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In contrast to most synthetic neural nets, biological neural networks have a strong 
component of genetic determination, which acts before and during experiential learn- 

ing. Three broad levels of phenomena axe present: long-term evolution, involving 

crossover as well as point mutation; a developmental process mapping genetic in- 
formation to a set of cells and their internal states of gene expression (genotype to 
phenotype); and the subsequent synaptogenesis. We describe a very simple mathe- 

matical idealization of these three levels which combines the crossover search method 

of genetic algorithms with the developmental models used in our previous work on 
"genetic" or ~recursively generated" artificial neural nets [18] (and elaborated into a 
connectionist model of biological development [19]), Despite incorporating all three 
levels (evolution on genes; development of cells; synapse formation) the model may 
actuaJ]y be far cheaper to compute with than a comparable search directly in synaptic 
weight space. 
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1 G e n e s ,  ce l l s ,  a n d  n e t w o r k s  

Biology has motivated research on genetic algorithms as well as on synthetic neural 
nets. What biological phenomena could motivate a synthesis of these two approaches? 
We propose that such a synthesis can be based on the interplay of objects at three 
levels of organization: genes, cells, and networks of cells. Dynamics at the level of 
genes (point mutations, crossover, inversion and so forth) has been schematized for 
use in genetic algorithms. Likewise the dynamics of networks of neurons, including 
learning, are abstracted in synthetic neural nets. The missing dynamical system is de- 
velopment: the elaboration of genetic information to produce neurons and their initial 
connections. A phenomenological modeling framework for development was presented 
in [19]. A simplified version of this model, together with simple genetic algorithms 
and neural nets, results in a synthesis of these ideas in a unified connectionist model. 

1.1 The  mode l  

The main parameters in a neural net are its real-valued connection strengths W/i 
between neuron i and neuron j. In our model, initial values of W result from a 
development process which creates neurons (indexed by i) and their internal state 
vectors vi. The state vector for one neuron could represent the concentrations of 
important proteins within that neuron. The "degree of match" between two state 
vectors vi and v i determines the connection strength Wij:  

a b 

ab 

This is a sigmoidal function of a quadratic form of state vectors vi and vj. It could 
be simplified by taking Q to be the identity matrix and by taking f to be the identity 
function. Connection matrices (such as W) specified as the degree of match between 
code vectors (such as vi) also occur in models of the immune system [5, 20]. 

Next we require an equation for the state vectors. The state vector of a cell is 
determined by that of its parent in a lineage tree of cell divisions. If a designated 
component of cell i's state vector is above threshold, that cell will divide to form two 
new cells indexed by (i, k) (where k is 0 or 1) whose state vectors are [19] 

 a'vb (2) v~i,k ) = V a + rag ~Z:.~ k i + • 
b 

This equation determines the course of development in our simplified system. Equa- 
tion (2) is excerpted from a eonnectionist model of a gene regulation circuit whose 
connection matrix is T. This circuit expresses the fact that proteins are gene prod- 
ucts which or repress the synthesis of proteins by other genes. Genes are indexed by 
a, and the protein product of gene a in cell / is v~. For a fuller discussion of this 



Multiscale Modeling of Developmental Processes 69 

type of model, including its elaboration as a phenomenological model for biological 
development, see [19, 23]. 

We also wish to describe changes in the genes and the effect this produces in the 
regulatory circuit, specified by T and h. (Since the threshold h can be regarded 
as an extra column of T connecting to an extra constant component of v, we will 
omit explicit discussion of h in what follows.) Dynamics at the level of genes is 
described schematically by point mutation and crossover operations, modeled as in 
genetic algorithms. It would be a confusion of levels to apply these operations directly 
to the gene-gene interaction matrix T, since it is genes and not their interactions that 
are mutated. Thus point mutation and crossover should not be modeled as acting on 
elements of T, but as acting simultaneously on its rows and columns. One consistent 
way to do this is to represent gent a as a pair of vectors p~ and e ~, subject to crossover 
and point mutation, which interact with gene b to determine Tab. This formulation 
is motivated by the observation (see for example [21], [8], and [11]) that eucaryotic 
genes contain very large control regions called promoters. In fact, for many genes 
the promoter is significantly larger than the region which codes for protein. The 
promoters contain a large number of binding sites for protein products of other genes 
that control transcription from that promoter. A functional module of such binding 
sites (defined by certain experimental manipulations enabled by molecular genetics) 
is known as an enhancer. We regard p~ as having a set of scalar components p~, each 
of which characterizes an enhancer. The protein product of gene b acts by binding to 
these sites. The action of the protein product of gene b when bound to these sites is 
given by the vector e b, with components c~, where the index/3, like c~, ranges over 
the set of enhancers. In terms of pa and c b, T ~b can be written as 

(po.R. a b (3) (Z 

This equation~ also, could be simplified by taking P~ to be the identity matrix and 
h to be the identity function. With this parameterization of T, point mutations are 

a Crossover is defined by a linear ordering on the a single-element changes in p~ or c~. 
index and a corresponding linear ordering of the genes (pa, c~). The usual crossover 

operation can be applied to two such strings of genes by swapping corresponding 
contiguous blocks of adjacent genes. 

In previous work we have used a related "genetic neural net", optimized using 
simulated annealing of parameters appearing in a recursive growth rule (described in 

section 2.2.4), to solve a coding problem. Because it was the growth rule rather than 
the neural connection matrix W that was optimized, the net could be thoroughly 
trained on small coding problems and then scaled up to coding problems too large to 

handle otherwise. 
In the rest of this paper, we will discuss the relationship between this simple three- 

level model and three areas of research that correspond to its genetic, developmental, 
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and neural levels. The model's genetic level has analogs in the field of artificial 
genetic algorithms. The developmental level is a simplification of a phenomenological 
modeling framework for biological development. The neural level is a new way to bring 
the learning capabilities afforded by genetic algorithms to the field of neural nets. 

1.2 The  genet ic  level and  genetic a lgor i thms 

Equations (1-3) define the moves in a genetic algorithm search procedure for a pop- 
ulation of neural networks which are to be scored by their performance on neural net 
tasks. This scoring function may include simulated experiential learning as well as 
simulated computation of network outputs. 

Equations (1) and (3) each define a matrix in terms of a pair of matrices and 
a constant quadratic form on a new vector space, which introduces a new type of 
index. Thus N 2 parameters are determined by O(NM) parameters, where M is the 
dimension of the new vector space. Highly structured matrices result from taking 
M = O(1), and general matrices result from taking M = N. This reparameterization 
is a very cheap way to describe substructure in a multilevel model. It is usually difficult 
to include in one model coupling between effects at different length scales without a 
catastrophic incre~e in computational expense. This catastrophe is avoided here since 
the translation between levels is just matrix multiplication. The reparameterization 
does not introduce an additional level of loop nesting or an additional time scale, 
which are often the cause of high c~mputational expense. In fact, the computational 
expense may be greatly reduced by reducing the number of free parameters. 

A different way to use genetic algorithms in the search for successful neural nets 
is provided by the combination of classifier systems governed by genetic algorithms 
[13,14] and Farmer's mapping of classifier systems onto neural nets [6]. In this 
mapping, a classifier rule corresponds to a set of connections which share a com- 
mon strength parameter. Neurons are labeled by possible messages. The connection 
strengths can learn from experience by means of the bucket brigade algorithm. This 
use of genetic algorithms with neural nets has the advantage that it involves a gram- 
mar, the set of rules in the classifier system, which imposes network structure and 
which can be used to incorporate prior knowledge of the sort commonly expressed in 
AI knowledge representation schemes [7, 1]. 

Yet another way to combine genetic algorithms and neural nets is to define cross- 
over and point mutations operations directly on a connection matrix [16]. This 
method produces unstructured neural nets: every parameter in the connection ma- 
trix is independent. Consequently it is very hard to map a grammar into the neural 
net, so at least that particular way of introducing high-level abstractions and prior 
knowledge into the network is not available. 

By comparison with these approaches, in our model the developmental process 
maps a gene regulation circuit to a neural net. The genetic circuit is the intervening 
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step between a genetic algorithm and a neural net also capable of experiential learning. 
As we just saw, a classifier system could play this role also. However, the developmen- 
tal process provides considerably more flexibility for specifying a structured network 
and its connection matrix than does a classifier system. In fact the connectionist 
model of development can be considered as a small computation, as is done in [19]. 
It remains to be shown that prior knowledge and network structure at the level of 
abstraction available to a grammar can be incorporated into such networks. We will 
address this question in section 2. 

1.3 The  deve lopmenta l  level and biological models  

In the study of biological evolution, the interaction of evolution and development has 
historically been a prominent theme [9] and is again today [3]. For example, hete- 
rochrony (evolutionary changes in developmental timing) is an important mechanism 
in evolution. Such phenomena would be expected to occur in our multilevel model. 

Equation (2) must be amplified considerably to arrive at a model which could be 
applied to real biological problems. A step in this direction has been taken in [19, 22], 
in which we presented a phenomenological modeling framework for development whose 
purpose is to provide a systematic method for discovering and expressing correlations 
in experimental data on gene expression and other developmental processes. 

The modeling framework is based on a connectionist or "neural net" dynamics for 
biochemical regulators, coupled to "grammatical rules" which describe certain fea- 
tures of the birth, growth, and death of cells, synapses and other biological entities. 
Spatial geometry can be included, although this part of the model is not complete. 
The framework was applied to derive a rigorously testable model of the network of 
segmentation genes operating in the blastoderm of Drosophila [19, 23]. The elabora- 
tion of the equations for interphase by writing T ab as a product of pa and c b is under 
consideration as a model of eucaryotic promoters. 

The principal differences from the simplified model of equation (2) are the addi- 
tion of a grammar of possible biological objects and processes, and the presence of 
continuous-time connectionist dynamics to model processes such as interphase. 

1.4 The  neura l  level and  syn the t ic  neura l  ne ts  

It is possible to parameterize a neural net in different ways. For example, the connec- 
tion matrix W may be regarded as a set of independent parameters that specify the 
network. Equation (1), and therefore our model, provides a different parameterization 

a As we have seen, in which the independent parameters are, ultimately, p~ and %. 
classifier systems provide another parameterization and many others have been used 
in the neural network field. 

The various parameterizations differ widely in their functionality and cost of com- 
putation. They operate at different degrees of abstraction, have different properties 
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when tested for generalization, and are best optimized by different search algorithms. 
The cost of computing and learning depends strongly on the network parameterization 
chosen. These issues are the subject of the next section. 

2 P a r a m e t e r i z a t i o n  o f  n e u r a l  n e t s  

2.1 Cost  o f  genet ic  neura l  ne ts  

The computational cost of the neural network parameterization specified by equations 
(1-3) is low, as discussed above, for two reasons. Equations (1) and (3) introduce new 
levels of modeling by matrix multiplication but may substantially reduce the number 
of free parameters. Also the introduction of a genetic algorithm search, including 
crossover, provides a way to parallelize a naturally serial search procedure such as 
simulated annealing, which is analogous to point mutation alone. 

For fast special-purpose hardware such as reconfigurable neural net chips or SIMD 
parallel computers, there may be an additional computational advantage to networks 
that can be described by parallelizable developmental dynamics. A serial host com- 
puter can transmit the developmental dynamics, specified by T and Q, rather than 
the much larger neural network, specified by W, to the parallel hardware. Since 
equation (2) is a parallel dynamical system for development, it can be efficiently run 
on a special-purpose machine. The resulting neural net can then be run or trained 
on the same machine. Consequently it would interesting and, useful to have a "com- 
piler" which translates from high-level descriptions of a network's architecture and 
function to a parallel growth rule that can build the corresponding neural net. One 
such compiler is used in [15]. 

2.2 Funct ional i ty  of  neura l  net  pa ramete r i za t ions  

2.2.1 Genera l iza t ion 

Generalization is an important issue in neural net learning. Typically, fewer trainable 
parameters decrease the size of the training set which a network must learn in order 
to successfully generalize beyond that training set. To understand this point, we 
refer to previous results on the application of the Vapnik-Chervonenkis dimension 
to neural network learning [2]. The VC dimension is a technical way to bound the 
number of different functions (relating input and output states of the neural net) that 
can be .expressed as one varies the parameters which determine the connections in 
a neural network. The theorems yield formulae giving the size of the training set 
necessary for successful generalization from successful training, as a function of the 
VC dimension and of some parameters specifying the accuracy and confidence level 
of the obtained generalization. For a variety of cases in which the VC dimension has 
been calculated or bounded, it is roughly cn logn where n is the number of trainable 
parameters in the net. Also the training expense may grow faster than linearly with 
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the size of the training set. Consequently, superfluous parameters should be avoided 
and thus parsimonious parameterizations of neural nets are advantageous. The model 
of section 1.1 is an extremely parsimonious parameterization. 

2.2.2 Graph dynamics and search 

Aside from its ability to replace sequential search with parallel search, discussed in 
section 2.1, the crossover operation changes the set of moves available to the search 
procedure to include moves that would be highly nonlocal in a search procedure based 
on point mutation alone. This increases the accessible search space, and may result 
in better solutions. However, the crossover operation should exchange code units that 
are meaningful for the problem under consideration. 

As pointed out by Farmer [6], connectionist systems such as neural networks are 
often formulated with a static connectivity graph but a second phase of research is 
introducing "graph dynamics" on a sparse connectivity graph. Examples in the neural 
network field include [4, 10, 24]. By expressing an N × N connection matrix W as 
a product or quadratic form of two N × M matrices, as in equations (1) or (3), we 
introduce a code for the graph corresponding to W.  Thus our graph dynamics is 
actually "code dynamics", i.e. a dynamical system for the codes. 

2.2.3 Expressiveness,  abs t ract ion,  and prior knowledge 

An important property of any neural net is the degree to which it can express and 
manipulate abstract things and relationships. Such expressiveness is necessary if an 
experimenter is to incorporate high-level prior knowledge into the network. The idea 
of expressiveness is hard to quantify; we nevertheless propose to illustrate it by a 
discussion of grammars which generate objects at various levels of abstraction. For 
example, we could use a two-level grammar whose top-level rules translate each letter 
of an alphabet into a set of straight line segments and segments of curves arranged in 
a characteristic configuration, and whose bottom-level rules translate line and curve 
segments into individual pixels which are made available to a perceiver. 

A connectionist neural net for letter recognition under this grammar might be 
constructed by devoting a group of neurons to each possible instance of an object 
in the grammar, and a bundle of connections to each pair of neuron groups whose 
objects are related by a rule in the grammar. In this way the grammar can be mapped 
into the neural net. The grammar has a definite interpretation (in terms of actual 
letters, as opposed to formal terms) and this interpretation can be enforced during 
the network's training by scoring all groups of neurons, rather than just the output 
neurons. 

It is also possible to map an uninterpreted grammar into a neural net. For example 
an evolved classifier system may be regarded as an uninterpreted grammar. Also the 
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grammar occurring in the full development model of [19], when augmented by equa- 
tion (1), clearly maps into the resulting neural net but does not have any particular 
semantic interpretation. Yet another example is the code used in the genetic algorithm 
for evolving neural nets in [12], which is an artificial grammar of many-neuron "areas" 
and their "projections" to one another. By contrast with these systems, the neural 
nets for visual recognition problems presented in [17] are derived from interpreted 
grammars which describe the composition and shape of visual objects. 

2 .2 .4  G r a m m a r s  and genet ic  neura l  n e t s  

For genetic neural networks it is straightforward to map an uninterpreted grammar 
into the development process, hence indirectly into the net, as we will show. 

In [18] we introduced a recursive parameterization of connection matrices which 
may be viewed as a development process. Large connection matrices are specified in 
terms of smaller ones: 

¢i,,~)~i,,i2) - ~ i,,~, ,~,,2 (4) 
b 

where (il, i2) is a multi-index spanning the product space of the il and is index, a (or 
b) labels a vocabulary of connection graphs available in a given generation n (or n -  1). 
P is called the "propagator" and if its entries are sparse, it can encode a grammar 
by which a term (a nascent connection graph) indexed by a is replaced with a set of 
terms (smaller graphs) indexed by b. For il = Jl these graphs are the connections 
within a netlet (a module which often has a specific function); for off-diagonal blocks 
ix • j l  they are bundles of connections between netlets. 

Likewise, in the present model equation (2) may be used to encode a growth 
grammar. Each term in the grammar is represented by a unit direction vector in the 
cells' internal space, and a grammar rule is an entry in T which encodes a transition 
from one such vector to another. 

To map an interpreted grammar into a neural net with our model, we may augment 
the mapping just described. The details will be presented elsewhere. 

3 Conclusion 

We have sketched a model with three levels of organization which allows for the use 
of genetic algorithms in neural networks. This is accomplished by interposing a level 
representing development between the neural net level, which supports computation, 
and the genetic level, where the effects of crossover and point mutation act. The 
resulting system is cost-effective and expressive. 

We believe this model provides a framework which can be elaborated to describe 
important features of actual biological systems. A first step towards such elaboration 
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has been taken for the development portion of the model. The model also provides a 

flexible means to explore the usefulness of ideas motivated by biology in computing. 
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