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Abstract 

We provide  preliminary  evidence  that  existing  algorithms  for 
inferring  small-scale  gene  regulation  networks  from  gene 
expression  data  can be adapted  to  large-scale  gene  expression  data 
coming  from  hybridization  microarrays.  The  essential  steps  are  (1) 
clustering  many  genes by their  expression  time-course  data  into a 
minimal  set of clusters of co-expressed  genes, (2) theoretically 
modeling  the  various  conditions  under  which  the  time-courses  are 
measured  using a continious-time analog  recurrent  neural  network 
for  the  cluster mean  time-courses, (3)  fitting  such a regulatory 
model  to the  cluster mean time  courses by simulated  annealing 
with  weight decay, and (4) analysing  several  such  fits  for 
commonalities in the  circuit  parameter  sets  including  the 
connection  matrices.  This  procedure  can  be  used  to  assess  the 
adequacy of existing  and  future  gene  expression  time-course  data 
sets  for  determining  transcriptional  regulatory  relationships  such as 
coregulation. 

1 Introduction 

In a cell,  genes  can be turned  “on”  or “off’ to varying  degrees by the  protein 
products of other genes.  When a gene is “on”  it  is  transcribed to produce  messenger 
RNA  (mRNA)  which  can  subsequently  be  translated  into  protein  molecules.  Some 
of these  proteins  are  transcription  factors  which  bind to DNA at specific  sites  and 
thereby affect which  genes  are  transcribed  and  how  often. This  trancriptional 
regulation  feedback  circuitry  provides a fundamental  mechanism for  information 
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processing  in  the  cell. It governs  differentiation  into  diverse  cell  types  and  many 
other  basic  biological  processes. 

Recently,  several  new  technologies  have been  developed for  measuring  the 
“expression” of genes as mRNA or protein  product.  Improvements  in  conventional 
fluorescently  labeled  antibodies  against  proteins  have been coupled  with  confocal 
microscopy  and  image  processing  to  partially  automate  the  simultaneous 
measurement of small  numbers  of  proteins  in  large  numbers of individual  nuclei  in 
the fruit f l y  Drosophila  melanogarter [l]. In a  complementary  way,  the  mRNA 
levels of thousands of genes,  each  averaged  over  many  cells,  have  been  measured by 
hybridization arrays for  various  species  including  the  budding  yeast Sacchammyces 
cerevisiae [2]. 

The  high-spatial-resolution  protein  antibody  data  has been quantitatively  modeled by 
“gene  regulation  network”  circuit  models  [3]  which  use  continuous-time,  analog, 
recurrent  neural  networks  (Hopfield  networks  without an objective  function)  to 
model transcriptional  regulation [4][5]. This approach  requires some  machine 
learning  technique  to  infer  the  circuit  parameters  from  the  data,  and  a  particular 
variant of simulated  annealing  has  proven  effective [6][7]. Methods  in  current 
biological  use  for  analysing  mRNA  hybridization  data do not  infer  regulatory 
relationships,  but  rather  simply  cluster  together  genes  with  similar  patterns of 
expression  across time  andexperimental  conditions [8][9]. In this paper,  we explore 
the  extension of the  gene  circuit  method  to  the  mRNA  hybridization  data  which  has 
much  lower  spatial  resolution  but  can  currently  assay  a  thousand  times  more  genes 
than  immunofluorescent  image  analysis. 

The essential  problem  with  using  the  gene  circuit  method, as employed  for 
immunoflourescence data, on  hybridization  data  is  that  the  number of connection 
strength  parameters  grows  between  linearly  andquadratically  in the  number of genes 
(depending  on sparsity  assumptions) . This requires more data on  each  gene,  and 
even if that  much  data  is  available,  simulated  annealing  for  circuit  inference does not 
seem  to  scale  well  with  the  number of unknown  parameters. Some form of 
dimensionality  reduction  is  called  for.  Fortunately  dimensionality  reduction  is 
available  in  the  present  practice of clustering  the  large-scale time  course  expression 
data by genes,  into  gene  clusters. In this way one can  derive a small number of 
cluster-mean time  courses  for “aggregated  genes”,  and  then fit a gene  regulation 
circuit to these  cluster  mean  time  courses. We will  discuss  details of how  this 
analysis can  be  performed andthen  interpreted A similar  approach  using  somewhat 
different algorithms  for  clustering  andcircuit  inference  has been taken by  Hertz [lo]. 

In the  following, we will  first  summarize  the data  models  and  algorithms used, and 
then report on preliminary  experiments in applying  those  algorithms  to  gene 
expression  data for2467 yeast  genes  [9][11].  Finally we will  discuss  prospects  for 
and  limitations of the approach. 

2 Data  Models  and Algori thms 

The  datamodel  is as follows. We imagine  that  there  is  a  small, hidden regulatory 
network of “aggregate  genes”  which  regulate one  another by the analog  neural 
network  dynamics  [3] 

dt 
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in  whichvi  is  the  continuous-valued  state variable for  gene  product i ,  q. is  the 
matrix of positive, zero, or  negative  connections by which one  transcription  factor 
can  enhance  or  repress  another,  and g ( )  is a nonlinear  monotonic  sigmoidal 
activation  function.  When  a  particular  matrix  entry qj is  nonzero,  there  is a 
regulatory  “connection”  from  gene  prochct j to  gene i . The regulation ’is enhancing 
if T is  positive  and  repressing  if  it  is  negative. If ?;i is zero  there  is  no 

connection. 

This network  is  run forwards from  some  initial  condition  and  time-sampled  to 
generate  a  wild-type  time  course  for  the  aggregate genes. In addition,  various  other 
time  courses  can be  generated  under  alternative  experimental  conditions by 
manipulating  the parameters. For  example an entire  aggregate  gene  (corresponding 
to a cluster of real genes)  could  be  removed from the  circuit  or  otherwise  modified  to 
represent  mutants.  External  input  conditions  could be modeled as modifications  to 
h. Thus we get  one  or several time  courses (trajectories) for  the  aggregate  genes. 

From  such  aggregate  time  courses,  actual  gene data is  generated by addition  of 
Gaussian-distributed  noise  to  the  logarithms of the  concentration  variables.  Each 
time  point in each  cluster  has its  own scalar  standard deviation  parameter  (and a 
mean  arising  from  the  circuit  dynamics).  Optionally, each  gene’s  expression  data 
may also be  multiplied by a time-independent  proportionality  constant. 

Given  this  data  generation model and  suitable gene  expression data, the  problem  is 
to  infer  gene  cluster  memberships  and  the  circuit parameters for  the  aggregate  genes’ 
regulatory  relationships.  Then, we would  like  to  use  the  inferred  cluster 
memberships  and  regulatory  circuitry  to  make  testable  biological  predictions. 

This data  model  departs from  biological  reality  in  many  ways  that  could  prove  to be 
important,  both  for  inference  and  for  prediction.  First, except for  the  Gaussian  noise 
model,  each  gene  in a cluster  is  models as fully  coregulated  with  every  other one  - 
they  are  influenced  in  the  same  ways by the  same regulatory  connection  strengths. 
Second,  the  nonlinear  circuit model must  not  only reflect transcriptional  regulation, 
but  all  other  regulatory  circuitry  affecting  measuredgeneexpression.  Such  circuitry 
includes  protein-protein  regulatory  interactions  such as kinase-phosphatase 
networks,  actively  controlled  protein degradation (proteolysis),  translational 
regulation,  and  intercellular  signaling  where  applicable. 

Under this data  model, one  could  formulate a joint Bayesian  inference  problem  for 
theclustering  andcircuit inference  aspects of fitting  the  data  But  given  the  highly 
provisional  nature of the model, we simply apply in sequence an existing  mixture- 
of-Gaussians clustering  algorithm  to preprocess the data and reduce i t s  
dimensionality,  and  then an existing  gene  circuit  inference  algorithm.  Presumably a 
joint  optimization  algorithm  could  be  obtainedby  iterating  these  steps. 

2 . 1  C l u s t e r i n g  

A widely used  clustering  algorithm for  mixure model estimation  is  Expectation- 
Maximization  (EM)[I2]. We use  EM  with a  diagonal  covariance  in the  Gaussian, 
so that  for  each  feature  vector  component a (a combination of experimental  condition 
and  time  point  in a time  course)  and  cluster a there  is  a  standard  deviation 
parameter CT,,. In preprocessing,  each  concentration  data  point is divided  by i ts  
value at time zero  and  then a logarithm taken. The log ratios  are  clustered  using 
EM.  Optionally, each  gene’s entire  featurevector  may  be  normalized  to  unit  length 
and  the  cluster  centers  likewise  normalized during the  iterative EM algorithm. 



In order to  choose  the  number of clusters, k ,  we use  the  cross-validation  algorithm 
described by Smyth [I 31. This  involves  computing  the  likelihood of  each  optimized 
fit  on a test  set  andaveraging  over  runs  and  over  divisions of the data into  training 
and  test  sets.  Then, we can examine  the  likelihood as a  function of k in order to 
choose k .  Normally  one  would  pick k so as to  maximize  cross-validated  likelihood. 
However,  in  the  present  application we also want to reward small  values.  of k which 
lead  to  smaller  circuits  for  the  circuit  inference  phase of the  algorithm.  The  choice 
of k will  be  discussed  in  the  next  section. 

2 . 2  C i r c u i t   I n f e r e n c e  

We use  the  Lam-Delosme  variant of simulated  annealing (SA) to  derive  connection 
strengths T ,  time  constants 2 ,  and decay rates h, as in  previous  work  using  this 
gene  circuit  method [4][5]. We set h  to zero. The score  function  which SA 
optimizes  is 

S(T,r,il) = A ~ ( v i ( t ; 7 ’ , r , i l ) - C j ( t ) ) ’  + Wcqi  
it ij 

ij i i 

The  first  term  represents  the  fit  to  data C i .  The second  term  is a standard  weight 
decay term. The third  term  forces  solutions  to  stay  within a bounded  region  in 
weight  space.  We  vary the  weight decay coefficient W in  order to  encourage 
relatively  sparse  connection  matrix  solutions. 

3 Resu l t s  

3 . 1  D a t a  

We  used  theSaccharomyces  cerevisiae  dataset of 191. It includes  three  longer t ime 
courses  representing different  ways to  synchronize  the normal cell  cycle [ l l ] ,  and 
five  shorter  time  courses  representing  altered  conditions. We used  all  eight  time 
courses  for  clustering,  but  just 8 time  points of one of the  longer  time  courses 
(alpha  factor  synchronized  cell  cycle) for  the  circuit inference. It is  likely  that 
multiple  long  time  courses under altered  conditions  will be  required  before strong 
biological  predictions  can  be  made  from  inferredregulatory  circuit  models. 

3 . 2  C l u s t e r i n g  

We  found  that  the  most  likely  number of classes as determined  by cross  validation 
was  about  27,  but  that  there  is a broad  plateau of high-likelihoodcluster  numbers 
from 15 to 35 (Figure 1). This  is  similar  to  our  results  with  another  gene 
expression  data  set  for  the  nematode  worm  Caenorhabditis  elegms  supplied  by 
Stuart  Kim;  these  more  extensive  clustering  experiments  are  summarized  in  Figure 
2.  Clustering  experiments  with  synthetic  data  is  used  to  understand  these  results. 
These  experiments  show  that  the  cross-validatedlog  likelihood  curve can indicate the 
number of clusters  present  in  the  data,  justifying  the  use of the  curve  for  that 
purpose. In more  detail,  synthetic  data  generated  from 14 20-dimensional  spherical 
Gaussian  clusters  were  clustered  using  the EM/CV algorithm. The  likelihoods 
showed a sharp  peak at k=14 unlike  Figures 1 or 2. In another  experiment , 14 20- 
dimensional  spherical  Gaussian  superclusters  were  used  to  generate  second-level 
clusters (3 subclusters  per  supercluster),  which  in  turn  generated  synthetic  data 



points.  This  two-level hierarchical  model  was  then  clustered with  the EM/CV 
method. The likelihood  curves  (not  shown)  were  quite  similar  to  Figures 1 and 2, 
with a  higher-likelihood  plateau  fiom  roughly 14 to 40. 
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Fi gure 1 .  Cross-validated  log-likelihood  scores,  displayed  and  averaged  over 5 runs, 
for EM clustering of S.  cerevisiae gene  expression  data [9]. Horizontal  axis: k ,  the  
“requested” or maximal number of cluster  centers  in  the  fit.  Some  cluster  centers  go 
unmatched to  data.  Vertical axis:  log  likelihood  score  for  the  fit,  scatterplotted  and 
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Figure 2 .  Cross-validated  log-likelihood  scores,  averaged  over 13 runs, for  EM 
clustering of C. elegansgeneexpression  datafromS. Kim’s lab.  Horizontal  axis: k ,  the  
“requested” or maximal number of cluster  centers in the  fit. Some  cluster  centers  go 
unmatched  to  data.  Vertical axis:  log  likelihood  score  for  the  fit, as  an average  over 1 3  
runs plus or minus one standard  deviation. (Left)  Fine-scale  plot, k =2 to 60 in 
increments of 2. (Right)Coarse-scaleplot, k=2 to 202 in  increments  of 10. Both  plots 
showan  extendedplateauof  relatively  likely  fits between roughly k =14 andk 4 0 .  

From  Figures 1 and2  and  the  synthetic data  experiments  mentioned  above,  we  can 
guess at appropriate  values  for k which  take  into  account  both  the  measured 
likelihood  of  clustering  and  the  requirements  for  few  parameters  in  circuit-fitting. 



For example  choosing  k=15  clusters  would  put us at the  beginning of the  plateau, 
losing very little  cluster  likelihood  in  return  for  reducing  the  aggregate  genes  circuit 
size  from  27  to  15  players.  The  interpretation  would  be  that  there  are  about.  15 
superclusters  in  hierarchically  clustered data, to which  we will  fit a 15-player 
regulatory  circuit.  Much  more  aggressive  would be to  pick k=7 or 8  clusters,  for  a 
relatively  significant  drop  in  log-likelihood  in return for a  further  substantial 
decrease  in  circuit  size. An acceptable  range of cluster  numbers  (and  circuit  sizes) 
would  seem  to  be k=8 to  15. 

3 . 3  G e n e   C i r c u i t   I n f e r e n c e  

It proved  possible  to  fit  thek=l5  timecourse  using weight decay W=l but  without 
using hidden units. W=O and W=3 gave  less  satisfactory  results. Four of the  15 
clusters  are  shown  in  Figure  3  for  one  good  run (W=l). Scores  for  our  first  few 
(unselected)  runs at the current  parameter  settings  are  shown  in  Table 1. Each  run 
took between  24 and48 hours  on one processor of an Sun Ultrasparc 60 computer. 
Even  with  weight decay, it  is  possible  that  successful  fits  are  really  overfits  with 
this  particular  data  since  there  are  about  twice as many  parameters as data  points. 

Weight Decay Score  Simulated  Annealing  Notes 
W Moves 

0 1.391 31 40000 

0 1.656 23  10000 

1  0.528  30 10000 Figure  3 

I 1.050  27 1 000 0 Qualitative  fit  for  most 
clusters 

3 1.417 27  9000 0 Poor fit 

Table 1 .  Score  functionparameters  wereA=1.0, B=0.01, Annealing  runs  statistics  are 
reportedwhen thetemperaturedroppedbelow 0.0001.  Thetwolowest-scoring (best) runs 
occurred for W=l . More  runs will  determine  whether  weight decay W-1 is a necessary 
condition fora goodfit,  or whetheronejustneeds to t ake the  best of N runs andor slow 
down thesimulated  annealing  terrnperaturecontrol. 

There  werea  few  significant  similarities  between  the  connection  matrices  computed 
in the  two  lowest-scoring  runs.  Perhaps  the  most  salient  feature  in  the  lowest- 
scoring  network was a set of direct feedback loops  among  its  strongest  connections: 
cluster 8  both  excitedand  was  inhibited by cluster 10, andcluster 10 excitedandwas 
inhibited by cluster 15. This  feature  was  preserved  in  the  second-best  run. 
However, a systematic search for  “concensus  circuitry”  awaits  more  simulated 
annealing  runs.  From  parameter-counting  one  might  expect  that  making  robust  and 
unique  regulatory  predictions  will  require the  use of more trajectory  data  taken under 
substantially different conditions.  Such data is expected  to  be forthcoming as 
hybridization  expression  technology  is widely adopted 

4 D i s c u s s i o n  

.’ 

We  have  illustrated a procedure for  deriving  regulatory  models  from  large-scale  gene 
expression  data  As  the  data  becomes  more  comprehensive  in  the  number  and  nature 
of conditions under which  comparable t ime courses  are  measured,  this  procedure  can 
be  used  to  determine  when  biological  hypotheses  about  gene  regulation  can  be 
robustly derived from the data. 
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Figure 3 .  Fourclusters (numbers 9-12)  of  a  15-cluster  mixture of Gaussians model of 
2467  genes  each  assayedoveran  eight-point  timecourse;  clustermeans (shown as X)  are 
fit to  a gene  regulation  network model (shown as 0 ) .  
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