured dependency graph architectures.  This is provided by indexing nodes and
links.  The short program is given by the expansion map  that removes these nodes and links, in what follows.

To begin,  we review  factor  graphs  (including  directed and  undirected  probabilistic  dependency  links).
Then  we define  several  further  labeled  graph  elements  that  are required  to  define  variable-structure  systems  and
the  semantic  function  Y  [1]:  interaction  gating  links,  node  existence  links,  indexing  nodes  and  links,  and  index
constraint links. The definitional relationships among link types are summarized in Table 2. We then provide two
different  DD’s  for  the  context  free  feature  tree  as  discussed  above,  and  establish  some  basic  properties  of  the
semantics  Y  in  Lemma  1  (Section  3.2),  Proposition  2  (Section  3.7)  and  Proposition  3  (Section  Section  3.9).
Further  link  type  definitions  and  examples  follow,  including  time  delay  links  that  generalize  Dynamic  Bayes
Networks.

3.1 Factor Graphs

Following [14] we recall  that  undirected (MRF) and directed  (BN) graphical  models  may be incorpo-
rated into a common graph framework by introducing probability factor nodes fa  into graphs that denote probabil-
ity  distributions.   We  assume  each  factor  node  fa  is  labelled  by  a  member  of  some  function  space   whose
values  are  nonnegative;  for  example,  they  may  be  exponentials  of  real-valued  “potential  functions”  in  another
function space £ .

For  a dependency  diagram,  the semantics  function Y  maps such  labelled graphs  to probability  density
functions which we can write as follows:

(6)PrHx » xinitial L =
1
ÅÅÅÅÅÅ
Z

 Â
kœ 1

fk H8xi » Fi k = 1<L ‰
kœ 2

fk H8xi » Di k = 1< » 8xj » Dk j = 1<L

Here  F  and  D  are  0/1-valued  adjacency  matrices  for  two  separate  link  types:  undirected  (MRF-like)  and
directed (BN) dependency links.  An F  link represents participation in a potential function in a Boltzman distribu-
tion  or  Markov  Random  Field.   Although  the  graph  F  is  itself  directed,  its  Boolean-algebra  square  U = F FT

symmetrically  connects  random  variables  that  are  related  by  one  or  more  potential  functions.   By  contrast  the
directed links D  form a Directed Acyclic Graph (DAG) and represent a generalized  form of conditional  distribu-
tion in which each  probability factor  participates  in the normalization  relationship for  directed factor  graphs [14]
[15],  and  specializes  to a conditional  distribution  if  a  variable  xi  and  a factor  k  are uniquely  connected  by a  D-
link.    In  addition,  some  of  the  variable  nodes  x  may  actually  be  labeled  as  fixed  parameters.  These  may  be
interpreted  as  conditionalized  random  variables.  F ,  U ,  and  D  type  dependency  links  are  distinguished  by  being
labeled with “f”, “u”, and “d” in the labeled graph representation of a dependency diagram.
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The  conversion  of  MRF  and  BN  links  into  FG  f  and  d  links  is  illustrated  in  Figure  2.   With  these
interconversions,  we  can  freely  intermix  f,  u,  and  three  types  of  d  links  (depending  on  the  types  of  nodes  con-
nected) provided that sthe set of all the d links form a DAG.

Figure 2:  Conversions  between  MRF  u  undirected  dependency  links  (top)  and  BN  d  directed  dependency  links
(bottom), on the left, and FG f and d links, on the right. There exists a more precise definition of the factor f in the
top panel  that  would require  additional  pairwise  factors  between  each pair  of variables  in the FG on the right  (not

drawn).

Let H , Nrv , Nfactor L  be the space of probability density functions that can be constructed according to
Equation  6  from  Nrv  random  variables  and  from  Nfactor  probability  factors  each  in  the  space  .   Let

H , Nrv L = H , Nrv , ¶L .

We  denote  dependency  diagram  classes  DDH8 f , d<, 8 , <, , HNnode , Nlink LL  for  diagrams  containing
both f  and d  links,  both  integer-valued  and  real-valued  random variables,  factor  functions  in a function  space  ,
and bounds HNnode , Nlink L  on the numbers of nodes and links, assuming the above form for the semantics fuction Y
from  class  members  to  probability  distributions.   More  restricted  classes  such  as  DDH8 f <, , , HNnode , Nlink LL
(integer-valued Boltzmann distributions) can be described in a similar way.

Factor graphs as defined have a fixed structure of dependencies given by the matrices F  and D , regard-
less of the values of other variables or parameters  such as time. We seek to remove these limitations by defining
new  node  and  link  types  and  their  semantics.   We  also  consider  wherever  possible  the  reduction  to  previously
defined node and link types, and the effects of such reduction on size and complexity parameters such as numbers
of nodes and links.  The essential new link types are: factor gating links labelled by “g”, node and factor indexing
nodes  and  links  labelled  by  “i”  (which  allow  for  replication),  and  node  existence  links  labelled  by  “e”.  Other
convenenient node and link types will be defined in terms of these.
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3.2 Gating links

 A  special  case  of   dependency  link  is  of  particular  interest  for  variable-structure  systems:  the  gating
link.   We  assign  meaning  to  such  links  by  extending  the  semantic  function  Y  to  dependency  diagrams  (labelled
graphs that denote distributions) that include them. Examples  of gating links include all 0/1-valued multiplicative
indicator  variables  or  functions  in  MRF’s,  such  as  line  processes  in  region  segmentation,  cluster  membership
variables in mixture models, and graph matching assignment matrices [16].

The semantic function Y  now assigns to each such diagram the probability distribution:

(7)

PrH8x<L =
1
ÅÅÅÅÅÅ
Z

 Â
kœ 1

fk H8xi » Fi k = 1<L

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k » gHk,kL=1

QJxk>0NF

ä Â
kœ 2

fk H8xi » Di k = 1< » 8xj » Dk j = 1<L

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k » gHk,kL=1

QJxk>0NF

Here,  the 0/1-valued  Heaviside functions  QHpredicateL  are in the  exponent  and  are applied  to each integer-  or
real-valued random variable xk  that gates factor k  according to the gating graph links whose adjacency matrix is
gHk, kL = gk,k .  Each product of Heavide functions takes value 0 or 1. Only if all its gating constraints (if any) are
met is a probability factor fk  multiplied into the joint probability distribution.  Both D  and F  type interactions can
be gated.  Since fk

0 = 1, in the absence of all gating links, each product ¤k Q is empty, hence =1, and the defini-
tion for Y  reduces to the previous one for FG’s, Boltzmann distributions, MRF’s, and BN’s.  For this definition to
work, we define 00 = 1.

The “standard  expansion”  map  for  gating links  eliminates  all  such  links in favor  of  F  and  D  links.
This can be done by replacing all gating links with ungated ones of D  type if possible using local renormalization
of fk , and with F  type links if not; also it changes the probability factor fk  accordingly by raising it to the power
of the product all  incident 0/1 gating variable values,  assuming that is possible within the function class .  The
resulting  ungated  graphical  model  has  the  same “meaning”  (maps  under  Y  to  the  same  joint  distribution  on  the
same  random variables)  as  the  gated one  but  is  devoid  of gating  links.   In  this  way,  we can  reduce  dependency
diagrams with gating links to those without.  The cost of doing so is an increase in the number of arguments  and
the generality of the allowed probability factor functions. The number of nodes and links remains constant.

Two  essentially  different  classes  of  diagram  may  be  considered:  those  in  which  the  gating  links  are
constrained to form a DAG when added to D , and those that aren’t.  If the D  and associated g links form a DAG,
then we may attempt a reduction of gated directed links to ungated directed links. If for some reason the normaliza-
tion property  of  D-links  is  lost,  any  affected  probability  factors  can  be moved  from the  “D”  product  to  the “F ”
product and all corresponding dependency link labels changed accordingly.  Either way we establish the following
lemma.

Lemma  1.   There  exists  a  semantics  function  Y  from  DDH8 f , d, g<; ; HNnode , Nlink LL  to  probability
density functions H , Nnode L  on Nnode  variables such that:
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(a)  Yfg  specializes  to  FG’s,  MRF’s  and  BN’s,  i.e.  it  agrees  with  the  standard
Y : DDH8 f , d<, , HNnode , Nlink LL Ø H , Nnode Lon  diagrams  without  g  links.   Evaluated  on  such  diagrams,
Y = Yfg  .

(b)  There  exists  a  “standard  expansion”  map   which  reduces  DDH8 f , d, g<; ; HNnode , Nlink LL  to
DDH8 f , d<; ; HNnode , Nlink LL ,  such  that  on  the  domain  DDH8 f , d, g<; ; HNnode , Nlink LL ,  Y = Yfg Î .   In  other
words, the following diagram commutes:

As we will see, however, this “standard” expansion map  can be far from the most efficient reduction
for  particular  variable-structure  systems.   This  fact  is  important  to  understanding  the  difference  in  principle
between variable-structure and fixed-structure systems.

3.3 Node existence links

In the context-free tree example, a large number of potential random variables are not involved in any
given  tree,  depending  on  the  values  (and  involvement)  of  their  parent  variables.   We  may indicate  non-involve-
ment,  or effective non-existence,  of a random variable in a tree by using special gating links (labelled “e”) to cut
off all of its interactions with other variables.  Thus the semantics YHDL  of  DDH f , d, g, e<; ; HNnode , Nlink LL  is:

(8)

PrH8x<L =
1
ÅÅÅÅÅÅ
Z

 Â
kœ 1

fk H8xi » Fi k = 1<L

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k » gHk,kL=1

QJxk >0N Â
k » eHi,kL=1

QJxk >0NF

äÂ
kœ 2

fk H8xi » Di k = 1< » 8xj » Dk j = 1<L

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k » gHk,kL=1

QJxk >0N Â
k » eHi,kL=1

QJxk >0NF

The  products  in  the  exponent  are  more  simply  expressed  in  terms  of  Boltzmann/Gibbs  distribution  energy
functions, where they just multiply the potential functions Vk = -log fk :
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(9)

E = „
kœ 1

Vk H8xi » Fi k = 1<L Â
k » gHk,kL=1

QJxk > 0N ‰
k » eHi,kL=1

QJxk > 0N

+„
kœ 2

Vk H8xi » Di k = 1< » 8xj » Dk j = 1<L Â
k » gHk,kL=1

QJxk > 0N ‰
k » eHi,kL=1

QHxk > 0N

We may equivalently reduce existence links to gating links as follows: constrain

eHi, kL = 1 ñ H" k : Fi k = 1Ó Di k = 1 fl g£ Hk, kL = 1L
which may be achieved by defining

g£ Hk, kL = gHk, kL Ó H$ i » eHi, kL Ô HFi k = 1 Ó Di k = 1LL.

In  this  way  we  extend  the  standard  expansion  map  of  Proposition  1  to  include  e  links:  Define   on
DDH8 f , d, g, e<; ; HNnode , Nlink LL  by  first  mapping  to  DDH8 f , d, g<; ; HNnode , Nlink LL  (using  the  identity
function  if  there  are  no  e  links),  and  then  by  the  previously  defined   to  DDH8 f , d<; ; HNnode , Nlink LL .   This
extends  Lemma  1  to  its  obvious  analog  for  DDH8 f , d, g, e<; ; HNnode , Nlink LL  and  is  a  step  towards  proving
Proposition 2(a) and (b) in Section 3.7 below.

3.4 Indexing links

One more significiant notational extension is required to express variable-structure system architectures
in which a  fixed amount of  network description  information controls  a variable number  of random variables  and
dependencies.  In  structured  applications  such  as  those  involving  time,  space,  or  other  architectural  regularities,
conventional  algebraic  notation  for  generative  models  expands  to  include subscripts,  indices,  or their  equivalent.
Here  we  incorporate  such  indices  as  part  of  the  formal  specification  and  semantics  of  Dependency  Diagrams.
Using index  nodes,  a fixed  amount of network  description  information  can specify  a variable number  of random
variables  and dependencies.  Index nodes are a  reformulation  and  extension  [1] of the  Plates notation  of [2].  The
key idea is that, whenever variables or functions could algebraically appear with subscripts indicating multiplicity,
a dependency  diagram has an “index  node”  with an “index link”  to the corresponding  variable or function node.
Figure  4  shows  the  replacement  of  repeated  random  variables,  with  or  without  interactions,  by  index  nodes  and
index links labelled “i” (iota).
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Figure 3:  Indexing nodes.  (a) An indexed set of random variables replaced by a variable node and an index node.
(b)  An  indexed  set  of  random  variables  and  their  directed  or  undirected  dependencies,  replaced  by  two  indexed

random variables and their directed or undirected dependence.

In the  absence of gating,  we may express  indexing with i  (iota) links most  simply using sparse matrices (also
denoted by iota) as follows:

iHi, aL œ 80, 1<, iHk, aL œ 80, 1<
where implicitly we constrained  i  to index the variable nodes xi , a  to index the index nodes aa , and k to index

the probability  factor nodes fi .   Of course,  the symbols  a, i , and  k are not  (necessarily)  themselves  index nodes
but rather meta-indices  in the mathematical  language we are using to describe dependency diagrams.  Indeed, by
augmenting the metaindex i  of random variable xi with an ordered set of indices Haa L  that index xi  as specified by
iHi, aL = 1, we obtain the indexed random variable xi,Haa »iHi,aL=1L .  A particular example would be x5,Ha1 ,a3 L  or, even
more specifically, “gradeHstudent, courseL ”.

The semantics of index nodes and links are given, under the restrictive assumption of a single level of
indexing  in  DD(d,i),  by  the  following  probability  density  formula.   Define  JHkL  to  be  the  ordered  set
Ham » iHk, mL = 1L , and likewise define JHiL = Haa » iHi, aL = 1L  and JH jL = Hab » iH j, bL = 1L .  Then the value of Y  is

(10)
PrH8x<L = 1ÅÅÅÅÅZ  ¤8aa œ a < ¤kœ 1

fk, JHkL H8xi, JHiL » Fi k = 1<L
ä ¤kœ 2

fk, JHkL H8xi, JHiL » Di k = 1< » 8xj, JH jL » Dk j = 1<L

Note  that  all  products  over  indices  act  within  the  same  global  scope  -  there  is  no  nesting  of  parenthisized
subproducts  over  indices.   This  is  only  the  simplest  situation.   In  general,  index  nodes  introduce  the  need  for  a
compatible  tree  of  index  scope  nodes  (with  an  implicit  root  node  for  the  whole  diagram)  that  determines  which
probability factors are within scope for which index products.
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Already this notation generalizes Plates in the following ways: (a)  Flexible weight sharing is possible:
there is no longer a constraint  that if two variables are connected  by a dependency  link, and both are indexed by
the  same  index  aa ,  that  their  interaction  factor  is  always  (or  is  always  not)  similarly  indexed.   The  degree  of
weight  sharing  is  specified  flexibly  by iHi, aL œ 80, 1< and iHk, aL œ 80, 1< .  (b)  There  is  no longer  a  constraint  that
all nodes indexed by a common index node must be arranged “inside”  a compact  grouping in a two dimensional
layout.  When these groupings have partial overlap, the problem of drawing such a layout becomes that of drawing
Venn diagrams with many independent sets.

The following  generalizations  of  the  foregoing  indexing  mechanism  can  be  added,  go  further  beyond
Plates,  and  are  straightforward  to  express  in  terms  of  more  general  probability  formulas:  (a)  multiple  levels  of
indexing  (subscripts  on  the  subscripts,  in a  DAG of  iota-relationships);  (b)  combination  of  indexing with  gating
links  “g” and  therefore  with existence  links  “e”; (c)  numerical  index  constraint  links di ,  enforced by  Kronecker
delta  function  factors;  (d)  reordering  the  indices  of  some  variable  and  factor  nodes  (from  the  default  numerical
order)  to  express multidimensional  transpose operations;  (e)  constraints  du  (expanded  into probability  factors  fk

using Kronecker and Dirac  delta functions)  relating random variable values to index values and/or to each other;
(f) ièHk, aL œ 80, 1<  relationships  that allow an indexed set of variables as arguments  to a single probability  factor;
(g) upper index limits l  that can be variable rather than constant as assumed so far.  In the proof of Proposition 2,
below, we will only need (a), (b), and (c) above.

For example, valid indexing and gating (i and g)  links can be combined (as required by generalization
(b)  above)  by  the  following  formula.   Again  define  JHkL  to  be  the  ordered  set  of  index  symbols
JHkL = Ham » iHk, mL = 1L , and define JHiL = Haa » iHi, aL = 1L , and so on. Then Y  is

(11)

PrH8x<L =
1
ÅÅÅÅÅÅ
Z

 Â
8aa œ a <

i

k

jjjjjjjjjjjjj
Â
kœ 1

fk, JHkL H8xi, JHiL » Fi k = 1<L

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k » gHk,kL=1

Qi
k
jjx

k, JJkN>0y
{
zz Â

k » eHi,kL=1

Qi
k
jjx

k, JJkN>0y
{
zz
É

Ö
ÑÑÑÑÑÑÑ
y

{

zzzzzzzzzzzzz

ä

i

k

jjjjjjjjjjjjj
Â
kœ 2

fk, JHkL H8xi, JHiL » Di k = 1< » 8xj, JH jL » Dk j = 1<L

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k » gHk,kL=1

Qi
k
jjx

k, JJkN>0y
{
zz Â

k » eHi,kL=1

Qi
k
jjx

k, JJkN>0y
{
zz
É

Ö
ÑÑÑÑÑÑÑ
y

{

zzzzzzzzzzzzz

For multiple levels of indexing (as required by generalization (a) above), we have a more complicated formula
for the PDF.  Since iHa, bL  is a DAG, we may self-consistently define the ordered sets of symbols

JHiL = Haa, JHaL » iHi, aL = 1L
JHkL = Haa, JHaL » iHk, aL = 1L
JHaL = Hab, JHbL » iHa, bL = 1L

This generalizes the foregoing single-level definition in which JHaL  was null, and allows for arbitrary levels of
indexing in a DAG.  If (without loss of generality) a  is numbered in an order compatible with the iHa, bL  DAG,
so that iHa, bL = 1 fl a > bL , then a < b fl a b b fl Ÿ iHa, bL . Then Y  is
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(12)

PrH8x<L = 1ÅÅÅÅÅZ  ‰
:a1 >

‰
8a2,J H2L <

.. Â
8aa,J HaL <

... Â
8aA,JHAL <

ä

i

k

jjjjjjjjjjjjj
Â

kœ 1

fk, JHkL H8xi, JHiL » Fi k = 1<L

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k » gHk,kL=1

Qi
k
jjx

k, JJkN>0y
{
zz Â

k » eHi,kL=1

Qi
k
jjx

k, JJkN>0y
{
zz
É

Ö
ÑÑÑÑÑÑÑ
y

{

zzzzzzzzzzzzz

ä

i

k

jjjjjjjjjjjjj
Â

kœ 2

fk, JHkL H8xi, JHiL » Di k = 1< » 8xj, JH jL » Dk j = 1<L

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k » gHk,kL=1

Qi
k
jjx

k, JJkN>0y
{
zz Â

k » eHi,kL=1

Qi
k
jjx

k, JJkN>0y
{
zz
É

Ö
ÑÑÑÑÑÑÑ

The other successive generalizations (c-g) have similar general formulae which grow larger, typographically.

A second class of index link generalizations is best combined with the idea of “scope” for products over
index  variables.   We  introduce   (h)  a  tree  or  forest  of  index  scope  nodes  and  links  sH8a, k, i, c£ <, cL œ 80, 1< ,
whose leaves are index, factor, or variable nodes.  Here c  and c£  index scope nodes. These s = 1 links determine
the  placement  of  parentheses  in  the  repeated  products  over  probability  factors.   Indexing  relationships  i  must
“respect”  i.e.  stay  within  the  scope  s  of  the  source  index  node,  recursively  defined.  By default  there  is a  single
global  scope.  Unlike  Plates,  scopes  may  not  overlap  except  by  nesting  since  they  represent  a  parse  tree  of  the
algebraic  expression  for  the  probability  density.   There  is  also  a  generalization  to  (i)  pure  index  constraints  di

(here,  0/1-valued  gating  exponents)  that  obligatorily  relate  index  node  values  within  any  scope  including  the
global one.  These index constraint links are expanded (transformed away) by gating all interactions in the small-
est common scope of the indices involved.  Given this generalization,  (j) repeated index nodes of the same name
(e.g.  i  and  i )  are  defined  as  different  indices  (e.g.  1 i  and  2 i )  having  Kronecker  delta  function  constraints
(numerical identity)  between them.  Finally (k) argument indexing ièHk, aL within a scope means that factor fk has
its  own  bound  or  dummy  variable  ba  for  index  a  and  does  not  appear  within  the  product  scope  of  aa  if  any.
Therefore all aa -indexed components of an argument x  to fk  are jointly arguments to the same instantiation of the
function fk .

In  the  simplest  case,  and  also  in  all  the  above  generalizations  of  indexing,  there  is  once  again  a
“standard expansion” map  that maps indexed diagrams to nonindexed ones of potentially much greater size.  To
evaluate , simply replace each node xi  with a large number of nodes xi,JHiL , and each factor node fk  with a large
number of factor nodes fk,JHkL , connected as indicated in the probability density formula for Y.

The  new  link  types  defined  by  the  expansion  map,  and  the  link  types  in  terms  of  which  they  are
defined, are summarized in Table 2.
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Table 2. Dependency Diagram link types: definitional dependencies (itself a DAG)

Link type Symbol Definable in terms of ...


factor dependency f stat mech, axiomatic, or d

unconditional dependency u f, stat mech, or axiomatic

directed (conditional) dependency d u, or axiomatic


gated interaction g (f, d)

node existence e g
constraint on random variables du (u, dKronecker , dDirac L
identity of variable node names repetition du


index i repetitive expansion

scope s i
constraint on indices di (i, g {, s})

identity of index node names repetition  di
argument indexing iè i {, s}, repetitive expansion


time delay (f | d)dt (i,(f | d), di )

variable index limit l e
value type v (du , i)
permutable indexing is repetitive expansion

Example  Constrained  and  multilevel  indexing  is  illustrated  in  the  following  diagram  fragment.   It
contains no probability factors but hierarchically indexes a single random variable xl, Hi1 , ... ik , ... il L .

Figure 4: Random variable node x  (circle) indexed by (squares) level number l , lineage indices ik , where k  is
constrained to be b l  (hexagon). 

Diagrams can be drawn more simply by omitting selected link labels according to the default link type conven-
tions proposed and  listed in Table 3.
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Table 3. Default arrow types as a function of node types

Source node type Target node type Arrow D Ø /U — Default link type Other link types


probability factor random variable D Ø f,  factor 
dependency

d, d

random variable random variable U —
u, unconditional
dependency du

random variable probability factor D Ø d,  directed condi-
tional dependency

e, g

random variable random variable D Ø d,  directed condi-
tional dependency

-

index random variable D Ø i,  index is

index index D Ø i,  index -

index constraint index U — di ,   index constraint -

random variable index D Ø l -

scope index, scope D Ø s, scope -

With  these  node  and  link  types,  translation  to  and  from  Boltzmann  distribution  and  related  architectures  is
possible.

Example: A single-level clustering model can be modeled as a mixture of Gaussians (Figure 5).
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Figure 5:  Dependency diagram for  a mixture of Gaussians GHx; y, sL = GHHx - yL ê sL (hexagonal  probability factor
node at top) with unique cluster membership constraint (hexagonal node at bottom). Unlabelled links are of default
type  “i”  or  “s”  (cf.  Table  3).  Cluster  membership  indicator  variables  are  Mi a ;  data  vectors  are  xi  (circles);  fixed
cluster  centers  are  ya ;  fixed  standard  deviations  are  sa  (double  circles).   Cluster  index  a is  in  the  global  scope,
which encloses a smaller scope containing data vector index i  (squares).  Scope node (unlabelled tube) nests scope

of G  inside the scope of i  which is global.

Including  the global  scope as outer parentheses  and the indicated scope  node as inner parentheses,  the seman-
tics YHDL  for this diagram is is

i

k

jjjjjjjjÂ
i=1

imax

d
i

k
jjjjj‚

a=1

amax

Mi a - 1
y

{
zzzzz 
i

k
jjjjj‰

a=1

amax

GHxi - ya » sa LMi a
y

{
zzzzz
y

{

zzzzzzzz

Example: There exists a diagram for 2D region segmentation with pixel index nodes and neighborhood
index  constraints.  xi j  is  the  reconstructed  pixed  values;  li j

Hx»yL  is  the  0/1-valued  discontinuity  detection  indicator
variables.   The  diagram  uses  gating  (by  l )  and  index  constraints  (on  i£ = i + 1 ,  j£ = j + 1).  For  example,  the
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Boltzmann energy summand for gated continuity in the x  direction is E = ‚
i j

li j
HxL Hxi j - xi+1 j L

2
.  The  2D region

segmentation energy function [17] is:

E = ‚
i j

lx i j Hxi j - xi+1 j L2 + ‚
i j

lx i j  lx i j+1 + ‚
i j

ly i j Hxi j - xi j+1 L2 + ‚
i j

ly i j  ly i+1 j + ‚
i j

Hxi j - Ii j L2

= ‚
i j i£ j£

di£ , i+1  d j£ , j+1 Alx i j Hxi j - xi£ j L2 + lx i j  lx i j£ + ly i j Hxi j - xi j£ L2 + ly i j  ly i£ j + Hxi j - Ii j L2E

and the diagram is:

Figure 6: Dependency  diagram  for  region  segmentation  energy  function.   Unlabelled  links  are  of  default  type “u”
(cf. Table 3).

3.4.1 Textual encoding of diagrams

A  textual  encoding  of  the  foregoing  dependency  diagrams  can  be  given  by  use  of  mapping  arrows  such  as
"y #d x"  to  indicate  that  y  maps  (perhaps  nonuniquely)  to  x  under  the directed  d  relationship,  and  "y ¨u x" to
indicate an undirected arrow of type u .  Thus Figure 5 can be represented textually in this way:

random variables : x, M , yêê, sêêê

factors : G, S; indices : a, i; scopes : s
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y #d G, s #d G, M #g G, G #d x , S #d M

a #i y, a #i s, i #i x, a #i M, i #i M , a #iè S,
i #s s, s #s a, s #s G

and likewise for Figure 6.

3.5 Useful derived node and link types

3.5.1 Constraint links  for random variables

Arbitrary  constraints  with  multiple  levels  of  indexing  are  possible  in  diagrams  of  the  form
DDHHu, d, i, dLL , using both Dirac and Kronecker delta functions  for continuous and discrete valued variables and
indices respectively.  The semantics are:

PrH8x<L = 1ÅÅÅÅÅZ  ‰
:a1 >

‰
;a

a=2,JJ2N ?
... Â

8aa,J HaL <
... ‰

8aA,JHAL <

ä ‰
kœ HdL

dIgk,JHkL I9aa,JHaL … HFè £ La,k = 1=, 9xi,JHkL » F
è

i,k = 1=MM

ä ¤kœ 1
fk,JHkL H8xi,JHiL » Fi k = 1<L ¤kœ 2

fk,JHkL H8xi,JHiL » Di k = 1< » 8xj,JH jL » Dk j = 1<L

This goes beyond function nodes [2] to encompass relation nodes, due to the presence of undirected d links as
specified by matrices F

è
 and F

è £
, and the functions gk .

Example:  dI⁄i=1
n+1 xi

2 - 1M is  a  rotationally  invariant  specification  of the  embedding  of  the n-sphere  into
n+1 .   Its  function  gk  is  ⁄i=1

n+1 xi
2 - 1.  This  constraint  is  unlike  a  functional  constraint  such  as

xn+1 = ≤"###############⁄i=1
n xi

2 as would be required by function nodes as defined in [2].

Inverse images y = gHxL = 0 can be used to define embeddings of many smooth manifolds into d .  The
regular  value  theorem  [18]  provides  conditions  on  g  under  which  g-1 Hy = 0L  is  a  submanifold  of  the  manifold
containing  x .   This  is  also  a  key  idea  in  level  set  methods.  Here g  is  a  smooth  function  taking  values  in d  or
possibly  in  another  manifold,  itself  defined  by  an  inverse.   According  to  the  Whitney  embedding  theorem  [18],
every  compact  n -dimensional  manifold  with  Cr differentiable  structure  (r r 2)  can  be  Cr (r-times  differentiably)
embedded into 2 n+1 .  Often, but not always, these embeddings can be defined as inverse images of Cr  functions.
For  these  reasons,  Dirac  delta  functions  composed  with  smooth  functions  dHgk HxLL  on  d  can  be  expected  to
provide  a  powerful  way  to  express  probability  distributions  on  manifolds.  We  can  then  add  manifold-valued
variables to the DD notation using “v” links (cf. Table 2) and a manifold description language, and define them in
terms of constraint links.
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3.5.2 Repeated nodes

Nodes  repeated  in  a  diagram  can  be  distinguished  textually  by  different  pre-indices  (e.g.  1 xi  vs.  2 xi )  but  are
constrained to be numerically equal.  Expression involving them are standardly expanded by inserting the appropri-
ate Dirac or Kronecker delta functions into the product of probability factors .  It is important to repeat nodes e.g.
in  order  to  instantiate  them  with  different  index  symbols  in  different  probability  factors  and/or  scopes,  without
giving them an unintended Cartesian product structure.

3.5.3 Time delay links

Time  delay  links  (defined  in  terms  of  indexing,  gating,  and  constraint  links)  can  be  defined  by  the
following expansion.

dt : Hxj #d d t xi L # H xj #d xi Ô t #i xj Ô t£ #i xi Ô t ¨d Ht£ -Ht+D tLL t£ L;
dt : Hxj #u d t xi L # H xj ¨u xi Ô t #i xj Ô t£ #i xi Ô t ¨d Ht£ -Ht+D tLL t£ L

For example, a dynamical  chain graph version of a Markov Random Field (which generalizes Dynamic Bayes
Nets [19]) is given by the diagram:

8xj t ¨u xi t » j ¨U i< ‹ 8xi t #d xi t+D t <

for which the expansion is:

B:xj ¨u xi À IU UT M
i j

= 1> ‹ 8xj #d d t xi » Di j = 1LF =

:xj t ¨u xi t À IU UT M
i j

= 1> ‹ 8xj t #d xi t+D t » Di j = 1<

The  Dependency  Diagram  can  be  drawn  compactly  (as  a  meta-diagram)  using  index  links  in  this  way,  and
using  repeated  nodes  as  defined  above  in  Section  3.5.2.   The  diagram  is  drawn  in  Figure  7  for  which  a  textual
representation is:

9 j #i
H1L x , i #i

H2L  x , i #i
H3L  x , H1L x ¨d or u

H2L x, j #dHD or U=1L i , t #i
H1L x, H2L xi #d t

H3L xi =
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Figure 7:  A  dynamic  version  of  a  Markov  Random  Field.   This  is  a  “metadiagram”;  a  particular  dependency
diagram is found by expanding out the D or U matrix and the i  and j  (but not t ) indices.

3.5.4 Subdiagrams

Another architectural  element  easily  defined in DD notation  is groups of nodes of any type, for  which
we allow some kinds of connections to or from a group to expand automatically into connections to all appropriate
group members.  This can be achieved by extending the use of scope nodes and links. For example, an index link
from  an  index  node  to  an entire  scope  would  expand  to  a  set  of  index  links  from the  index  node  to  all  random
variable nodes in the scope.  By not also indexing the probability factor nodes, we add a level of weight sharing to
such an architecture.
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3.5.5 Dependency Diagram Type Notation

A  systematic  naming  convention  for  many  classes   of   “Dependency  Diagram”  was  introduced  in
Section 3.1. It allows a class of diagrams to be specified by describing a list  of allowed types and label informa-
tion, and a list  of constraints on the graphs, and including all graphs that obey the resulting constraints.  Thus we
write “DD(list  of allowed compatible link types;  allowed value spaces or base types  for variables, optional  func-
tion  spaces  for  probability  factors,  optional  diagram  size  parameters)”.  Then  (depending  on  somewhat  arbitrary
definitions and omitting unconstrained fields) BN = DD( d, ); Directed Probabilistic  Independence Networks  =
DPIN  =  DD( d, H , L)  ;  Undirected  Probabilistic  Independence  Networks  =  UPIN  = DDHu, 8 , <L ;  PDD  =
factor  graphs  = DDH8d, f <, 8 , <L ;  DDH8d, i<, 8 , <)  =  IPDD  (Indexed  Probability  Dependency  Diagrams);
DDH8i, d<, 8 , <L=  ICDD  (Indexed  Constrained  Dependency  Diagrams  with  no  probability  factors,  for  use  in
constraint systems), and so on.  Further parameterization of DD can specify the function space  for the probabil-
ity factors associated for example with directed or undirected links DDH8 f , u, d<, , 8 , <L , and can parametri-
cally  limit  the  maximum  numbers  of  nodes  and  links  in  each  diagram,  for  example  as  in
DDH8 f , u, d<, , 8 , <, HNrandom variables , Ndependency links LL , which will allow reductions to be stated including their
costs.  In this regard, index nodes and links require the introduction of a new set of parameters: in addition to the
maximal  number  of  variable  nodes  nodes  Nrv  or  probability  dependency   links  Nlinks  in  the  actual  diagram  at
hand, there may also be a limit on the number of random variable nodes N

`
rv  or  dependency links N

`
links  that are

obtained after the expansion mapping  replicates the indexed random variables - these characterize the size of the
expanded graph with indices removed.  We may add another set of parameters to the DD notation for this purpose:
DDI8 f , u, d<, , 8 , <, HNrv , Nlinks L, IN` rv , N

`
links MM  .

3.6 Example: Feature Tree

Example: Consider the resource-limited context-free feature tree Hq, f, Nactive L , which may be used for
hierarchical clustering or to model cell lineage.  It is an irregular cluster tree of arbitrary depth, with a maximum
number  of  tree  nodes  Nactive = Lmax .  Use  index  set  L  isomorphic  to  the  bounded  strings
8Hi1 , i2 , ... ilbL L » il œ 80, ... , bmax - 1< = bmax <  (for example bmax = 2  or bmax = Nactive ).  The diagram is:

(13)

" l œ 81, ... L< " p œ 81, ... l< : indexing relationships
l #i h, ip #i hl œ 2 , l #i y, ip #i yl œ , l #i N, ip #i Nl œ ,

l #i n, ip #i nl œ , l #i s œ

" l œ 81, ... L< : node existence relationships
hl #e yl , hl #e Nl

" l œ 81, ... L - 1< : dependency relationships

hl #d hl+1 , yl #d yl+1 , Nl #d Nl+1 , sêêê
l #d yl+1 ,

as well as Nl=0 = Nactive

with
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(14)

fy y h Hyl+1, Hi1 ... il+1 L » yl, Hi1 ... il L , hl+1, Hi1 ... il+1 L , sêêê
l L = GaussianHyl,Hi1 ... il+1 L ; yl,Hi1 ... il+1 L , sêêê

l L hl+1, Hi1 ... il+1 L

fh N Hhl,Hi1 ... il L » Nl,Hi1  ∫ il L L = QHhl,Hi1 ... il L = 0 ñ Nl,Hi1 ... il L = 0L
fn N Hnl,Hi1  ∫ il L » Nl,Hi1  ∫ il L , hl,Hi1 ... il L L = rHnl,Hi1  ∫ il L » Nl,Hi1  ∫ il L L

fN N h n HNl+1, Hi1 ... il+1 L » Nl,Hi1 ... il L , hl,Hi1 ... il L , nl,Hi1 ... il L L = QH8Nl+1,Hi1  ∫ il+1 L < » Nl,Hi1  ∫ il L - hl,Hi1 ... il L , nl,Hi1 ... il L L

Here  Q  and  r are  defined  in  terms  of  q  as  in  Section  2.3,  particularly  Equation  3.  The  second  distribution
includes the constraint that enforces quiescence inheritance down the index hierarchy, via the Q term (which is 1 if
its predicate argument is true and 0 otherwise) and since the equation for Q includes the factor

d
i

k
jjjjjNl, Hi1 ... il L -

i

k
jjjjjhl, Hi1 ... il L + ‚

k=1

imax

Nl+1,Hi1  ∫ il kL
y

{
zzzzz
y

{
zzzzz .

This  factor implies that h b N , consistent  with hl,Hi1 ... il L = 0 ñ Nl,Hi1 ... il L = 0.  Also recall  that rHn » 0L = dn 0 , so
that Nl,Hi1  ∫ il L = 0 fl nl,Hi1 ... il L = 0. This system is sparsely active, since

Nnode = oI bmax
L M and Nactive § L imply

Nactive ` Hbmax LNactive § Hbmax LL § HconstantL Nnode .

Figure 8 illustrates the dependency diagram (but the actual diagram is a mathematical object).

Vbl-StructTRV7A.nb

27



Figure 8: DD for resource-bounded  context-free  feature tree.  Unlabelled links are of default type “i” (cf. Table 3).
Alternatively, Q  could be replaced with a product of R  factors (Equation 4).

This diagram D can be mechanically translated into a probability density formula as follows:

YHDL = Â
l=1

L

Â
l£ =1

L i

k

jjjjjjjjjj
Â
1 i1 =1

imax

∫ Â
1 il =1

imax

Â
2 i1 =1

imax

∫ ‰
2 il£ =1

imax

IXl,I1 i1  ∫ 1 il M,l£ ,I2 i1  ∫ 2 il£ M M
¤p» 1bp Ôpbl Ôpbl£ dI1 ip -2 ip M

y

{

zzzzzzzzzz

dHl£ -Hl+1LL

where

Xl, Hi1 ... il L ,l£ ,H j1  ∫ jl£ L = @GHyl£ ,H j1  ∫ jl£ L » yl,Hi1  ∫ il L , sl,Hi1  ∫ il L LDhl£ ,Hi1  ∫ il+1 L  
QH8Nl,H j1  ∫ jl£ L < » Nl£ ,Hi1  ∫ il L - hl, Hi1 ... il L L QHhl,Hi1 ... il L = 0 ñ Nl,Hi1 ... il L = 0L rHnl£ ,Hi1  ∫ il L » Nl£ ,Hi1  ∫ il L L

Hand calculation simplifies this to

Vbl-StructTRV7A.nb

28



(15)
YHDL = ‰

l=1

L

‰
8ip œ81..imax <» pœ81..l+1<<

@GHyl+1, Hi1 ... il+1 L » yl, Hi1 ... il L , sl LDhl+1, Hi1 ... il+1 L

QH8Nl+1, Hi1 ... il+1 L < » Nl, Hi1 ... il L - hl, Hi1 ... il L L QHhl,Hi1 ... il L = 0 ñ Nl,Hi1 ... il L = 0L rHnl, Hi1 ... il L » Nl, Hi1 ... il L L

which,  if  L r Nmax ,  is  the  solution  to  the  recursion  relation  for  the  full  probability  density  of  the  resource-
bounded context-free cluster tree.

3.7 DDs for Variable-Structure Graphical Models

Combining  Lemma 1 with the conclusions  of Section 3.3 (defining e links), Section 3.4 (i indexing links), and
Section 3.6 (context-free feature tree), we deduce the following Proposition:

Proposition  2.   There  exists  a  semantic  function  Y  from  DDH8 f , d, i, g, e, di<, , HNnode , Nlink LL to
H , Nnode L  (probability density functions on N  variables) such that:

(a)  Y  specializes  to  FG’s,  MRF’s  and  BN’s,  i.e.  it  agrees  with  the  standard
Yfg : DDH8 f , d<, , HNnode , Nlink LL Ø H , Nnode L  when restricted to diagrams with only f and d links.  Evaluated
on such diagrams, Y = Yfg  .

(b)  There  exists  a  “standard  expansion”  map   which  reduces  DDH8 f , d, i, g, e, di<, , HNnode , Nlink LL  to
DDI8 f , d<, , INè node , N

è
link MM , such  that on the domain DDH8 f , d, i, g, e, di<, , HNnode , Nlink LL , Y = Yfg Î .

(c) There exists a diagram D , of constant size NDD  as a function of Ntree , for which YHDL  is the distribution of
the resource-limited context-free cluster tree Hq, f, Ntree L .

Note that (b) implies that the following diagram commutes:
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3.8 Alternative reductions for sparse activation

3.8.1 New complexity measures for sparse activation

A  fundamental  change  in  expressive  power  comes  from  considering  classes  of
DDH8 f , d, g, i, d , e<, ... , HNrv vertex , Ninteraction vertex , N f link , Nd link , Nactive vbl , Nactive interaction LL  networks  parame-
terized by a bound Nactive interaction  on the number of f or d  interactions that can be gated “on” in any configuration
that satisfies the constraints, and by Nactive vbl  = a bound on the number of active random variables, ie. the number
of  random  variables  not  gated  out  of  existence  by  e  links  in  any  valid  state,  in  addition  to  the  usual  bounds  on
number of random variables Nrv vertex  and dependency links of  various types HNinteraction vertex , Nf link , Nd link L .  The
gating  interactions  g  and  e  can  be  eliminated  in  favor  of  general  f  and  d  dependency  interactions  using  the
expansion  map   of  Lemma  1,  which  leaves  Nrv vertex , Ninteraction vbl , Nf link , Nd link  essentially  unchanged  and
takes  no  advantage  of  the  sparse  activation  of  variables  Nactive vbl ` Nrv vertex  or  interactions
Nactive interaction ` Ninteraction vertex .  However,  for at least  some probabilistic model classes with sparse interaction
activation, we will show in Proposition 3 below that there exist much deeper reductions than the expansion map ,
so that:

Œ YHDDH8 f , d, d< , ... , HNrv vertex , Ninteraction vertex , Nf link , Nd link , Nactive vbl LLL
but also ~ £ Œ YIDDI8 f , d, d< , ..., HNè rv vertex , N

è
interaction vertex , N

è
f link , N

è
d link MMM

can be satisfied simultaneously with N
è

rv vertex ` Nrv vertex  , etc., by exploiting the constrained-in sparsity with a
nontrivial change of variables.  Here the size parameters N ’s are chosen so that each is minimal, given the others,
for model class  and for equivalent probabilistic models, under a certain change of variables, in model class £ .

3.8.2 Efficient Reduction

A change  of  variables  is  available  for  the  context-free  feature  tree.   It  follows  the  logic  for  changing
variables  in  Boltzmann  distributions  introduced  in  [12],  but  with  a  somewhat  simpler  result  in  the  present  case.
First consider the subset inclusion which simply adds to the above variables, the arbitrary mapping

M I; l, Hi1 ... il L œ 2

of  possible  parse  tree  nodes  to  unique  but  arbitrary  indices  I œ 81, ... Nactive node <which  act  as  memory
addresses.  Then there is no risk of contradiction in adding the unique assignment constraints

‚
I=1

Nactive node

M I ; l, Hi1 ... il L = hi1 ... il and ‚
l=1

L

‚
8i1 ... il <

M I; l, Hi1 ... il L ª zI b 1.

The  resulting  DD  for  8h, y, n, N, M<  can  be  nontrivially  mapped  to  another  one  with  exponentially  fewer
random variables 9z, z, m, N

`
, C=as follows.  Define:
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C I J s = ‚
l=1

L

‚
8i1 ... il <

M I; l,Hi1 ... il L  M J; l,Hi1 ... il  sL ,

zI = ‚
l=1

L

‚
8i1 ... il <

M I; l, Hi1 ... il L  yl, Hi1 ... il L , zI = ‚
l=1

L

‚
8i1 ... il <

M I; l, Hi1 ... il L  hl, Hi1 ... il L = ‚
l=1

L

‚
8i1 ... il <

M I; l, Hi1 ... il L ,

mI = ‚
l=1

L

‚
8i1 ... il <

M I; l, Hi1 ... il L  nl, Hi1 ... il L , N
`

I = ‚
l=1

L

‚
8i1 ... il <

M I; l, Hi1 ... il L  Nl, Hi1 ... il L .

The new constraints are

‚
I=1

Nactive node

C I J s b zJ , ‚
J=0

Nactive node

C I J s b zI , ‚
s=0

bmax

C I J s b zI  zJ .

zI = 0 fl ImI = 0 Ô N
`

I = 0M

The inverse mapping is given by

M I ; l, Hi1 ... il L = „
8I0 ... Il <

dHIl - IL ‰
l£ =1

l

C Il£ -1 Il£ il£ ,

yl, Hi1 ... il L = ‚
I=1

Nactive node

M I; l, Hi1 ... il L  zI , hl, Hi1 ... il L = ‚
I=1

Nactive node

M I; l, Hi1 ... il L  zI ,

nl, Hi1 ... il L = ‚
I=1

Nactive node

M I; l, Hi1 ... il L  mI , Nl, Hi1 ... il L = ‚
I=1

Nactive node

M I ; l, Hi1 ... il L  N
`

I

The actual probability distribution (from Equation 15) becomes under this change of variable:

YHDL = Â
l=1

L

Â
8ip œ81..imax <» pœ81..l+1<<

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
G

i

k
jjjjj‚

J

M J ; l+1, Hi1 ... il+1 L  zJ

ƒƒƒƒƒƒƒƒƒƒƒƒ
‚

I

M I; l, Hi1 ... il L  zI , sl

y

{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

⁄J M J; l+1, Hi1 ... il+1 L  zJ

Q
i

k
jjjjj
loom
n
oo‚

J

M J; l+1, Hi1 ... il+1 L  N
`

J

|oo}
~
oo

ƒƒƒƒƒƒƒƒƒƒƒƒ
‚

I

M I; l, Hi1 ... il L  N
`

I - ‚
I

M I; l, Hi1 ... il L  zI

y

{
zzzzz 

Q
i

k
jjjjj‚

I

M I; l, Hi1 ... il L  zI = 0 ñ ‚
I

M I; l, Hi1 ... il L  N
`

I = 0
y

{
zzzzz r

i

k
jjjjj‚

I

M I; l, Hi1 ... il L  mI

ƒƒƒƒƒƒƒƒƒƒƒƒ
‚

I

M I; l, Hi1 ... il L  N
`

I

y

{
zzzzz

We use the 0/1 values and row- and column-sum constraints on M  to simplify this expression.
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YHDL = Â
l=1

L

Â
8ip œ81..imax <» pœ81..l+1<<

Â
I

looom
n
ooo

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
G

i

k
jjjjj‚

J

M J; l+1, Hi1 ... il+1 L  zJ

ƒƒƒƒƒƒƒƒƒƒƒƒ
zI , sl

y

{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

M I; l, Hi1 ... il L  ⁄J M J; l+1, Hi1 ... il+1 L  zJ

ä Q
i

k
jjjjj
loom
n
oo‚

J

M J ; l+1, Hi1 ... il+1 L  N
`

J

|oo}
~
oo

ƒƒƒƒƒƒƒƒƒƒƒƒ
N
`

I - zI

y

{
zzzzz

M I ; l, Hi1 ... il L

ä QIzI = 0 ñ N
`

I = 0M
M I; l, Hi1 ... il L  rI mI » N

`
I M

M I; l, Hi1 ... il L
|ooo}
~
ooo

where  in  this  expression  we  define  00 = 1,  so  that  a  multiplicative  factor  of  zero that  does  not  enter  into  the
product (due to the zero exponent) doesn’t set the product to zero or otherwise affect it.  Continuing,

YHDL = Â
l=1

L

Â
8ip œ81..imax <» pœ81..l<<

Â
sœ81..imax <

Â
I

looom
n
ooo
i

k

jjjjjj ‰
8Js »1bsbmI <

@GH zJ » zI , sl LDM I; l, Hi1 ... il L  M Js ; l+1, Hi1 ... il ,sL  zJ

ä QI9N` Js » 1 b s b mI = … N
`

I - zI M
M I; l, Hi1 ... il L  ¤8Js »1bsbmI < M Js ; l+1, Hi1 ... il ,sL y

{

zzzzzz

ä QIzI = 0 ñ N
`

I = 0M
M I; l, Hi1 ... il L  rI mI » N

`
I M

M I; l, Hi1 ... il L
|ooo}
~
ooo

Now interchange the products over I  and over Hl, 8i<L  .  Because of the row and column sum constraints on M,
each Hl, 8i<L  index value combination corresponds to at most one I  or J  index value.  Thus

YHDL = Â
I

looom
n
ooo
i

k

jjjjjj ‰
sœ81..imax <

‰
8Js »1bsbmI <

@GH zJ » zI , sl LDC I J s  zJ QI9N` Js » 1 b s b mI = … N
`

I - zI M¤8Js »1bsbmI < C I J s
y

{

zzzzzz

ä QIzI = 0 ñ N
`

I = 0M
zI

 rI mI » N
`

I M
zI

|ooo}
~
ooo

Since there are constraints C I J s b zJ  and  zI = 0 fl ImI = 0 Ô N
`

I = 0M ,  and since rH0 » 0L = 1, this is equiva-
lent to

(16)

YHDL = Â
I

looom
n
ooo
i

k

jjjjjj ‰
sœ81..imax <

‰
8Js »1bsbmI <

@GH zJ » zI , sl LDC I J s QI9N` Js » 1 b s b mI = … N
`

I - zI M¤8Js »1bsbmI < C I J s
y

{

zzzzzz

ä QIzI = 0 ñ N
`

I = 0M rI mI » N
`

I M
|ooo}
~
ooo

This  probability  distribution,  together  with  the  constraints  on  HC, zL  and  IN` , zM ,  is  shown  in  the  dependency
diagram  of  Figure  9.   Note  that  the  constraint  zI = 0 fl mI = 0  needn’t  be  included  explicitly  since  it  follows
from zI = 0 fl N

`
I = 0 and rIm » N

`
= 0M = dm 0 .
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Figure 9: Efficient  dependency  diagram  for  resource-bounded  context-free  feature  tree.  Unlabelled  links  are  of
default type “i” (cf. Table 3). Apply the expansion map  of Lemma 1 to obtain same-sized diagram without gating
(g ).  Apply the full expansion map  of Proposition 2 to obtain a diagram with exponentially fewer nodes than that
obtained by applying   to the diagram of Figure 8, which denotes an equivalent probabilistic model.  Cf. Proposi-

tion 3.  Alternatively, Q  could be replaced with a product of R  factors (Equation 4).

This  change  of  variables  establishes  a  bijection  of  states  between  the  8y, h, n, N, M<  and  9z, z, m, N
`

, C= sys-
tems,  preserving  probabilities  and  conditional  probabilities.  Hence  it  is  a  reduction.   It  also   establishes  also  a
reduction  from  8y, h, n, N< to  9z, z, m, N

`
, C= ,  but  in  principle  we  also  must  multiply  by  the  entropy  term

expISIm, N
` MM = expHSHn, NLLMwhich  counts  the  number  of  equivalent  configurations  of  the  M  variables  .   In  this

particular  case,  the  equivalent  configurations  of  M are  just  parameterized  by  permutations  that  reassign  N0  tree
nodes to Imax r N0  memory locations, of which there are HImax LN0

= HImax L! ê HImax - N0 L !  , which is a constant and
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hence gets normalized out of any probabilities.  Thus, for this particular problem, there is no entropy effect to take
into account in computing the probabilities in the new 9z, z, m, N

`
, C=  variables.

In this way, we establish a bidirectional mapping or equivalence between probabilistic model classes  and £ .

Thus we have established (see Section 3.5.5 for DD notation)

Proposition 3.  There exists a nonempty model class  , including the context free cluster tree HN, q, fL , and
a class of equivalent probabilistic models £ , for which

Œ YHDDH8 f , d, g, i, d, e <, ..., const, Nrv LL Œ YHDDH8 f , d, d <, ... , Nrv LLÔ ç YHDDH8 f , d, g, i, d, e <, ... , const, Nrv - 1LL Œ YHDDH8 f , d, d <, ..., Nrv - 1LL
Ô ~ £ Œ YIDDI8 f , d, g, i, d <, ..., const, N

è
rv MM Œ YIDDI8 f , d, d< , ..., N

è
rv MM

with Nrv , which is minimal for class , such that  Nrv = OH2N L  and N
è

rv = OHN2 L = OIlogHNrv L2 M .

This proposition provides evidence that the sparse activation networks that can be defined with g, i, d
links are essentially different  from other network  classes.   Such links can be eliminated uniformly,  or efficiently,
but so far not both uniformly and efficiently.

3.9 Variable-Structure System Examples

Object  Representation.  With  these  diagrammatic  notations  it  is  straightforward  to  express  novel  network
architectures  and  structures  [1]  for  networks  of  “objects”  with  contingent  existence,  variable  interrelationships,
and a schema of types such as those of [12] or [3]; see also [4].  The basic idea is to use one index (e.g. i  or j ) to
describe  instances  of  an  object  of  a  given  type  and  their  relationships  as  determined  by  a  sparse  matrix
Gi j œ 80, 1< .  A  second  index  (e.g.  a  or  b )  is  the  internal  index  for  a  vector  of  parameters  describing  an  object;
these variables interact  (or  not)  between G -related instance  according to another matrix ga b œ 80, 1< .  If there are
many  types  of  objects,  it  takes  a  third  kind  of  index  (a  or  b)  to  index  the  type  and  there  is  a  “schema”
Sasb = INAasb œ 80, 1<  whereby  an  object  of type b  may occupy  slot s  of  an object  of type a.   Two individual
real-valued variables x  and y  will interact only if all three interaction conditions are satisfied. All three matrices g,
G, and S gate the interaction.   Ignoring for a moment the schema index, and making explicit  the internal index a
or b , Figure 10 shows the resulting DD.
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Figure 10: Diagram for gating of interaction by both object instance relationships, G, and internal object attribute relationships, g.

Subdiagrams can be used to encapsulate parameter vector (a,b) structure, instance replication (i,j) structure, and
instance relatedness (G) structure, in the dependency diagram for objects containing attribute variables x. In Figure
11, subdiagrams are outlined by triangles and labelled with object type labels (a and b) . The basic object  of type
a,  with  attribute  vectors  x  whose  components  are  indexed  by  a,  can  be  drawn  as  a  “frame  instance”  in  a  very
simple semantic  network by using the new object node (here denoted with a triangular shape) to group x , a , and
a .  This diagram is consistent with the previous notation for Frameville networks [Anandan et al. 1989; Mjolsness
1997] governed by Boltzmann energy functions, except that we have so far omitted “class” composition informa-
tion whereby an object of class a can contain objects of class b via compositional “ina” links, and also the subtype
“ISA”  relationships  between  object  classes.   The  compositional  structure  is  restored  by  the  Frameville  energy
function  (and corresponding  Boltzmann  distribution)  shown below in  algebraic  and  diagrammatic  form,  supress-
ing the internal vector indices a and b.
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EHA, xL = HIx0 M + ‚
l=1

L

‚
asb

‚
i j

INAa s b inai s j
l Ma i

l-1  Mb j
l AH Ha s bL Ixj

l , xi
l-1 , uHa s bL M - mHs bL E
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4 Semantics for Dynamical Grammars

Context-sensitive stochastic  parameterized  grammars are a substantial  generalization  from context-free
ones.   Here  we provide  the  general  formalism  in both  continuous  and  discrete  time execution  models,  relate  the
two, and show they specialize trivially to the context-free cluster tree.

This same type of composition is the essential idea for the composition of stochastic processes represent-
ing chemical reaction networks: take the union of all chemical reaction nodes and links in two networks, identify-
ing reactant nodes that “mean” the same thing in the two different networks, to get a new reaction/reactant graph.
The  same  composition  method  works  for   stochastic  parameterized  grammars  that  generalize  chemical  reaction
networks.

Unlike  Dependency  Diagrams,  parameterized  Dynamical  Grammars  are  intrinsically  dynamical  and
variable-structure  models.  One way to unify  the two  concepts  is to formulate  Dynamical  Grammars  whose rules
each  have  a  local  conditional  probability  density  given  by  a  Dependency  Diagram.  In  this  way we  include  both
Boltzmann distributions [4] and, in the limit DtØ0, differential equation systems [20-21] as elementary dynamical
systems underlying each grammar rule.

4.1 Syntax for stochastic parameterized grammars

The grammar syntax

(17)8t j Hxj L< Ø 8ti Hxi
£ L< with rr  PrH8xi

£ < » 8xj <L

is a generalization of chemical reaction network syntax

9mi
HrL  Ai = ö

kHrL

9ni
HrL  Ai=

where parameters x, x£  have been added and explicit stoichiometries m, n  removed.

4.2 Operator algebra semantics for discrete-event, continuous-time rules

Given a continuous-time stochastic parameterized grammar rule (rule number r) of the form

(18)8t j Hxj L< Ø 8ti Hxi
£ L< with rr  PrH8xi

£ < » 8xj <L ,

we can write a generator for the transition probability rate of this rule.  (Note that the term numberings i and j
are arbitrary, so long as different terms get different index numbers.)  A generator is an operator that advances the
state  of  a  system by  an  infinitiesimal  amount,  here  an  amount  of  time  in  a  dynamical  system.  For  non-negative
integer  valued  variables  we  can  create  suitable  generators  if  we  first  define  the  basic  “creation  operator”  à  and
“annihilation operator” a :
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(19)à =

i

k

jjjjjjjjjjjjjjjjjj

0 0 0 0 ∫

1 0 0 0
0 1 0 0
0 0 1 0

ª ∏ ∏

y

{

zzzzzzzzzzzzzzzzzz

= dn,m+1 and a =

i

k

jjjjjjjjjjjjjjjjjj

0 1 0 0 ∫

0 0 2 0
0 0 0 3
0 0 0 0 ∏

ª ∏

y

{

zzzzzzzzzzzzzzzzzz

= m dn+1,m ,

which have an algebra defined by the “commutator” @a, àDn m ª Ha  à - à a Ln m = dn,m , i.e.

(20)@a, àD ª Ha à - à a L = I =

i

k

jjjjjjjjjjjjjjjjjj

1 0 0 0 ∫

0 1 0 0
0 0 1 0
0 0 0 1

ª ∏

y

{

zzzzzzzzzzzzzzzzzz

; à a = Na ª

i

k

jjjjjjjjjjjjjjjjjj

0 0 0 0 ∫

0 1 0 0
0 0 2 0
0 0 0 3

ª ∏

y

{

zzzzzzzzzzzzzzzzzz

.

This  is  a  statistical  rather  than  the  usual  quantum  representation  of  the  Heisenberg  algebra  @a, àD = I ,  which
has  no  finite-dimensional  representations.   (Nevertheless,  we will  see  that  conserved  or  nonincreasing  resources
can be introduced to ensure that only a finite number of dimensions ever receive  a nonzero probability.)   For 0/1
binary valued variables, use instead the operators

a£ = K 0 0
1 0

O , a = K 0 1
0 0

O

8a, a£ < = a a£ + a£ a = K 1 0
0 1

O = I ; a£  a = Na ª K 0 0
0 1

O

Either  way,  operators  corresponding  to  different  grammar  terms  commute,  as  do  all  powers  of  identical
operators:

@a, aD = @a£ , a£ D = @a, bD = @a£ , b£ D = @On , Om D = 0

By truncating the infinite-dimensional matrices to finite size nHmaxL < ¶  we may compute that for some
polynomial QHN, nHmaxL L  of degree nHmaxL -1 with rational coefficients,

@a, àD = I + N QIN, nHmaxL M .

Eg.  if nHmaxL =1 then Q = -2. If the parameters  x  are continuous  e.g. real-valued,  then the general commutator
relation is

@aHxL, àHyLD = dHx - yLAI + N QIN, nHmaxL ME

where d is the Dirac delta (generalized) function.

For the syntactic form of the grammar of Equation 17, each term(value) combination t j Hxj L  is assigned
its  own  HaHt j , xj L, àHti , xj LL  operator  pair  that  annihilate  or  create  a  parameterized  term  t j Hxj L  with  parameter
value  xj .   Each  rule,  r ,  is  assigned  its  own  “generator”  operator  for  time  evolution,  Or ,  by  the  technique  of
simultaneously annihilating all terms on the left hand side and creating all terms on the right hand side of the rule.
For the very special case in which there are no parameters, the resulting operator is

O
`

r = rr A¤iœrhsHrL àHti LE A¤ jœlhsHrL aHt j LE
Or = O

`
r - diagI1T ÿ O

`
r M

.
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The  diagonal  term  enforces  conservation  of  probability,  1T ÿ Or = 0.  The  product  over  j  makes  the  grammar
context-sensitive.  In  the  presence  of  parameters,  the  rule  generator  O

`
r  is  obtained  by  summing  the  creation-

annihilation product over all possible  values of the term parameters.  Therefore each rule r  receives the following
operator Or :

(21)
O
`

r = ‚
8x£

i ,xj <
rr H8xj <L fr H8x£

i < » 8xj <LA¤iœrhsHrL àHti , xi
£ LE A¤ jœlhsHrL aHt j , xj LE

Or = O
`

r - diagI1T ÿ O
`

r M .

The rule generators can be summed over rules to get the time evolution operator of the whole grammar.
Summing the rule-specific generators, we  define the Hamiltonian:

(22)H = ‚
r

Or = H
`

- D = ‚
r

O
`

r - ‚
r

diagI1T ÿ O
è

r M .

This  then determines the Master Equation [22]: if  we let  PrH8n<; t » 8m<; 0L  denote  the probability of having n
particles  or terms of each possible type and state after time t ,  starting from m  particles or terms of each possible
type and state at time zero, then

(23)

dÅÅÅÅÅÅÅd t  PrH8n<; t » 8m<; 0L = ⁄8p< H8n< 8p< PrH8p<; t » 8m<; 0L, i.e. in matrix notation
dÅÅÅÅÅÅÅd t  PrH t » 0L = H PrH t » 0L

with initial condition

(24)PrH8n<; 0 » 8m<; 0L = d8n<,8m< .

This  system has the following abstract solution in matrix notation,  which can be taken to define the semantics
of our grammar:

(25)PrH t » 0L = expH t HL ,

which implies

(26)PrH tL = expH t HL ÿ PrH 0L .

Recently,  the form expItIH` - DMM  has also been used to define the “Diffusion Kernel” on graphs [23]; here we
may interpret H

`
 as a graph of allowed state transitions weighted by their rates.

4.2.1 Operator exponential

The meaning  of the operator  exponential  is given by the Taylor series  expansion  for the exponential,  or more
generally by the Trotter product formula as follows:

exp@tHH0 + H1 LD = limnØ¶ BI +
t

ÅÅÅÅÅ
n

 HH0 + H1 LF
n

= limnØ¶ BJI +
t

ÅÅÅÅÅ
n

 H0 N JI +
t

ÅÅÅÅÅ
n

 H1 NF
n

.
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Then  the  abstract  operator  solution  of  the  master  equation  can  be  taken  to  define  the  semantics
Yc IHIH` HGLMM = expH t HL ÿ PrH 0L  of  the  continuous-time  grammar  G .  This  establishes  part  (a)  of  Proposition  4  of
Section 4.4 below.

4.2.2 Chapman-Kolmogorov equation

 We  now  verify  this  system  satisfies  the  postulates  of  a  stochastic  process  in  continuous  time. We
assume that time is continuous.  We also assume it is homogeneous, so that the starting time doesn’t matter.  This
is expressed in two equations.  For t r t£  :

PrHn1 , ... nk ; t » m1 , mk ; t£ L = PrHn1 , ... nk ; t - t£ » m1 , ... mk ; 0L .

The second equation is the Chapman-Kolmogorov  equation for  stochastic processes,  which says  that evolving
forward from time t  to time t£ and then from time t£  to time t≥  through all possible intermediate states at time t£  is
the same as evolving forward from the initial to the final time  (t b t£ b t≥ ):

(27)PrHn1 , ... nk ; t≥ » m1 , ... mk ; tL = ‚
8pH1L, ... pHkL<

PrHn1 , ... nk ; t≥ » p1 , ... pk ; t£ L PrHp1 , ... pk ; t£ » m1 , ... mk ; tL

Note  that  the Chapman-Kolmogorov  equation automatically  follows from the abstract  solution,  since even for
matrices, multiples of H  commute and therefore exp@Ht≥ - t£ L HD exp@Ht£ - tL HD = exp@Ht≥ - tL HD  .

4.3 Discrete-time SPG’s

The state of the discrete-time grammar after n rule firing steps is the normalized version of H
` n

ÿ p0 :

cn H
` n

ÿ p0 = I H
` n

ÿ p0 M ë I 1 ÿ H
` n

ÿ p0 M

 This depends on a normalization constant cn = 1 ë I1 ÿ H
` n

ÿ p0 M .  For unbounded operators of infinite dimension
this criterion can be state-dependent  and hence dependent on n , so cn ∫ cn .  This is a critical distinction between
stochastic grammar and Markov chain models, for which cn = cn .

Example: For the unbounded context-free unlabelled tree Hq, fL ,

H
`

= ‚
k=0

¶

qk  àk  a = gHàL a; H = gHàL a - N

H
` 2

= gHàL2  a2 + gHàL g£ HàL a; 1 ÿ H
` 2

= H1 + g£H1LL 1 ◊a = H1 + g£H1LLN
H
` 3

= gHàL3  a3 + 3 HgHàLL2  g£ HàL a2 + gHàL Hg£HàLL2  a + HgHàLL2  g≥ HàL a; 1 ÿ 3 = I1 + 3 g£ H1L + g£H1L2 + g≥ H1LM N

Elaborations of this example include: graph node labels x  (real-valued or discrete-valued):

H = ‚
n=0

¶

qn  ‡
-¶

¶

d x1  fHx1 » yL àHx1 L ∫ ‡
-¶

¶

d xn  fHxn » yL àHxn L ‡
-¶

¶

d y aHyL - ‡
-¶

¶

d y NaHyL

and/or resource limitations via a countdown operator:

H = gHb àL a - Na
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Here the transposed operator b  makes the grammar context-sensitive but provides a uniform-rate “countdown”
from mb  initially available event tokesn to zero, whereupon the grammar must stop due to lack of available event
tokens.   This  provides  an  implementation  of  the  resource-limited  cluster  tree  structure.   Both  concepts  can  be
combined to yield another operator algebra version of the resource-limited feature tree HN, q, fL:

H
` Hq, fL = ‚

n=0

¶

qn  bn  ‡
-¶

¶

d x1  fHx1 » yL àHx1 L ∫ ‡
-¶

¶

d xn  fHxn » yL àHxn L ‡
-¶

¶

d y aHyL,

p0 = dHmb , NL

4.4 Relation of discrete-time and continuous-time grammars

The continuous and discrete-time  grammar executions are related as follows.   After continuous time t ,
the joint probability density on the states of the original system and on the number of discrete rule firings, n , has
the generating function

SHzL = ‚
n=0

¶

sn  zn = expIt IH`  z - DMM ÿ p0

so that

sn = Coefn IexpIt IH`  z - DMM , zM ÿ p0 .

An  alternative  approach  to  the  semantics  of  the  discrete-time  grammar  is  to  take  the  short-time  limit  of  the
continuous-time grammar’s conditional distribution given that n  rule firings occurred:

limtØ0 @ sn ê 1 ÿ sn D = limtØ0 ACoefn IexpIt IH`  z - DMM , zM ÿ p0 ê1 ÿ Coefn IexpIt IH`  z - DMM , zM ÿ p0 E.

This result follows by a short calculation from the following general expression for S:

SHzL = ‚
n=0

¶

sn  zn = expIt IH`  z - DMM ÿ p0

= ‚
n=0

¶ zn

ÅÅÅÅÅÅÅÅÅ
n!

A∑z
n expIt IH`  z - DMM E

z=0
ÿ p0

= „
n=0

¶
zn

ÅÅÅÅÅÅÅÅÅ
n !

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑z

n „
k=0

¶
It IH`  z - DMM

k

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
k !

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑz=0

ÿ p0

= „
n=0

¶
zn

ÅÅÅÅÅÅÅÅÅ
n !

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

k=n

¶
1

ÅÅÅÅÅÅÅÅ
k !

 ‚
80bipbk-n<Ô ⁄p=0

n ip =k-n

n ! H-t DLin t H
` H-t DL

in-1
∫ t H

` H-t DLi0

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

zn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

k=0

¶
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHk + nL!
 ‚
80bipbk<Ô ⁄p=0

n ip =k

tn H-t DLin H
` H-t DL

in-1
∫H

` H-t DLi0

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0
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From this expression we can take the small-time limit, picking out only the ip = 0 terms:

limtØ0 SHzL = ‚
n=0

¶

zn C 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHk + nL!

ÃHk=0L tn H
` n G ÿ p0 = ‚

n=0

¶ zn  tn

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n !

 H
` n

ÿ p0

Thus

limtØ0 @ sn ê1 ÿ sn D = H
` n

ÿ p0 ë I1 ÿ H
` n

ÿ p0 M

If  the  denominator  happens  to  be  a  power  of  n ,  which  in  general  it  is  not,  then  we  specialize  to  a
discrete-time Markov process as a function of the number of rule firings, n .

Thus we have established:

Proposition 4. Given the stochastic parameterized grammar (SPG) rule syntax of Equation 17,

(a)  There  is  a  semantic  function  Yc  mapping  from  any  continuous-time,  context  sensitive,  stochastic
parameterized  grammar  G  via  a  time  evolution  operator  HIH` HGLM  to  a  joint  probability  density  function  on  the
parameter values and birth/death times of grammar terms, conditioned on the total elapsed time, t .

(b)  There  is  a  semantic  function  Yd  mapping  any  discrete-time,  sequential-firing,  context  sensitive,
stochastic parameterized  grammar G via a time evolution operator H

` HGL  to a joint probability density function on
the  parameter  values  and  birth/death  times  of  grammar  terms,  conditioned  on  the  total  discrete  time  defined  as
number of rule firings, n .

(c)  The  short-time  limit  of  the  density  Yc HGL  conditioned  on  t Ø 0  and  conditioned  on  n  is  equal  to
Yd HGL .

(d) There is a serial context-free grammar Gtree  whose asymptotic probability distribution is that of the
context-free feature tree Hq, fL , and another context-free grammar Grl-tree  whose asymptotic probability distribu-
tion is that of the resource-limited context-free feature tree HN, q, fL .

Corollary.  The following diagram commutes:
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4.5 Perturbative expansion for stochastic field theory

A  fundamental  method  for  deriving  simulation  algorithms  can  be  borrowed  from  quantum  field  theory  and
transposed  to  stochastic  processes.  The  version  given  here  is  derived  probabilistically  and  has  the  advantage  of
being recursively self-applicable.

4.5.1 Time-ordered operator expansion

 The  general  expansion  formula  for  S  is  given  by  the  time-ordered  product  (Equation  2.14  of  
[24]equation 4.29[24][25]) which we can derive by elementary probabilistic means as follows.

We obtain extra insight by continuing the calculation of SHzL  from the previous section:

= „
n=0

¶

zn  tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

k=0

¶

„
80bipbk<Ô ⁄p=0

n ip =k

¤p=0
n Hip L !

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
I⁄p=0

n ip + nM!
 
H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫ H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L !

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

zn  tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

80bipb¶<

¤p=0
n Hip L !

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
I⁄p=0

n H ip + 1L - 1M!
 
H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫ H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L !

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

zn  tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

80bipb¶<

¤p=0
n GHip + 1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
GI⁄p=0

n H ip + 1LM
 
H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L !
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L!

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

Now we use the Multinomial-Dirichlet normalization integral

¤p=0
n GHip + 1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
GI⁄p=0

n H ip + 1LM
= ‡

0

1

d q0  ∫ ‡
0

1

d qn  d
i

k
jjjjj‚

i=1

n

qp - 1
y

{
zzzzz ‰

p=0

n

Hqp Lip .

Accordingly,

SHzL =

„
n=0

¶

zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

80bipb¶<

‡
0

1

d q0  ∫ ‡
0

1

d qn  d
i

k
jjjjj‚

i=1

n

qp - 1
y

{
zzzzz 
i

k

jjjjjj‰
p=0

n

Hqp Lip

y

{

zzzzzz 
H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫ H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L !

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

80bipb¶<

‡
0

1

d q0  ∫ ‡
0

1

d qn  d
i

k
jjjjj‚

i=1

n

qp - 1
y

{
zzzzz 

H-qn  t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
` H-qn-1  t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫H

` H-q0  t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L!

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0
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= „
n=0

¶

zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
·

0

1

d q0  ∫ ·
0

1

d qn  d
i

k
jjjjj‚

i=1

n

qp - 1
y

{
zzzzz 

„
80bi0b¶<

H-qn  t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
`

„
80bi1b¶<

H-qn-1  t DLi1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L !
∫H

`
 „
80binb¶<

H-q0  t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L!

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‡

0

1

d q0  ∫ ‡
0

1

d qn  d
i

k
jjjjj‚

i=1

n

qp - 1
y

{
zzzzz expH-qn  t DL H

`
expH-qn-1  t DL ∫H

`
 expH-q0  t DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

zn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‡

0

t

d t0  ∫ ‡
0

t

d tn  d
i

k
jjjjj‚

i=1

n

tp - t
y

{
zzzzz expH-tn DL H

`
expH-tn-1 DL∫H

`
 expH-t0 DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
ÿ p0

In summary (since p0  was never used in the above calculations),

expIt IH` - DMM

= „
n=0

¶ Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‡

0

t

d t0  ∫ ‡
0

t

d tn  d
i

k
jjjjj‚

i=1

n

tp - t
y

{
zzzzz expH-tn DL H

`
expH-tn-1 DL∫ H

`
 expH-t0 DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
.

Alternatively, define t1 = t0 , t2 = t1 + t1 , ... tn+1 = tn + tn = t .  Then the evolution of the state vector is
given by

expIt IH` - DMM ÿ p0 =

„
n=0

¶ Ä

Ç

ÅÅÅÅÅÅÅÅÅ‡0

t

d t1  ‡
t1

t

d t2  ∫ ‡
tn-1

t

d tn  expH-Ht - tn L DL H
`

expH-Htn - tn-1 L DL∫ H
`

 expH-t1 DL
É

Ö

ÑÑÑÑÑÑÑÑÑ
ÿ p0

Since  D  is  diagonal,  the  terms  expH-t DL  are  analytically  calculable  and  easy  to  simulate  with  large
jumps  in  time.   Between  these  easy  terms  are  interposed  single  powers  of   H

`
 representing  the  occurrence  of

discrete-time grammar events that must be simulated.  

These  last  two  expression  for  expIt IH` - DMM  have  a  significant  interpretation  in  the  case  of  reaction
kinetics:  they  correspond  to  the  Gillespie  algorithm  for  stochastic  simulation.   The  exponential  distribution  of
waiting times until the next reaction is given by expH-t DL , which depends on the state of the system but doesn’t
change it, and the reaction events are modeled by the interdigitated powers of H

`
.

This perturbative approach is equivalent to the use of perturbative methods including Feynman diagram
calculations  in quantum field theory,  except for an occasional  factor of 

è!!!!!!!
-1  which would turn our probabilities

into the complex-valued probability factors of quantum mechanics.  It can be accomplished for any decomposition
of H  into a solvable part H0  (here, -D ) plus a more difficult term H1 (here, H

`
):
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(28)

expHt HH0 + H1 LL ÿ p0 =

„
n=0

¶ Ä

Ç

ÅÅÅÅÅÅÅÅÅ‡0

t

d t1  ‡
t1

t

d t2  ∫ ‡
tn-1

t

d tn  expHHt - tn L H0 L H1 expHHtn - tn-1 L H0 L∫H1  expHt1 H0 L
É

Ö

ÑÑÑÑÑÑÑÑÑ
ÿ p0

Another  decomposition  of  H, enabling  another  application  of  this expansion  will  be described  in  Section  5.1.
This form of the time-ordered product expansion is recursively self-applicable. 

4.6 Standard stochastic processes with operator algebra

Using the above  operator  algebra formalism  we can express and solve the following standard continu-
ous-time  stochastic  processes.   These  processes  illustrate  very  simple  dynamical  grammars.   Solutions  are
expressed  as  generating  functions,  from  which  any  moment  can  be  calculated.   Each  parenthesised  term  in  a
Hamiltonian corresponds to a grammar rule in the foregoing formalism.

4.6.1 Solution methods for the master equation

An  equivalent  representation  of  the  annihilation  and  creation  operators  is  given  by  their  respective
effects on a generating function GHzL , with one symbolic variable zHt,xL  for each allowed term type and parameter
combination:

(29)GHzL = „
8nHt,xL=0<

¶

Pr8nHt,xL<  ‰
8Ht,xL<

HzHt,xL LnHt,xL = „
8nHt,xL=0<

¶

Pr8nHt,xL<  exp

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‚

t
‡ d x nHt, xL mHt, xL

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
.

The  variable  z  corresponds  to  the  “fugacity”  for  creation  of  instances  of  a  term  tHxL  in  the  grand  canonical
ensemble in statistical mechanics, and mHt, xL ª log zHt, xL is the corresponding “chemical potential” . Then we map

(30)azHt,xL # ∑zHt,xL , àzHt,xL # zHt, xL, and @azHt,xL , àzHt£ ,x£ L D = dt t£  dHx - x£ L .

The most involved part of this translation is just subtracting the diagonal probability-balance term, to go from
O
è

r  to Or .  In  this representation,  the “Master  equation”  is first-order  linear  partial  differential  equation in many
variables.  In addition, boundary conditions are linear in G, second- and higher-order correlations are expectations
computed  as  linear  operators  acting  on  G,  and  separation  of  time  and  space  factors  in the  PDE  solution  gives  a
further linear analysis (analogous to an eigenvalue problem) of G.

4.6.2 Solvable Examples

Exponential  decay  of  a  single  particle:  Hamiltonian   H = K 0 l
0 -l

O = l H a - NL2ä2 ,  in  which  the

creation  and  annihilation  operators  have  been  projected  into  the  two-dimensional  subspace  corresponding  to
presence of either zero or one copies of a particle. The generating function is G0 = 1, G1 = 1 - e-l t + e-l t  z .

Poisson process: Hamiltonian H = r H à - IL .  Equivalent to a single chemical reaction denoting synthe-

sis,  :Ø ö
ri

A> . Generating function starting from m -particle initial condition:

Vbl-StructTRV7A.nb

45



Gm Hz, tL = zm exp HrHz - 1L tL = e-r t  ‚
n=0

¶ Hr tLn

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n !

 zn+m

Population  decay  process: H = r H a - NL .   Equivalent  to a single chemical  reaction denoting decay or

uncatalysed degradation :Aö
rd

Ø> . Generating function:

Gm Hz, tL = HHz - 1L e- r t + 1Lm = ‚
n=0

m

Jm

n
N e-n r t H1 - e-r t Lm-n  zn , n ~ BinomialHm, e- r t L.

(This can be calculated from the PDE in Hz, tL  or seen from the single-particle decay generating function.)

Galton-Watson  birth-death  process, equivalent  to a chemical  reaction  network with decay and a “chain

reaction” :A ö
rb

2 A, Aö
rd

Ø> :

H = rb I à2  a - NM + rd Ha - NL

Gm Hz, tL =
i
k
jjj
Hrb - rd  eHrb -rd L t L z + rd HeHrb - rd L t - 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
rb H1 - eHrb - rd L t L z + Hrb  eHrb - rd L t - rd L

y
{
zzz

m

.

Galton-Watson  birth-death  process  with  immigration,  equivalent  to  a  chemical  reaction  network  with

synthesis, decay, and a “chain reaction” :A ö
rb

2 A, Ø ö
ri

A, Aö
rd

Ø> :

H = rb I à2  a - NM + rd Ha - NL + ri Hà - IL

Gm Hz, tL = K Hrb - rd L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
rb H1 - eHrb -rd L t L z + Hrb  eHrb - rd L t - rd L O

ri êrb

 
i
k
jjj
Hrb - rd  eHrb -rd L t L z + rd HeHrb -rd L t - 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
rb H1 - eHrb -rd L t L z + Hrb  eHrb - rd L t - rd L

y
{
zzz

m

.

The  detailed mathematical  theory of  such  birth/death  processes  can be  extended  to multiple  object types,  and
includes conditions for the exclusion of  “explosions” in which the number of terms generated  grows to infinity in
a finite amount of time.

Synthesis-decay chemical reaction network :Ø ö
ks

A, Aö
kd

Ø> :

H = ks Hà - IL + kd Ha - NL
Defining k = ks ê kd , the differential equation and its solution by separation of variables are

Gm Hz, tL = ‡ gm l HzL hm l HzL d l

Akd Hz - 1LA ∑ÅÅÅÅÅÅ∑z - kE - lE gm l HzL = 0 = ∑ÅÅÅÅÅÅÅ∑ t  hm l HzL + l hm l HzL
gm l HzL = cm HlL Hz - 1Llêkd  ez k

and finally

gm Hz, tL = J1 + Hz - 1L e-kd  t Mm

 ekHz-1L I1-e-kd  t M .

Bidirectional conversion chemical reaction: :A ö
kf

B, Bö
kr

A> :
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Note  that  conservation  of  A + B  makes  this  actually  a  finite-dimensional  system,  provided  that  the  initial
conditions  give  zero  probability  to  all  values  of  A  and  B  above  some  finite  limit.   Whether  this  condition  is
satisfied or not, the solution is as follows.

H = kf Hà2  a1 - N1 L + kr Hà1  a2 - N2 L

Defining g8m< l HzL = z1
mH1L  z2

mH2L  gl HzL, z = z1 ê z2 , and k = kf ê kr , the method of characteristics gives

g8m< Hz, tL = ez m2 Hz + kL-k Hm1 +m2 L  C
Ä

Ç

ÅÅÅÅÅÅÅÅ
t -

logHz - 1L + k logHz + kL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

kf + kr

É

Ö

ÑÑÑÑÑÑÑÑ

and using the initial condition g8m< Hz, 0L = 1 we find

g8m< Hz, tL = e m2 Hz-jHz ,tLL K jHz, tL + k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

z + k
O

k Hm1 +m2 L

where

yk ,kr HzL ª logHz - 1L + k logHz + kL
yk ,kr HjHz, tLL = -H1 + kL kr  t + yk ,kr HzL .

This solves the model. For example we can compute the average amount of reaction product Xn2 \  as a function
of time:

Xn2 HtL\ =
∑ log Gm Hz, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑z2
ß
z=1

= m2 + XnHtL\

= m2  e -Hk f +kr L t +
kf

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kf + kr

 Hm1 + m2 L I1 - e -Hkf +kr L t M

Correlations  can be calculated  to any order.   A few more  elaborate  reactions have  been solved in equilibrium
using hypergeometric functions [26].

4.7 Biological Examples

4.7.1 Multiscale Dynamical Grammars in Biological Development

The  growing  tip  (shoot  apical  meristem)  of  the  plant  Arabidopsis  thaliana  provides  an  illustrative
example  of  a  variable-structure  dynamical  system  at  three  different  scales:  the  molecular,  cellular,  and  organ
levels.  At the molecular level, the primary molecules are auxin (a plant growth hormone) and PIN1 (a membrane-
bound auxin pump).  In a simple model [27],  PIN1 in the membrane of cell i  bounding cell j  acts as a catalyst in
removing  auxin  molecules  from  cell  i  (modeled  annihilation)  and  simultaneously  inserting  them  into  cell  j
(creation).  Reciprocally,  auxin acts on PIN1, both enhancing its synthesis and directing its incorporation into the
membranes of nearby cells.  The reactions in this positive feedback loop are

lom
no

auxin@iDï auxin@ jD
PIN1@i, jD

, « ï PIN1@iD
auxin@iD

, PIN1@iDï PIN1@i, jD
auxin@ jD

, PIN1@i, jD z «, PIN1@i, jD z PIN1@iD
|o}
~o

,
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where for example

auxin@iDï auxin@ jD
PIN1@i, jD

= 8auxin@iD + PIN1@i, jD z Complex1,
Complex1 z auxin@iD + PIN1@i, jD, Complex1 z auxin@ jD + PIN1@i, jD<

At the cell level, cells have internal state including the above reactions and also cell mass and position.
When  mass  exceeds  a  threshold  cell  divide.   Mass  influences  the  resting  length  of  elastic  springs  connecting
neighboring cells which determine their positions.  Positions determine which cells are neighbors, therefore which
regulatory subnetworks are connected.  There is variable structure both in the objects (cells) and their relationships
(communicating neighbors; lineage trees of cell ancestry).  

Figure 11: SAM, top view, three time slices.  Color = auxin concentration.  Emergent peaks correspond to floral
meristem primordia.

Figure  11  shows  the  resulting  dynamical  pattern  of  auxin  (yellow/blue  scale)  evolving  over  time.
Emergent phenomena are the auxin peaks that form off center and move out radially to make room for new peaks.
The peaks are hypothesized to determine the position of the primordia for new floral meristems in the phyllotactic
pattern  of flowers,  leaves  and  branches  for  the  above-ground  part  of  the plant.   The variable-structure  objects  at
this scale are the primordia.

The variable structure dynamics illustrated by this model is not analytically  tractable but is expressible
at each of three levels  (the molecular,  cellular,  and organ levels)  using the dynamical  grammars formalism.   The
ability  of a cell  to divide and interact  with its  neighbors  gives rise, at a coarser spatial  and temporal  scale,  to the
ability of a shoot apical  meristem to branch and create the floral  meristems. Whether the multiscale relationships
can be fully understood within this formalism is a challenge for future work.

4.7.2 Multiparent clustering

In contrast  to the context-free feature tree, this grammar allows either one or two parents  for each node.   This
model can be applied to clustering.  It can also be applied to lineage trees of individual organisms in a population.

grammar (continuous-time) multiparent (8nodesetHxi L< Ø 8nodeHxj L<) {

R1 : nodesetHxL Ø nodeHxL, 8nodesetHxè j L »<   with r1 qHnL  f1 Hx1 L // single-parent reproduction

R2 : nodesetHx1 L, nodesetHx2 L Ø nodeHx1 L, nodeHx2 L, 8nodesetHxè i L » 1 b i b n<
with r2  CHx1 , x2 L qHnL ¤i=1

n f2 Hxè i » x1 , x2 L  // two-parent reproduction

}

R1 summarizes both rules of the context-free clustergen grammar.  R2 adds something new: a context-sensitive
rule for  two-parent  reproduction.  This model can be applied to clustering or,  as shown below,  to lineage trees  of
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individual  organisms.   Resource  bounds  can  be imposed  as in the  case  of the  the context-free  feature  tree,   now
with separate costs for single and multiple parentage.  There is again a connection to Bayes Nets: given the DAG
B of which  nodes are parents to which others,  the feature vectors  x  have  conditional  distributions  for which B is
the Bayes  network.   However,  B  is  determined only  when the  grammar  is executed,  by  sampling  according to  q
and C.

4.7.3 Evolution of Genotypes

As another example of a multiscale dynamical grammar, we mention the dynamics of the lineage DAG
(at the fine scale) in a sexually reproducing and evolving population of model organisms.  As an emergent phenom-
enon  such  a  population  may  undergo  speciation  and  reproductive  isolation,  to  produce  a  coarse-scale  branching
event in a phylogeny, which can in turn be modeled as a  context-free random binary feature tree.

Darwinian  evolution  proceeds  by  selection  on  heritable  variation,  which  we  here  decompose  as  two
processes: selection, and reproduction with variation. We exhibit a continuous-time, context-sensitive grammar for
modelling  the evolution of  such organisms,  each of which has  a genotype vector  g  and a somatic  state vector  x .
To study the emergence of reproductively isolated species we may define an average phenotype gêê  for any popula-
tion or subpopulation, along with a feature similarity or distance criterion for individual reproductive compatibility
CHg1 , g2 L .  Four  processes  (selection,  heritable  variation,  individual  experience,  and  social  interaction)  are  mod-
eled  by  four  rules  that  encode  reasonable  first  approximations  about  the  flow of  information,  including  a  strong
distinction  between inheritence  of genetic  vs.  nongenetic information.   Resource conservation  constraints  are not
explicitly  included,  though  some  components  of  the  somatic  vector  x  could  represent  scarce  resources.   Other
components of x  could be devoted to signaling genotype, g . Many variations on this grammar are possible, and for
any such grammar, choice of the functions C , q , etc will strongly affect the emergent dynamics.

grammar (continuous-time) evolver (8organismHgi , ei L< Ø 8organismHgj , ej L<) {

R1 : organismHg1 , e1 L Ø Ø   with rd Hg1 , e1 L
// death: selection by the environment

R2 : organismHg1 , e1 L, organismHg2 , e2 L Ø organismHg1 , e1 L, organismHg2 , e2 L,
8organismHgè i , eè i L » 1 b i b n<

with rh  CHg1 , g2 , e1 , e2 L qHnL ¤i=1
n f2 Hgè i » g1 , g2 L VHeè i L  

// heritable variation of gè i

R3 : organismHg, eL Ø organismHg, eèL  with re yHeè » eL
// individual experience

R4 : organismHg1 , e1 L, organismHg2 , e2 L Ø organismHg1 , eè1 L, organismHg2 , eè2 L  

with rs  cHeè1 , eè2 » e1 , e2 , g1 , g2 L
// social interaction

}

Here s is a vector of “epigenetic” information acquired from experience but not passed on by inheritance, and g
is  a  vector  of  inherited  genotypic  information.   Grammar  evolver  is  really  a  schema  for  an  imporant  family  of
complex dynamical systems rather than an individual model.
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4.7.4 BN Grammar

Bayes  Nets  have  been  widely  used  in  bioinformatics  [28-29].   There  is  an  elementary  transformation
from  any  BN  to  an  equivalent  grammar  ([1],  Section  1.3).   Essentially,  each  random  variable  X  in  the  BN  is
transformed  into  two  parameterized  terms:  an  undetermined  random  variable  X£  and  a  sampled  or  determined
version  XHxL  parameterized  by  its  value,  x .   Each  random  variable  is  also  assigned  a  rule
RX : X£ , 8Y HyL< Ø XHxL, 8YHyL<  which  can fire  and determine  that  variables’  value only when  X  is  undetermined
but  all  its  predecessors  Y  have  been  determined.   With  suitable  index  parematers,  all  of  these  rules  can  be
expressed in a single SPG meta-rule.

5 Discussion

The Stochastic  Parameterized  Grammar  (SPG)  semantics  function  YHGL  can  be  used  to give  a  precise
meaning to the context free feature tree and to many other variable-structure systems specified by SPG’s in either
continous or discrete time execution models. Likewise, the Dependency Diagram semantics function YHDL  can be
used to give a precise meaning to dependency diagrams for the feature tree and other variable structure systems, as
well as other highly structured graphical models, by defining new node and link types including interaction gating,
index  nodes  for  replication  of  structure,  contingent  node  existence,  undirected  constraints,  time  delay dependen-
cies,  and  others.  Both  frameworks  can  be  used  to  express  highly  structured  graphical  models  including  but  not
limited to variable-structure systems.  Having formally defined the meanings of these notations, it is now possible
to study their meaning-presevering mappings or transformations. We expect this to be a fruitful area of inquiry.

Since  we  have  defined  two  different  formal  mathematical  descriptions  of  classes  of  variable  structure
systems, that both encompass at least the same context free feature tree model, the question of the general relation-
ship  between  these  two  frameworks  arises.   It  will  not  be  fully  answered  here  but  there  are  several  relevant
observations.  Most notably, an SPG is intrinsically a dynamical system that can be simulated or executed numeri-
cally, whereas the PDF corresponding to any DD (except for pure Bayes Nets, which can each be represented as a
simple  SPG with  one  rule  per random variable  Section  4.7.4) is  a static  object  with  no unique implied  sampling
dynamics.   Roughly,  SPG’s  represent  processes  and  DD’s  statically  represent  the  outcomes  of  those  processes.
This  relationship  is  consistent  with  the  historical  role  of  the  Boltzmann  distribution  in statistical  mechanics  as  a
theory of long-time, coarse-scale equilibria arising from more fundamental equations of motion.

In  this  light,  the  following  technical  relationships  between  DD’s  and  SPG’s  are  understandable.  (1)
Given  a  fixed-structure  DD  there  are  many  ways  to  use  the  “detailed  balance”  principle  to create  an  executable
SPG whose  discrete-time  dynamics  tend in  the  limit  of  long  time  to  the  PDF  of  the  DD.  (2)  Given  an SPG  the
asymptotic  long-time  behavior  of  the  grammar  (or  of  any  dynamical  system)  can  be  used  to  define  an  effective
single  grammar  rule  with  conditional  probability  distribution  on  output  terms  given  input  terms.   This  single
grammar rule has an unnormalized probability distribution that can be invoked recursively within other grammars
using  the  via  keyword  in  place  of  with.  It  can  also  be  modeled  approximately  by  variable-structure  DD’s  of
varying  complexity.  (3)  In  particular,  a  dependency  diagram  with  a  large  number  of  time  delay  links  and  dense
existence  links  between  immediately  succeeding  temporal  variables  can  in  principle  be  “unrolled”  to  express
discrete-time  grammar  executions.  (4)  The elementary  distributions  associated  with  individual  rules  in a  SPG or
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DG may be specified by a fixed-structure DD or by the Boltzmann distribution of an MRF [30]. At a much higher
level of abstraction, (5)  term(parameter-vector)  combinations correspond  to instantiated “objects”  in a high-level
object/relationship network.  

As a  result  of  the relationships  (1)-(4),  multiscale  models  of  processes  and/or  dynamical  systems  may
be formulated in terms of an alternation of dynamical SPG and summarizing DD at each scale.

The SPG formalism we have outlined here includes the possibility of a MRF Boltzmann distribution for
each  rule,  and  can  straightforwardly  be  extended  to  include  stochastic  graph  grammars,  differential  equations  
[20-21],  and  stochastic  differential  equations;  we  take  those  extensions  to  be  within  the  purview  of  “dynamical
grammars”  (DG’s).   Many  scientific  applications  can  now  be  expressed  in  terms  of  context-sensitive  dynamical
grammars  including  modeling  the growing  tip (shoot  apical  meristem)  of  the plant  Arabidopsis  thaliana  at  three
different scales: the molecular, cellular, and organ levels [31]. 

Although inference algorithms for variable structure  system models lie outside the scope of this paper,
it  is  natural  to  consider  quantitative  sampling  algorithms  expressed  as  discrete-time  variable-structure  systems,
just as Markov Chain Monte Carlo training algorithms are fixed-structure Markov chains.
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A Appendices

5.1 Operator algebra for continuous-event rules

Following  [20]  or  [21],  we  may  introduce  extended-time  process  rules  which  change  the  real-valued
parameters  but  not  the  numbers  or  types  of  the  interactors  during  an  extended,  finite  time  interval  rather  than  a
pointlike  transition  or  event  time.   In  such  a  process,  for  each  infinitesimal  time  interval  D t  we  have  a  rate  of
transition to altered parameters as follows:

(31)

O
è

r = Ÿ d 8xi< Ÿ d 8yi < rr A¤iœlhsHrL àHti , yi L aHti , xi LE
ä rr H8xi <L@limD tØ0 Prr H8yi< » 8xi <, D tL ê D tD

Or = O
è

r - diagI1T ÿ O
è

r M = O
è

r - rr  ¤iœlhsHrL NHti , xi L

Two  issues  arise  with  this  formulation:  the  limit  of  the  conditional  probability  within  the  integral,  and  the
computation  of  an  integral  over  operator  expressions.   The  small-time  transition  probability
Prr H8xi + D xi < » 8xi<, D tL

rr H8yi < » 8xi<L = rr H8xi<L limD tØ0 @Prr H8yi< » 8xi <, D tL - Prr H8xi < » 8xi<, D tLD ê D t

is  dependent  on  the  process  being  modeled,  but  there  are  a  few  standard  types  corresponding  to  differential
equations such as diffusion and transport. 

5.1.1 Ordinary and Stochastic Differential Equations

There  are  SPG  rule  forms  corresponding  to  stochastic  differential  equations  governing  diffusion  and
transport.  Given the SDE or equivalent  Langevin equation (which specializes to a system of ordinary differential
equations when hHtL = 0 ):

(32)
d xi = vi H8xk <L d t + sH8xk <L d W or

d xiÅÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= vi H8xk <L + hi HtL

under some conditions on the noise term hHtL  [25] the dynamics can be expressed as a Fokker-Planck equation
for the probability distribution PH8x<, tL :

∑PH8x<, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ t
= -‚

i

∑
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xi

 vi H8x<L PH8x<, tL + „
i

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xi  ∑ xj

 Di j H8x<L PH8x<, tL

where D  is related to h and W . The first term on the right is the drift of probability due to v , and the second is
its  diffusion  due  to  D  or  h.  Let  PH8y<, t » 8x<, 0L  be  the  solution  of  this  equation  given  initial  condition
PH8y<, 0L = dH8y< - 8x<L = ¤k dHyk - xk L  (with Dirac delta function appropriate  to the particular measure  m used for
each component).  Then at t = 0,
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∑PH8y<, 0 » 8x<, 0L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ t
ª rH8yi < » 8xi <L = -‚

i

∑
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi

 vi H8x<L dH8y< - 8x<L + „
i

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi  ∑ yj

 Di j H8x<L dH8y< - 8x<L

Thus the probability rate rH8yi < » 8xi<L  is given by a differential operator acting on a Dirac delta function.  It can
be decomposed into drift and diffusion:

(33)rdrift H8yi < » 8xi <L = -„
i

∑
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi

 vi H8x<L ‰
i

dHyi - xi L

(34)rdiffusion H8yi < » 8xi <L = „
i j

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi  ∑ yj

 Di j H8x<L ‰
i

dHyi - xi L

from which by (Equation 31) we construct the evolution generator operators OFP = Odrift + Odiffusion , where

(35)Odrift = -· d 8x< · d 8y< àH8y<L aH8x<L 
i

k

jjjjjjjj„
i

“ yi
vi H8y<L ‰

k

dHyk - xk L
y

{

zzzzzzzz

(36)Odiffusion = · d 8x< · d 8y< àH8y<L aH8x<L 
i

k

jjjjjjjjj
„

i j

“ yi “ yj Di j H8y<L ‰
k

dHyk - xk L
y

{

zzzzzzzzz

The second order  derivative  terms give diffusion  dynamics  and also regularize  and and promote continuity  of
probability in parameter space both along and transverse to any local drift direction.  (Equation 35) and (Equation
36) constitute an operator algebra expression of ordinary and stochastic differential equation dynamics.

If  a  grammar  includes  such  (ordinary  or  stochastic)  Differential  Equation  rules  along  with  non-DE
rules,  a  solver  can  be used  to  compute  expHHtn+1 - tn L OFP L  in  the  time-ordered  product  for  expHt HL  as  a  hybrid
simulation  algorithm  for  discontinuous  (jump)  stochastic  processes  combined  with  stochastic  differential  equa-
tions.  This gives a second application of the time-ordered product expansion of Section 4.5.1.

5.1.2 Connection to quantum field theory calculations

The  most  important  connection  to  QFT  methods  is  the  time-ordered  operator  expansion  of  (Section
4.5.1).  It is also informative, however, calculate matrix entries as follows.

A  systematic  use  of  the  foregoing  formalism  reveals  connections  to  many  methods  of  quantum  field
theory, without the conventional reliance on momentum space methods which doesn’t fit all of our problems.  As
an example, we can use the relations

» z\ = àH8z<L » 0\ , Xw » = X0 » aH8w<L
@aH8x<L, àH8y<LD = dH8y< - 8x<L@1 + NH8x<L QHNH8x<L, nmax LD

Xw » z\ = dH8w< - 8z<L
(where  Q  is a  polynomial  of  degree  nmax -1 and  nmax  is  the  largest  number  of identical  objects  allowed  for  a

given type)

Vbl-StructTRV7A.nb

54



to  calculate  the  matrix  element  for  a  single  particle’s  time  evolution  under  diffusion  alone,  with  a  constant
diffusion coefficient D = 1, starting from a single parameter vector y  and ending at parameter  vector z .  First we
calculate some auxiliary matrix elements:

Xz » yL = X0 » aHzL àHyL » 0\ = dHz - yL = ‡ d x dHx - yL dHx - zL

and

Xz » Hdiff » y\ = H0 » aHzL Hdiff  àHyL » 0\
= Ÿ d x1  Ÿ d x2 X0 » aHzL àHx2 L aHx1 L àHyL » 0\ “x1

2 dHx1 - x2 L
= Ÿ d x1  Ÿ d x2  dHz - x2 L dHx1 - yL “x1

2 dHx1 - x2 L
= Ÿ d x dHx - yL “x

2 dHx - zL

and (using Ÿ d x àHxL aHxL = 1  )

Yz … Hdiff
2 … y] = Y0 … aHzL Hdiff

2  àHyL … 0]
= Ÿ d x2  X0 » aHzL Hdiff  àHx2 L aHx2 L Hdiff  àHyL » 0\

= Ÿ d x2  X0 » aHzL Hdiff  àHx2 L » 0\ X0 » aHx2 L Hdiff  àHyL » 0\
= Ÿ d x2 IŸ d x3 dHx3 - x2 L “x3

2 dHx3 - zL M IŸ d x1 dHx1 - yL “x1

2 dHx1 - x2 LM
= Ÿ d x1  Ÿ d x2  Ÿ d x3 dHx3 - x2 L I“x3

2 dHx3 - zL M dHx1 - yL I“x1

2 dHx1 - x2 LM
= Ÿ d x1  Ÿ d x3 dHx1 - yL I“x3

2 dHx3 - zL M I“x1

2 dHx1 - x3 LM
= Ÿ d x1  Ÿ d x3 dHx1 - yL I“x3

2 dHx3 - zL M I“x3

2 dHx1 - x3 LM

= Ÿ d x1  Ÿ d x3 dHx1 - yL dHx3 - zL JI“x3

2 M2
 dHx1 - x3 LN

= Ÿ d x dHx - zL H“x
2 L2

 dHy - xL .

The last three calculations can be generalized to arbitrary powers of Hdiff :

Xz » Hdiff
n » y\ = ‡ d x dHx - zL I“x

2 Mn
 dHy - xL

from which we can calculate

(37)
Xz » expHt Hdiff L » y\ = ‡ d x dHx - zL exp It “x

2 M dHy - xL

= exp It “z
2 M dHy - zL .

Using (Johnson and Lapidus 10.2.6 )

Iet “x
2

f M HxL = H4 p tL-dê2  ‡ d u f HuL e-¥ x-u ∞2 ê2 t ,

we find
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Xz » expHt Hdiff L » y\ = H4 p tL-dê2  ‡ d x ‡ d u dHx - zL dHy - uL e-¥ x-u ∞2 ê2 t

i.e.

(38)Xz » expHt Hdiff L » y\ = H4 p tL-dê2  e-¥ z-y ∞2 ê2 t .

We can calculate with drift in a similar way:

Xw » Hdrift » z\ = -[8w<
ƒƒƒƒƒƒƒƒƒƒƒƒ
‡ d 8x< ‡ d 8y<

i

k
jjjjj‚

i

“ yi
vi H8y<L dH8y< - 8x<L

y

{
zzzzz àH8y<L aH8x<L àH8z<L

ƒƒƒƒƒƒƒƒƒƒƒƒ
0_

= -[8w<
ƒƒƒƒƒƒƒƒƒƒƒƒ
‡ d 8x< ‡ d 8y<

i

k
jjjjj‚

i

“ yi vi H8y<L dH8y< - 8x<L
y

{
zzzzz àH8y<L dH8z< - 8x<L@1 + NH8x<LD

ƒƒƒƒƒƒƒƒƒƒƒƒ
0_

= -‡ d 8x< ‡ d 8y<
i

k
jjjjj‚

i

“ yi
vi H8y<L dH8y< - 8x<L

y

{
zzzzz dH8z< - 8x<L X8w< » 8y<\

= -‡ d 8y<
i

k
jjjjj‚

i

“ yi vi H8y<L dH8y< - 8z<L
y

{
zzzzz dH8w< - 8y<L

= +‡ d 8y< dH8y< - 8z<L 
i

k
jjjjj‚

i

vi H8y<L “ yi dH8w< - 8y<L
y

{
zzzzz

= ‚
i

vi H8z<L “ zi dH8w< - 8z<L

and similarly

Xz » Hdrift
n » y\ = Ÿ d x dHx - zL HvHxL ÿ “x Ln  dHy - xL

Xz » et Hdrift » y\ = Ÿ d x dHx - zL exp@t vHxL ÿ “x D dHy - xL

Using Taylor’s theorem in differential operator form,

Iet cÿ“x  f M HxL = f Hx + cL,

(where c is a constant) we find

(39)Yz … et Hdrift … y] = ‡ d xH0L dHxH0L - zL d
i
k
jjjy -

i
k
jjjxH0L + ‡

0

t

vHxHtLL d t
y
{
zzzy
{
zzz

which expresses a formal solution for the ordinary differential equation without noise:

d xiÅÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= vi H8xk <L

Some  possible  types  of  extended-time  continuous-valued  transition  rules  are  shown  in  the  following
diagram [20].
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5.1.3 Partial Differential  Equations and Stochastic PDE's

Finally, an important problem is to translate partial differential equations and stochastic partial differen-
tial equations of general form into the operator algebra.  This can be done by relating PDE’s and SPDE’s to large
systems  of  ODE’s  and  SDE’s,  and  taking  the  limit  symbolically.   Nontrivial  mathematics  will  be  needed  to
confirm whether the indicated limits really exist or not.

Consider the (possibly stochastic) PDE

(40)
∑ FHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ t
= F@FD HxL = FKFHxL, ∑ FHxL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ x

, ... ,
∑n FHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ xn
O + hHtL.

where x  may be a scalar or a vector, and likewise for F. We make the following mapping to (Equation 31):

Table 4. Ordinary vs. Partial differential objects

Ordinary differential object Partial differential object


  d ê d t  ∑ ê ∑ t

 i  x

 xi  FHxL
 yi  F£ HxL
 ∑ ê ∑ xi Hpartial derivativeL  d ê d FHxL Hfunctional derivativeL
D  (homog. scalar diffusion coef.) D Hhomog. scalar diffusion coef.L
 dHy - xL = ¤i dHyi - xi L  DHF£ - FL = Ÿ d x dHF£ HxL - FHxLL
Ÿ d x gHxL
(ordinary integral)

Ÿ F G@FD
(functional integral)

 at HxL = at H8xi <L at HFL = at H8FHxL<L
With this table of translations, the drift and diffusion operators for PDE’s and SPDE’s become

(41)Odrift = -‡ ‡ F F£ àHF£ L at HFL K‡ d x 
d

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d F£ HxL  F@F£ D HxL DHF£ - FL O

Vbl-StructTRV7A.nb

57



(42)Odiffusion = D ‡ ‡ F F£ àHF£ L at HFL i
k
jjj‡ d x 

d2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d F£ HxL 2

 DHF£ - FLy
{
zzz

This  gives  another  potential  application of the time-ordered  product expansion  of Section 4.5.1,  which can be
used to create simulation algorithms.

With  suitable  PDE’s  it  becomes  possible  to  represent  dynamically  changing  manifolds,  either  by
differential  equations  for  the  metric  as  in  General  Relativity,  or  for  an  explicit  embedding  into  a  higher  dimen-
sional space, or for an implicit embedding given by a function f HxL = 0 (a level set method).

5.2 Stochastic Parameterized Graph Grammars (SPGG's)

Here is an example of a continuous-time graph grammar rule:

τ = 1

τ = 2

τ = 3

τ = 3

τ = 3

τ = 1

τ = 2

The  following  syntax  introduces  Object  Identifier  (OID)  labels  Li  for  each  parameterized  term,  and  allows
labelled terms to point  to one another through a graph of such labels  .   The graph is related to two subgraphs  of
neighborhood  indices  NHi, sL  and  N£ H j, sL  specific  to the  input  and  output  sides  of  a  rule.   Like  types  or  vari-
ables,  the  label  symbols  appearing  in  a  rule  are  chosen  from  an  alphabet  8Ll » l œ L< .   Unlike  types  but  like
variables  Xc ,  the  label  symbols  LlHiL actually  denote  nonnegative  integer  values  -  unique  addresses  or  object
identifiers. 

A GG rule is of the form, for some nonnegative-integer-valued  functions lHiL  , l£ H jL , NHi, sL , N£ H j, sL
for which HlHiL = lH jLL fl Hi = jL ,  Hl£ HiL = l£ H jLL fl Hi = jL :

(43)

9LlHiL := ti IxaHiL ; ILNHi,sL … s œ 1..saHiL
max MM … i œ =

Ø 8LlHiL » i œ 1 Œ < ‹ 9Ll£ H jL := t j Ixa£ H jL
£ ; ILN £ H j,sL … s œ 1..sa£ H jL

max MM … j œ =
with rr I9xa£ H jL

£ = … 8xaHiL <M

Note that the fanout of the graph is limited by si
cur b saHiL

max .  Let

= 1 ‹ 2 and 1 › 2 = Ø
= 1 ‹ 2 and 1 › 2 = Ø
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1 = 8 j œ Ô H$ i œ 2 » lHiL = l£ H jL<
2 = 8 j œ Ô H± i œ 2 » lHiL = l£ H jL<

3 = 8i œ 2 ÔH± j œ 1 » lHiL = l£ H jL< Œ 2 L

This  syntax  may  be  translated  to  the  ordinary  non-graph  grammar  rule  (where  NextOID  is  a  variable,  and
OIDGen and Null are types reserved for the translation):

8taHiL HLlHiL , xaHiL , HLNHi,sL » s œ 1..si
cur LL » i œ < , OIDGenHNextOIDL

Ø 8taHiL HLlHiL , xaHiL , HLNHi,sL » s œ 1..si
cur LL » i œ 1 < ‹

9ta£ H jL ILl£ H jL , xa£ H jL
£ , ILN £ H j,sL … s œ 1..s j

cur MM … j œ 1 ÔHi œ 2 LÔ HlHiL = l£ H jLL= ‹
9ta£ H jL ILl£ H jL , xa£ H jL

£ , ILN £ H j,sL … s œ 1..s j
cur MM … j œ 2= ‹ 8NullHLlHiL L » i œ 3 <

Ê8OIDGenHNextOID + » »L <

with rr I9xa£ H jL
£ = … 8xaHiL <M ‰

jœ 2

dK HLl£ H jL , NextOID + j - 1L

which  already  has  a  defined  semantics.   Note  that  all  set  membership  tests  can  be  done  at  translation  time
because they do not use information that is only available dynamically  during the grammar evolution. Optionally
we may also add a rule schema (one rule per type, ta ) to eliminate any dangling pointers:

ta HLlH1L , x, HLNH1,sL » s œ 1..s1
cur LL, NullHLlH2L L

Ø ta HLlH1L , x, HLNH1,sL » Hs œ 1..s1
cur LÔ HNH1, sL ∫ lH2LLLL, NullHLlH2L L

with rcleanup  ‚
sœ1..smax

dK HLNH1,sL , LlH2L L

Note  that the  rule’s  target  graph structure  has  been encoded in N ,  and  N£ ,  and  a search  for  all  label sets  that
might satisfy these constraints is called for by the sum over label variables.  We can compare this to the search for
graph motifs g in a larger graph G.

Strings  may  be  encoded  as  one-dimensional  graphs  using  either  a  singly  or  doubly  linked  list  data
structure. String rewrite rules 

HtaHiL Hxi L » i œ L L Ø Hta£ H jL Hyj L » j œ R L with rr HHxi L, Hyj LL

(note  ordering  of  arguments)  are  emulated  as  graph rewrite  rules,  whose  semantics  are  defined  above.    This
form is capable of handling many L-system grammars.  If rr  is not supplied it can be set to 1.  

5.3 Multiple Scale Modeling

A  major  reason  for  considering  a  modeling  language  that  encompasses  stochastic,  deterministic,
discrete,  continuous  and  other  characteristics  of  models  in  one  framework,  is  its  potential  applicability  to  multi-
scale  modeling.   There  are many cases  where  a stochastic  model  at  one level is approximated  by a deterministic
model at the next coarser scale, and vice versa.  For example there is such an alternation between quantum mechan-
ics, molecular dynamics, kinetic theory, and thermodynamics of fluids.

Here we outline the automatable search for coarse-scale dynamical models, given fine-scale dynamics.
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5.3.1 Example: Neural network energy functions

In  the  simplest  case  the  probability  distribution  to  be  approximated  at  a  coarse  scale  is  in  thermody-
namic equilibrium,  so there is no dynamics.  Then our  technical  goal is to approximate a Boltzmann distribution
of some given form, such as

(44)PHxL =
1

ÅÅÅÅÅÅÅÅÅÅ
ZP

 exp

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
- b

i

k

jjjjjj‚
i j

Wi j  xi  xj + ‚
i

bi  xi + ‚
i

ji Hxi L + ‚
i j

Wi j k  xi  xj  xk

y

{

zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
.

 with a coarse-scale MRF of the same general form:

(45)QHyL =
1

ÅÅÅÅÅÅÅÅÅÅ
ZQ

 exp

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
- b

i

k
jjjjj‚

a b

Va b  ya  yb + ‚
a

b
`

a  ya + ‚
a

jè a Hya L + ‚
a b

Va b c  ya  yb  yc

y

{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

where there are fewer coarse-scale variables ya  than fine-scale variables xi , and fewer coarse-scale interactions
V  than fine-scale interactions W .  If this course-scale approximate model reduction can be defined once, it can be
defined recursively as well to get a series of reduced models 8P0 = P, P1 = Q@PD, P2 = Q@P1 D, ...< .  However, we
must relate the x variables  to the y  variables, and suggest  how to find and then use the functional Q = coarse@PD .
To keep the relationship between x  and y  simple we introduce the restriction relation

(46)rHy » xL =
1

ÅÅÅÅÅÅÅÅÅ
Zr

 exp

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
- b

i

k
jjjjj‚

a i

Ra i  ya  xi + ‚
a

j̀a Hya L
y

{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

where j̀  is quadratic, and the prolongation relation

(47)pHx » yL =
1

ÅÅÅÅÅÅÅÅÅ
Zp

 exp

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
- b

i

k
jjjjj‚

i a

Ka i  xi  ya + ‚
i

j« i Hxi L
y

{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

where j«  is quadratic.  Note that these relations have the property that x  or y  can easily be integrated out.

We  may  consider  parameterized  limits  of  restriction  and  prolongation  relation  parameters  and  obtain
Dirac delta functions on linear combinations of conditioned variables, in which case the restriction or prolongation
relation becomes a restriction or prolongation map as in ordinary deterministic multigrid methods.

Next we introduce a distortion measure as an objective function to be minimized by choice of r, p, and
QH8ya<L , such as:

(48)
D@PH8xi<L, QH8ya <LD = DKL APH8xi <L, Ÿ pH8xi < » 8ya <L QH8ya<L d 8ya < E , or

D@PH8xi<L, QH8ya <LD = DKL AŸ rH8ya < » 8xi <L PH8xi<L d 8xi <, QH8ya<LE .

Minimization  of  one  or  both  of  these  asymmetric  distances  with  respect  to  Q, r, and ê or p  ,  along  with  any
desired sparsity  or network  structure constraints  on V , R, and K ,  provides the statement of the learning phase of
the multiscale modeling problem.  The minimization can be done by gradient descent which turns out [Mjolsness,
Sharp,  Lackner  unpublished]  to be a generalized form of the Boltzmann machine algorithm of Hinton Sejnowski
1986, or by other optimization algorithms which use sample and sampled gradient information.
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Note that if xi  is already a hierarchical space such as an image scale space, then ya introduces  a poten-
tially different hierarchy which may or may not coincide with dropping the finest-scale pixels from the i -indexed
scale space.

5.3.2 Uses of the approximation

Given an approximation Q  of P , one can use it to speed up the convergence to equilibrium of a simula-
tion of P ,  by alternating  Markov chains constructed  to equilibrate  P  and Q .    For example,  Q  can be used as an
importance  sampling heuristic  for  faster equilibration of P . Two mechanisms for such  speedup are (a) proposing
large  steps  to  get  out  of  local  modes  (local  minima  of  the  energy),  which  can  speed things  up  exponentially  by
tunneling  through  energy  barriers,  and  (b)  propogating  information  long  distances  over  a  local  grid  (the  latter
mechanism  is  often  important  in  speeding  up  deterministic  multigrid  methods  for  solving  partial  differential
equations).

In the classic Boltzmann machine, random variables were divided into visible (input and/or output) and
hidden units.  For supervised learning, the visible units can be divided into distinct input and output units, and we
seek  a  QHxoutput , xinput L  distribution  that  approximates  PHxoutput , xinput L ,  so  that  QHxoutput » xinput L   models  an
observed  PHxoutput » xinput L  and  also  QHxinput L  models  PHxinput L .   For  example,  the  input  could  be  an  image  with  a
spectral  intensity  vector  at  each  pixel,  and  the  output  could  be  a vector  of  binary feature  presence/absence  deci-
sions at each pixel.  Clearly this sitution fits into our multiscale framework as the first hierarchical step, if the first
restriction  and  prolongation  relationships  are  constrained  to be the  identity  map.   Recursively,  then,  one  can use
the  more  general  multiscale  step  to  create  a  series  of  more  compact  approximating  models  and  accelerate  the
original  Boltzmann  machine  learning  algorithm.   From  past  experience  (our  own  and  others’  with  algebraic
multigrid) this is likely to be most effective if the recursive invocation scheme is the “W” cycle that calls cheaper,
coarser models much more frequently than fine ones.

Ultimately a converged multiscale method can be used (a) to quickly approximate PHxoutput » xinput L  and
thus predict from or classify a potentially novel input, with no further learning, and (b) to provide steps towards a
scientific understanding of the original joint distribution PHxL  in terms of optimal reduced models that approximate
it well, particularly if weight sharing is also used.

5.3.3 Goal-directed approximation

Both of the distortion measures of (Equation 48) may be subsumed within a more general, goal-oriented
approximation framework in which both x  and y  spaces are mapped to an essential space of the “observables” of
interest for a particular purpose,  wherein the distortion measure is defined.  Let zx H8z< » 8xi<L  be a defined relation-
ship  (a  given  conditional  distribution)  between  fine-scale  variables  x  and  a  set  of  observables  8z< ,  and  let
zy H8z< » 8ya <L  be the relationship,  to be optimized,  between coarse-scale  variables 8ya <  and the same set of observ-
ables 8z< .  Then a suitable distortion measure for optimizing zy H8z< » 8ya <L  and QH8ya<L  is

(49)D@PH8xi<L, QH8ya <LD = DKL C‡ zx H8z< » 8xi <L PH8xi <L d 8xi <, ‡ zy H8z< » 8ya<L QH8ya <L d 8ya < G

If zx is the identity then zy is the prolongation map and (Equation 49) is equivalent  to Equation 48a.  If the z’s
can be mapped to the y variables, on the other hand, then zx  plays the role of a fixed (unoptimized) restriction map
and optimizing (Equation 48b) with respect  to Q is equivalent  to optimizing (Equation 49) with respect to  zy Q .
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The  formulation  of  (Equation  49)  has  similarities  to  an  autoencoder  or  more  generally  the  “Information  Bottle-
neck”  formalism  of  Tishby,  with  y  and  its  distribution  QHyL  playing  the  role  of  a  bottleneck  in  the  mapping
between x  and z .

5.3.4 Generalization to time series

Everywhere in the foregoing,  we may split a collection of variables such as x, y, or z  into a pair such
as HxHtL, xHt + D tLL and regard the modeled probability  distribution  as a conditional  distribution PHxHt + D tL » xHtLL
that  is  independent  of  t  (depends  only  on  D t )  and  defines  a  semigroup  for  a  dynamical  system  -  a  stochastic
process obeying:  

(50)

PHxHt + D tL » xHtLL = PHxHD tL » xH0LL, 0 b D t
PHx£ HtL » xHtLL = dHx£ HtL - xHtLL

PHxHt + D tL » xHtLL = Ÿ-¶

¶ 8d xHt£ L< PHxHt + D tL » xHt£ LL PHxHt£ L » xHtLL, t b t£ b t + D t

The multiscale approximation setting then becomes that of Figure A1.

x(t) x(t+∆)

y(t) y(t+∆)

z(t) z(t+∆)

Figure A1.

We require that the joint distributions such as PHxHt + D tL, xHtLL  take a specific form such as (Equation 44), and
adapt  the  K-L   distance  measures  proposed  above  for  MRF  learning  accordingly.  In  this  way  we  arrive  at  a
fundamental  multiscale  model-reduction approach to the prediction of time series, including the image sequences
in our featured application domain.

5.4 Relation of cluster tree to Chinese Restaurant Process

5.4.1 Dirichlet and Chinese Restaurant processes

The  stick-breaking  construction  of  a  Dirichlet  process  can  be  expressed  with  this  discrete-time  grammar
(following [32]):

grammar (discrete-time) DP (startHNL Ø 8clusterHi, qk , pk L » 1 b k < ¶<) {

startHNL Ø cluster ' H0, 0, 0, 1, 0L  

cluster ' Hk, qk , bk , Xk , pk L Ø clusterHk, qk , pk L,
cluster ' Hk + 1, qk+1 , bk+1 , Xk+1 , pk+1 L

 

with bk+1 ~BetaH ÿ » 1, aL = HGH1 + aL ê GHaLL Hbk+1 La-1  
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with G0 Hqk L
where pk+1 = bk+1  Xk

where Xk+1 = H1 - bk+1 L Xk

}

Then the Chinese restaurant process for cluster generation is:

grammar (discrete-time) CRP (startHNL Ø 8sampleHxL » 1 b k b N<) {

startHNL Ø samplesHNL, 8clusterHk, qk , pk L » 1 b k < ¶<  via DP

samplesHNL, C = 8clusterHi, qk , pk L » 1 b k < ¶< Ø
samplesHN - 1L, C, sample ' Hqk L

with pk

subject to N > 0

sample ' Hq`L Ø sampleHxLwith p(·|q
`
)

}

5.4.2 Cluster tree

The clustergen  grammars  can be specialized  and limited so as to function in a very similar manner to DP and
CRP above,  with  a  Binomial  Beta  substituted  for  the  Beta  distribution.   However,  clustergen determines  a  more
general family of distributions.  For example one can control the histogram of cluster sizes.

Unwind rclustergen and limit to just two levels, but otherwise maintain equivalence to rclustergen:

grammar (discrete-time) L1clustergen (startHNL Ø 8clusterHi, qk , pk L » 1 b k b n<) {

startHNL Ø 8clusterHk, qk , pk L » 1 b k b n<  

with q1 HnL  

with ¤k fHqk » 0L  

with PrH8gk ª nk ê N » 1 b k b n< » N, nL
= dIN - ⁄ j=1

n nj M ¤ j=1
n q2 Hnj L êCoef@zN , @g2 HzLDn D

 

where pk = rankk HsortH8gk » 1 b k b n<LL  

 // or just report unsorted clusters

// optionally sample N too: with N ~ N-n ê VHnL
}

Exact  version:

grammar (discrete-time) L2clustergen (startHNL Ø 8sampleHi, qi , pi L » 1 b i b N<) {

startHNL Ø samplesHNL, 8clusterHi, qk , pk L » 1 b k b n<  via L1clustergen

samplesHNL, C = 8clusterHi, qk , pk L » 1 b k < ¶< Ø ‹1bkbn 8sample ' Hqk L » 1 b i b nk = RoundHpk  NL<, C

sample ' Hq`L Ø sampleHxLwith f(·|q
`
)

}

Multinomial resampling approximate version:

grammar (discrete-time) L2clustergen (startHNL Ø 8sampleHi, qi , pi L » 1 b i b N<) {
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startHNL Ø samplesHNL, 8clusterHi, qk , pk L » 1 b k b n<  via L1clustergen

samplesHNL, C = 8clusterHi, qk , pk L » 1 b k < ¶< Ø
samplesHN - 1L, C, sample ' Hqk L

with pk

subject to N > 0

sample ' Hq`L Ø sampleHxLwith f(·|q
`
)

}

Note the detailed mapping to DP and CRP grammars above.

The  cluster  generation  procedure  can  again  be  serialized  for  implementability,  as  in  the  meaning-preserving
transformation from rclustergen to rseqclustergen:

PrH8nk » 1 b k b j + 1< » N, nL = PrHnj+1 » 8nk » 1 b k b j<, N, nL PrH8nk » 1 b k b j< » N, nL

PrHnj+1 » 8nk » 1 b k b j<, N, nL =
PrH8nk » 1 b k b j + 1< » N, nL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

PrH8nk » 1 b k b j< » N, nL =
CoefAxN  ¤k=1

j+1 yk
nk , ¤k=1

n g2 Hx yk LE …yk> j+1 =1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
CoefAxN  ¤k=1

j yk
nk , ¤k=1

n g2 Hx yk LEE …yk> j =1

5.4.3 Resulting functions

E.g.  if  q2 =  a  geometric  distribution,  we  can  compute  this  solution  and  get  a  Binomial-Beta  distribution  that
plays the role of the Beta distribution in the CRP below.  This can be  calculated as follows:

PrHnj+1 » 8nk » 1 b k b j<, N, nL =

Pr
i

k
jjjjjnj+1 » N

è
= N - ‚

k=1

j

nk , n
y

{
zzzzz = Bb

i

k
jjjjjnj+1 » à = 1, b

`
= n - j - 1, ǹ = N

è
ª N - ‚

k=1

j

nk , n
y

{
zzzzz

Xnj+1 \ ª EHnj+1 L = ǹ 
à

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
à + b

` =
N
è

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n - j

Hequal sized portionsL

YHnj+1 - Xnj+1 \L2 ] ª VarHnj+1 L = ǹ 
à b

`

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Jà + bL`

2
 

à + b
`

+ ǹ
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
à + b

`
+ 1

=
N
è Hn - j - 1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hn - jL2

INè + n - jM
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn - j + 1L

Hzero variance for j + 1 = nL

Instead  of  a  “stick-breaking  construction”,  let’s  call  this  the  “bread-breaking  construction”:  each  nj+1  in turn
tries to take an equal share of the N

è
remaining samples.  Only the last one is able to do this with no variance, since

he just takes everything left over.

But in the more interesting case of a power law, g2 HzL = Lia HzL ê zHaL , we need to calculate the numera-
tor Coef@ ÿ D  in the following expression:

PrHnj+1 » 8nk » 1 b k b j< » N, nL =
Hnj+1 L-a

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
zHaL  

CoefAxN-n j+1 , HLia HzLLn- j-1E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

CoefAxN-n j , HLia HzLLn- j EE

Let’s compute HLia HzL ê zHaLLn  using Mathematica:
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Simplify[Series[Power[PolyLog[a,  z], n], {z, 0, 9}]]

zn K1 + 2-a n z + I3-a n + 2-1-2 a H-1 + nL nM z2 +

K4-a n + 6-a H-1 + nL n +
1
ÅÅÅÅÅ
3

2-1-3 a H-2 + nL H-1 + nL nO z3 +

1
ÅÅÅÅÅÅÅÅÅ
24

I24 5-a + 12 I21-3 a + 9-a M H-1 + nL + 121-a H-2 + nL H-1 + nL + 2-4 a H-3 + nL H-2 + nL H-1 + nLM

n z4 +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
120

I5 23-a 31-a + 23-2 a 151-a H5a + 6a L H-1 + nL + 5 121-2 a H8a + 9a L H-2 + nL H-1 + nL +

5 22-3 a 3-a H-3 + nL H-2 + nL H-1 + nL + 2-5 a H-4 + nL H-3 + nL H-2 + nL H-1 + nLM n z5 + ...O

Rewrite by hand to reveal patterns that may be the key to solving it:

zn  ;C1 + A2-a z + 3-a z2 + 4-a  z3 + 5-a  z4 + 6-a  z5 + ...E n +

1
ÅÅÅÅÅ
2

A4- a  z2 + 2 6-a  z3 + H2 8- a + 9-a L z4 + H10-a + 12-a L z5 + H2 12-a + 2 15-a + 16- a L z6 + ...E

H-1 + nL n +
1
ÅÅÅÅÅ
6

A8- a  z3 + 3 12-a  z4 + 3 H16-a + 18 -a L z5 + H 3 20-a + 6 24-a + 27-a L z6 + ...E

H-2 + nL H-1 + nL n +
1

ÅÅÅÅÅÅÅÅÅ
24

A16- a z4 + 4 24-a z5 + 2 H2 32-a + 3 36-a L z6 + ...E H-3 + nL H-2 + nL H-1 + nL n ...?
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