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Abs t r ac t

We expand the mathematical apparatus for relaxation networks, which conventionally consists
of an objective function E and a dynamics given by a system of differential equations along whose
trajectories E is diminished. Instead we (1) retain the objective function E, in a standard neural
network form, as the measure of the network’s computational functionality; (2) derive the dynamics
from a Lagrangian function 1, which depends on both E and a measure of computational cost; and
(3) tune the form of the Lagrangian according to a meta-objective M which may involve measuring
cost and functionality over many runs of the network. ‘1’he key new features are the Lagrangian,
which specifies an objective function that depends on the neural network’s state over all times
(analogous to Lagrangians which play a similar fundamental role in physics), and its associated
greedy  functional derivative from which neural-net relaxation dynamics can be derived. It is the
greecly variation which requires the dissipation critical to optimization with neural dynamics.

With these methods we are able to analyze the approximate optimality of IIopfield/Grossberg
dynamics, the generic emergence of sub-problems involving learning and scheduling as aspects of
relaxation-based neural computation, the integration of relaxation-based and feed-forward neural
networks, and the control of computational attention wcchanisms  using priority queues, coarse-scale
blocks of neurons, clefault-valued  neurons, and other special-case optimization al~;orithnw. Some of
these applications are the subject of part II of this work.

In part II of this work we show that the combination of I,agrangian  and meta-objective sufilce to
derive and provide an interpretation for so-called clocked objective functions, a notation useful for
the algebraic formulation and design of rarnifled neural network applications. Clocked objectives
thus generalize the original static objective function I; and furnish a practical neural network
specification language.

1  INTRODUCTION

Optimization is a prominent way to bring rnathernatical  methods to bear on ttle design of neural
networks. Often the connection is made [I Iop84, C;ro88,  11’1’85] by specifying the attractors of a
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IIcllral  network’s  dyll:tlllit+ I)y [llralls of a stati( ot)jt’f’tive  flltlrtiolt  (or obyct~uf,)  (0 lx> 01)1 Iltliz{xt,
I)rovided that ttle o[)ti[tlixatioll  j)rotjlcrll can be [Jut ill a st:illdard  rleura-rlrt for]]l  (\vlli(’11 is II(]t  too
restrictive a rcq(lirelllcnt  [h’l(; !)()]).  In tliis w’ay it Ilas proven  Imssil)le to desig[l rlrural Iict\voriis for
applications in ir[lage processing [KM Y86], cot[lbi[latorial  optimization [I) W87], clustcritlg  [li(; F90,
111{!)  3], particle trackirlg in accelerators [YII1’9 1], object  rccogl~ition ~lkdll]  and otllcr  appliratio[ls.
It is also custorl)ary  (albeit Ii[llitillg) to i[ltroduce  a generic stec[wst-descent  clynat[lics  to opti[lliw or
‘(relax” the objective, without further regard to com[)utational  constraints. 1’IIc  rcsultitlg  equations
of lllotion  generally contain gradients of tllc stati(’ objective, but arc other;vis(  a(l hoc slid not
particularly suited to elaboration or refinclnent  in response to variecl computational constraiiits.  \\re
shall develop a more general approach, starting from basic principles, to formulating the dynamics
of a relaxatiorl-baseci  neural [Letwork.

IIere we start from fundamental conlputationol  considerations which, wc hypothesise, constrain
all dgnamicd systems that cou~pute.  Specifically, the cost and functionality (e[licacy)  of a conl-
putation are fundamental to its design, and in general each must be traded ofl’ against the other
in the course of optitnizing  that design. (llerc  the “design” is all the information which clirectly
specifies the structure or configuration of the clynall~ical system that performs a co~nputation.  ) In
the context of neural computations, we will find measures of cost and functionality and combine
them into dynamical objective functzons  from which one nlay derive the entire clyllanlics of a neural
network. This dynamics inclucles not only the (fixecl point) attractors but also the ec]uations of
motion governing convergence to an attractor, i.e. a mathematical rnoclel or specification of the
network itself.

Our dynamical objective functions can be specialized in many ways that correspond to the wide
variety of goals and constraints that may be imposed on a computation. We will also relate the
dynamical objective functions to a so-called Lagrangian  functional. Our I,agrangian  is analogous
to one which plays a similar and fundamental role in physics. A basic constraint which we impose
on our approach is that such a dynamical objective function or Lagrangian is optimized in a special
way, by means of greedy algorithms which don’t look af~ead in time. ‘1’his constraint allows our
algorithms to be implemented in physical hardware, and also allows us to derive nonconservative,
irreversible dynamics which can Ieacl to a desired fixed point. We will derive these algorithms by
means of a novel greedy variation applied to the Lagrangian functional.

Generally we will accept the limited type of optimization that results, but sometimes we can
do better by introducing another level of opti~oization:  a ~t~eta-opt~tt~tzation  proble~n in wltich the
(analytic) form of the dynamic objective (the I,agrangian  functional) is itself varied so as to optimize
another objective function. l’his  latter optimization may involve measuring cost and functionality
over many runs of the network. ‘l’his meta-optimization proble[n determines the choice of the exact
algebraic fortn of the Lagrangiall  and hence of the computational dynamics for a whole class of
applications. So for a meta-objective  function, cost and functionality are measured over a class of
computational problems rather than over a single instance of that class as would be the case for a
Lagrangian functional. In practice the computational cost or analytic effort required to perform the
rneta-optimization is to be amortized over many problem instances, One example of this approach
will be a (meta-)  optimality objective for IIopficld/C1rossberg dynamics [Hop84, Gro88], for which
we provide a proof that the associated Lagrangian is optimal in an approximate ser~se.
1.1 Cost and Functionality

Consicler a physical system capable of nontrivial co~nputation.  More abstractly, consider a discrete,
continuous c)r mixed dynamical system which computes, in the sense that it moclels a con~puta-
tional device or framework. Examples inclucle a general-purpose computer equipped with suitable
programs, a discrete data structure implemented by means of such a program, an individual sili-
con chip, or an animal brain. Such devices have cletailed dynamics, often approximable as large
sparsely coupled systems of ordinary differential equations, which have been designed (or evolved in
the case of a brain) to serve some set of computational purposes at feasible cost. So we refer to these
dynamical systems as computational systems and hypothesize very broadly that fundamentally, a
colnputcltlorlal Sy.stelll is dcs2gIied (or evolved) to ol)tilllizc two thtrlg,s: its cost and its fu)lctionality.
]hnctionality means what the systenl  can do, and cost means how clieaply or cluick]y it can do it.

For exan~plc, the clesign of silicon chips is largely coristraincd  by tile use of chip area  and cycle
time as the measures of cost, ancl the neccl to attain at least a nlininlal  level of functiol]ality  to make
the cllip generally  useful  (e.g. to i[nplcmcnt  an adequate instruction set in a CI’CJ chip); tradeofls



I)(,LwwII  fltilli[llizati<,ll of itli[j  area  a[]cl [[lax i[ilizat ion of (I(tiiil(’(1 Iutl[’tiona]ity are frequent in the
(Iwigtl  pro(ws.  For allottlcr  exalrI[)le  we refer to th( ir]l[)lcrrlcrrtatiorl of abstract clata structures
su(.tl iM I)riority qucllcs, for wtrictl a f~lrrctionality  sl)rcificatiorl rcqlrires  that a srrlall set of o[)erations

(such :~s adding  a l’rioriti~ed “lclrl~ut to a q~lf~re arid r~luoving  the clcnumt  with highest priority
froni the queue) Iuust bc suljported,  ancl cost is collverltiollally characterized by an asymptotic
scillirlg ru]c for the tirnf.-cost of performing a worst-case nlix of these operations on a very large
queue,

I~or a relaxatiorl-based  neural rlet which is programmed or designed to optimize a static ob-
jective function l;(x) frortl an arbitrary starting point x,n,tl~l,  typical expressions for cost C and
functionality 1’ might be

C = 4-Volume of the Net = Space x ‘1’ime (1)

and
1“ = k’(Xfin~l)  –  l;(X,*]it,~[). (2)

‘1’he sl]ace-time  product is familiar in computer science as an important measure of cost, in which
the Space term is a volumetric measure of harc]ware  usage such as chip area (including on-chip
wires) or me[nory  usage, and the l’irne  term is likewise a computational version of physical time
such as the number of clock cycles required to coruplete  a computation. (A specific volumetric
measure of wiring cost for circuit implementations of neural nets has been proposecl  in [Mjo85].)
As to functionality, the use of an objective function E is a common way to measure progress (hence
functionality) in a wicle variety of computational problems. For example, one can fit a piecewise-
constant nlodel  to a 2-d image given by the data {dij }, segmenting it into roughly constant regions,
with the objective function [1{ MY86]

where ~ij ~ 3? is a reconstructed version of the image, and s~’v E {O, 1 } represent cliscrete clecisions
concerning the probable presence or absence of horizontal and vertical edges. ~ and s together
constitute the vector x appearing in equation (2). This kincl of objective has been used to derive
functional neural networks for large-scale problenls  (105 neurons with 106 connections) as required
for image-processing [RC91,  KMY86].

1 .2  O u t l i n e

We (a) introduce a three-level optimization framework, concentrating on Lagrangians (of a type
relevant to computation) and their specialization to clocked objective functions (section 2); (b)
apply the framework to derive analog circuits such as those mocleled by the lIopfielcl/C~rossberg
dynamics for optimization (section 3); and (c) apply the framework to incorporate computational
attention mechanisms (similar to saccading  and foveatiou in biological vision) into various dynamical
systems which are clesigued to solve optimization problems (section 2 of Part II).

Section 2 introduces the three-level optimization framework, beginning with the general form of a
Lagrangiau suitable for use in attractor dynamics for optimization problems. The greecly  functional
clerivative  is defined arid calculated for sLlch Lagrangians  (scctious 2.1 and 2.2). ‘1’he strategy used
to clesign circuit-implementable I,agrangians  is ouc of mjinement  (section 2.3), in which cost aucl
functionality measures are first clefined  at a coarse temporal scale and then refined for use at finer
ti[ne scales, down to the infinitesimal time scale suitable for clynamicai  systems that moclel analog
circuits, ‘1’he  validity of the transformations requirecl cluring refinerneut  is ultimately specified by
a rneta-otrjective  function which measures network per forrnauce. One circuit-implementable form
of Lagrangiau  is introduced in sections 2.2 and 2.3, though not cornplcte]y  clerived until section
3,2, and it is illustrated by the concrete example of IIopfield/Grossberg  clynamics for a region-
srgrtlcrltatio~r neural network. A more general circllit-irtll~  ler~~cl~tablc forrrl of I,agrangian,  which
allows network dynaniics  to be controlled by a repeating cycle of objective functions rather than a
single ol).jective function, is introduced in section 2.1 of I’art 11.



where i t  is  ill~lstriited by arl algorillllii  si[llilar  to line IIli[ii[nizatioll, ‘1’llis tyl~r  ol’ [Jilgrallgi:i[l
gives rise to ttlr ~Jrac’tic’al cfac/tt’d o/,,/r’c/tLM j_urif’tJorJ  ii[](l c/ockcd SUIIL  notation of sr(liolls 2. i .2 and
2. 1.3 of [’art 11, wtlose ttleoretical  justificntio[l  requires all three  Icvels of opt i[llizatioli:  tile objective
f;, tile Lagra[lgian  1,, and ttle ~tleta-objective  M.

Section 3 is devoted to the study of circuit-level I,agr-angia[ls  with col)tinuo[ls ti[ne dy[la[[lics
.alld analog- valuccl ncu rolls. ‘Iwo novel possibilities for suctl I,agrangialls  arc discussed ill sections
3.1.1  and 3.1.2. In scc[ion 3.2 a si[[lple lllct:i-o~)tirllality criterion  for a Iirllitcd class of a[lalog circuit
I,agrangians  is presellteci.  Since this constrained meta-objective  fullctiorl Jb’f T is a function of ttle
fastest and slowest physical time scales in various circuits, it is invariant with respect to [llouotonic,
coordinatewisc  rcparameterizat ions (cha[lgcs  of variable) of the circuit.

In sections 3.2.1, 3.2.2, and 3.2,3 we prove ‘1’lleorc[n  1, which asserts that the I,agrang’ian  1,
corresponding to IIopfleld/G  rossberg dynamics yields a value of MT [1,] which is }vithin a f:ictor of
two of the opti[nal  value of MT. ‘1’his  nleans,  roughly, that the worst-case ti[lle constant for this
IJagrangian  L is at lllost  twice that of tile optil[lal  Lagrangiarl  I,*, whatever that is. l’he  proof
exploits a stlarp  global opt,  irtlality  result for IIopfrelcf/G  rossLmrg  clynalnics (I Jcrn[I]a 1 of sectior~
3.2.2). Unlike MT, the optirnizecf  functional of l,erllrna 1 cloes clepencl on tile coordinate system
chosen. A number of limitations of ‘1’hcorelI] 1 are discussecl.  ‘1’he resulting I,agrangian  for analog
circuits can be generalized to clocked objective functions, as discussed in section 2.1.5 of ~’art
II. Section 2.1.6 of Part 11 provides an instructive example: a clockecl objective function which
incorporates one or more general feed-forward neural networks (for which relatively efilcient  learning
algorithms are available) inside a general relaxation neural network.

In section 2 of Part 11 we show how simple cost cc)nstraints  can leacl to a variety of computational
attention mechanisms analogous to virtual memory protocols in present-day computers, and an
associated Lagrangian or clocked objective function to control each attention nlecllanism.  Examples
of possible foci of attention inclucle a subset of the n (out of N) neurons with nighest estimated
irnprovcnlcnt, in functionality IA F.’I, which may be tracked efhciently  by nlcarls of a priority queue
cfata structure (section 4.1 of Part 11 ); a subset of course-scale blocks in a minimal ~)artition of the
neurons, scheduled by their estimated individual ancl pairwise  contributions to IAL’I (section 4.2
of Part 11 ); a set of rectangular winclows in a two-cl irncnsional  network, each of which can either
“jump” or “roll” to a new location (section 4.3 of l’art II ); a subset of neurons in a sparsely active
network inducting all neurons which clon’t have prescribed default values ancl he[lce do require
storage space (section 4.4 of I’art  II ); and a subset of neurons determined as the Cartesian product
of several simpler foci of attention (section 4.5 of Part 11 ). The designs presented in section 2
of Part 11 are theoretically well-rnotivatecl but Inay need to be revisecl  in the light  of subsequent
experimentation, which is beyond the scope of the present paper.

Finally, a brief summary c)f our work is given in the concluding section 4.

2 DYNAMICAL OBJECTIVE FUNCTIONS AND
LAGRANGIANS

We have arguccl that funclarnentally,  a computing system is designecl by tracliug off two con~pet-
ing utilities: its cost of operation ancl its functionality. We may specify a fixed allowable cost and
seek to obtain rnaxirnal  functionality, or we rllay specify a flxecl functionality and seek to obtain a
minimal cost, or we may seek a specified tracle-off  between cost and functionality. W’e may specify
further dynamical constraints recluirecl for implementability.  With I,agrange  rncrltipliers and/or
penalty terms we may reduce all these cases to extremizing

(4)

where the systeln  is more functional for lower values of 1’, and where any clynamical  constraints
have been absorbccl into the C,O,t terr[l. Now tlie designer’s problem is to fincl functions C a[lcl F
(pcrha[)s  based on ccluations  (I) ancl (2)) which clepend orl the trajectory of son,e vector of state
variables x(t) over time, such that the global opt,  irrlization  of S can be reduced to a collection of
local decisions about how to change the individual colnponetlts  of tile state vector x at a given
snla}l time step from tin]c t — At to ti[tle t. (A local decision could be viewecl as the choice of the
value of a variable (e.g. a control v:lriable).  ) ‘1’hese decisions must however bc made by very simple



[,llysical  devi{cs  SII{II  a s  tra[lsistor  c i r c u i t s  colltaif,iflg  olIly (i I;,,, trar]sistors, SIICII  local decisions
will IJrove to lx’ atlalogous, ill a physical sysle[ll,  to a diffrrcntid or dif~crc[lcc  ecluatioll fort[luiation
of dy]la!lli~.’s that rolk)ws fro~ll tile principle of least  actiorl for tllc saltlc systcnl,

For exafll~)le, it woul(l  Iw adval]tagco[ls  iff~ i+ll(l  f’ }verc cacti sllrlls (or integrals) over a collection
ofdccisions  sl)rea(f out over space arid tilne. ‘1’0 cxl)rcss  this sullllllatio~l,  let us incfex the conlponents
of tile state vector x I)y an irldex s. Sillcc s i[ldcxes all tllc variables prcsc]lt at a fixecl titnc,  those
variables could be vic!ved as being cm bcddcd irl one fixed-tirllc slice of a space-ti[nc volume, in
which case s may also be viewed as indexing spatial locations in the system. So wc refer to s as
the spatzal  indrz ancl t as tllc temporal  inde.r; the entire trajectory of a computation is spccifiect by
{x(s,  t) }. ‘1’}len the sum over clecisions woufcl  be

S=A x C,,t({x(s’, t’)})  + B
decwions(s,  t)

~ ~\,t({*(s’,  t’)})

deci.ions(.,  t)

(5)

where each function L’., t or I’\, t ~nay depend on only a few of its arguments {.r(s’, t’)} and hence on
only a small part of the trajectory near (s, f). In ecluation (5) we may introduce a continuous time
axis by replacing the temporal sums by integrals; rve can do this by integrating over t and summing
over s. Following the analogy with physics, S is refcrrecf  to as the “actiorl”.  ‘1’he decomposition (5)
would bc a useful first step towards enforcing spatial and temporal locality on the dynamics of our
computation, since the decomposition distributes S over a sum of terms which pertain to particular
spatial and temporal locatiorls.  LJnlike space, time has an intrinsic clirectionality,  ancl we will also
need to enforce causality in the optimization of S. llcfore seeking sl~ecific forms for C,,t and l’~,  t,
we will discuss locality and especially causality.

A I)atterll  of communication is implicit in the dependence of C,,t  and I,\,t on z(s’,  t’). If C.,t
and ~’\,~ were each a function only of T$,t, rather than a functional of the entire State vector x(t’)
at matly  different times t’, then every clccision terln  coulcl be optilllizecl inclepcnclently,  and the
associated computation would proceed without arly cortlr~l~ltlicatio~l. ‘Ibis is a trivial case, however,
and generally we will have quite a bit of interaction (via specific C and F terms) between vari-
ables defined at different times and places. (For a llowtrivial example see the region-segmentation
I,agrangian  of section 2. I .2.) T’he pattern of communication is defined by a communication graph
whose nodes are space-time sites (s, t) and whose links record the presence or absence of functional
dependencies of C~,t or F\, t on trajectory variables z defined at other space-ti~nc sites  (s’, t’). We
want to keep this implicit pattern of communication relatively local, and we insist that it be causal.

l’hc  effect of causality on the co~nmunication  pattern is twofolcl. (i) Causality favors the adoption
of a conwmtton  in which i~lteractions  between variables indexecl by different times are entirely
incorporated in the C ancl 1’ terms indexed by the later of the two times, ancl do not enter into the
C and F tertns  clefinecl at the earlier of the two times. ‘1’hat way, every Ct or F\ terttl  clepends only
on variables indexecl by times t’ < t. l’his is callecl the retarded interaction form of S. (ii) If we
introduce computational dynamics by sequential optimization, at successive time steps t’ of sets of
variables indexed by t’, then causality denies a computation the possibility of optimizing all terms
of S with respect to any one variable r(s’, t’). Insteacl, each variable r(s’, t’) can only be varied
under an objective involving those terms of S all of W11OSC  variables x(s”, t“)  are optimized at the
same time ZM z(s’,  t’) or earlier. ‘1’he values of all other variables (those indexecl by t“ > t’) are as
yet undeterminecl.  Which terms of S are eligible to participate in the variation of z(s’, t’)? Any
C’t or l’t term for which t > t’ depends on variat)les  (such as z(s, t)) which have unknown values
at tilnc step t’ and are not being varied at that tirnc step. SUCII  a term is is ineligible; so we are
restricted to those terms of S indexecl by time t < t’.

Note that the eligible terms of S with t < t’ arc Inostly irrelevant to the optimization of z(s’, t’),
since point (i) imples  tl]at the t < t’ terms do not contain the variable z(s’, t’). ‘l’his leaves only
the t = t’ terms of S to determine T(s’, t’).

Of course, an acausal  optir[]izer could achieve a better value for S by being less “greecly”
(increasing  present C’, + fI\ ter[ns  to decrease future ones hy a greater amount), but as argued
a b o v e  causdtt~j  jorces our dryiar)lics to k grcdy. III other worcls,  the causality constraint only
lmrrnits  a partial or grced?y  o],tt~nization  of S, and tllc nature of the partial opti[nixation  depends
OIL tile deco[npositioll  of ,5’ into a sum over clecisions of callsally  constrained tcrnls.  ‘l’his basic
Iir[litation  to causal or gImdy dynonltcs  will Lc [l~orc or less severe depending on which of many
possible clworllpositions  of C al]d 1’ over ti[ne is ctlosen.



WC shall cfcfinc Ltle g~’ccd~  dc’1’~ljatlllf’ of ,5’ with rcw[mt to .r(.s’, /’) as king tlic OC<lillil  I’~ dcriviltivc
of the sum of such eligible (t < t’) tcrllls  of S’, and use that derivative to dcfiIIe o[)til[iality  of J(. s’, t’).

I)ut  tliis  greedy derivative ilnridiatcly silnplifics  due to tllf rftarcled  interaction f’orlll  off’ and If’:

I1ow can we find functions L’(x{t’}) arLd I“(x{t’}) that specify (via opti[nizatioll  of S) all clltire
colnputational task and yet break up into a su[tl over easily colllputed  dccisiol~s? ‘1’his is a statement
of the problcnl  of algorithm design, for which there is [1o general answer, but  we can still invcllt so~ne
fairly general techniques. l’hc  cost function can be regardccf  as some kind of space-ti[nc volume to
be minimized (e.g. circuit size times the duration of its use) and can be decomposed into a sum
of space-time volumes for the many elementary decisions or state changes, at iuclividual  locations
and times, that comprise the associated cornputatiori:

c = Vol = ~T C$vol,,  t. (7)
S,t

Also the functionality F(x{t’}) is often measured by some definite objective functic)n  I;(x), such
as total tour length in a traveling salesman proble[n [11185], and this can be decolnposecl over time
as (cf. equation (2))

For example, a standard form for analog  neural networks’ objectives E is [MG90]:

(8)

(9)

which encompasses many network designs including equation (3). IIcre v takes the place of Z, and
the indices i, j, and k take the place of s. In equation (9), vi is the output value of neuron i; Tij

and ~~jk  are connection weights between two and three neurons, respectively;  ~~i is a bias input to
neuron i; and @(vi) is the potential function for neuron i and determines the transfer function gi
(e.g. a sigmoid function) through

(lo)

Often equation (9) is further specialized by setting ~;jk = 0.
As a complete example of a dynamical objective function we present, in the following equation

(11 ), a dynamical objective for the IIopfield/Clrossberg  dynamics of an analog circuit. This dy-
namical objective will be derived in sections 2.1 and 3.2, using the fact (to be established in section
2.2) that, for a continuous-time analog circuit model,  a condition for the greedy optimization takes
the form of a (functional) derivative d/6v (where ii = dvi/dt). The dynamical objective is

‘)S’[V(t),  V(t)] = /dt~ (A’[i’:, vi] + ~~’i ,
i 1

(11)

where I([ti, v] is a cost-of-movement term to be clerived in section 3 (see ‘1’heorern  1). Varying with
respect to tii and making use of the form of E given by equation (9), we will find analog neural-net
equations of motion as expectcc]:

(12)

IIere Tff is a time constant. ‘1’hr clynamical  objective function S of ecluation ( 11 ) can be recognized
as an instance of (5) by identifying the neuron index i with the space index (i.e. co~tl~)oncnt
inclex) s and the time integral J dt with the tcrnporal  sun) ~t; also L’Sf —} II[i)i (t), tji (t)] and
F’~t ~ (dI;[V(t)]/tlL~l  )ti*(t).



!s = ~L(l)

=  ~ls,t({x(t’)})= ~((.:s,t+f;,t) (13)

(S,t) (,,t)

(Note that the sum over titne  IIlay beco[ne an integral when we consicler  time steps of infinitesimal
duration, since theextrafactor of At required to get an integral is just a constant that doesn’t affect
the solution to an optimizatic,n  problem.) For our neural network design pcrrposcs the Lagrangian L
is generally the most useful of these alternative notations, particularly for algebraic manipulation,
because the temporal su]n h,as the same algebraic form from one problem to the next (and hence
is uninformative), but the spatial sum cloes not.

F;xtrenlization  of sLIch  functions (or functional) provicles a foundation for the stucly of many
clynamical  systems including quantum field theories. 1’ and L’ might with lower confidence be
identified as classical kinetic energy and potential energy terms respectively, but  m we will see,
many details are different. ‘1’hese  differences prevent a literal-minded mapping of our ideas and
constructs onto the formalism of physics. In particular, causality is not built intc) physical theories
by means of the partial optimization of S, but in a completely clifferent  way that is inconvenenient
for treating irreversible dynamics sLIch  as our colnputations;  therefore neither the dynamics nor the
I,agrangians  of physics can be called “greedy” in the sense wc use the term.

l’here  are a number of other ways to derive clissipative dynamics frortl Lagrangians, as sunlrna-
rized in [VJ89]. Allowing explicit time dependence, such as an overall factor of et’f, in a conventional
Lagrangian  permits physically clamped second-orcler  dyna[nics  to be derived. The strategy of the
approach is to start with a differential equation, derive an associated I,agrangian  (this is called
the inverse problem of the calculus of variations, ancl it may have many solutions), and use that
I,agrangian  to analyse  or approximate the solutions of the differential equation. Our strategy and
methods differ, since the Lagrangians are obtained from cost and functionality considerations and
hence are known before the clifferential equations are known. Moreover these Lagrangians require
an unconventional variational principle (the greedy variation) to procluce  acceptable differential
equations. Nevertheless there may exist some deeper relationships between our greedy Lagrangians
and previous approaches cliscussed in [VJ89].

2. I Cost and Functionality Terms

Equation (8) for F is particularly appropriate for a net whose clynatnics is intended to converge to
fixed points that encode the answer to a static optimization problem, such a-s the standard neural
network form of (9). Equation (8) represents a substantial specialization from the general set of
functions Ft({ic(s’,  t’)}) = ~$ F.,t({~(s’, t’)}) that appears in (5). For in equation (8), Ft depends
on t only through its arguments and not through its subscript, so that the algebraic form of Ft is
independent of time (i.e. I’t is autonomous):

II; ({z(s’, t’)lt’ < t}) = E[x(t)]  - L’[x(t – At)]. (14)

Jn the simplest case of static special-purpose neural circuitry the computational cost is just a
constant N, reflecting the harclware committed (neurons and connections), times the length of time
it is usecl:

<1 = ANttoto[ (15)

for fixecl hardware, or the more general

JC’=  A  dLN(t) (16)

if the arllount  of hardware devoted to the network can vary over tirrle (a possibility we will consider
irl detail in section 2 of 1’art  II. Once N is allowecl to vary with time, it becomes relevant to consider
the cletails  of how [nllch nocle and wire volume is reqtlirecl to inlpleltlent  clynau]ically  a given pattern
of cotlncctio[ls,



Itquatiolls  ( 14) arid ( 15) go part of ttlc way towards dcfillillg a Colllputatiollal  sys(crll, I)llt they
arc not yc’t cfetailcd  enough to specify a parallel al,gorithln or analog circ-uit  th (at cj~)ti]llizcs 1>’. ()~lr
Illaill line of <lcvclo~J1llcnt will be frorll  tllcse equations towarcls  an analog circuit. IIut first Jve note
all alternative strategy for generating ~~arallel algorithrt]s  kvllich wilf be drvvlolml  it] s(v’tio!ls  ‘2. 1
and 2 of I)art [1.

2.1.1 Remarks on Some Generalizations

It is by no means necessary to specialize the expression for S’ ill (5) all tile way to tlte forlll irl ( 14),
if some other way to minimize the original action in (4) can be founcl.  Most alternative sets of F
functions would pertain only to one particular objective function A’, but there are also systematic
[nethods  for deriving F& from 11 in which F’t benefits from retaining an explicit tinle clependence.
For example, F’t might take the form of AEa(f)  for one of p possible objectives L’a, where tlic choice
of objective as a function of tin~e (given by a(t) E {1, 2, . . p}) is made in a cyclic fashio]i. l’hen
(14) is replacecl  by

I;({x(s’, t)lt’ < t}) = ~&(t) AEa[x(t),  x(t - At);  x(tO1d)], (17)
a

where @Q (t) = 1 if cr = cr(t) and O otherwise, and where

AEa[x(t), x(t - At);  x(tO1d)]  = &[x(t);  x(tO1d)]  – &[X(t - Ai); x(tO1d)]. (18)

liere we assurnecl  that t’ takes only the values t, t – At and t“’d, where t — At is the previous
time step in the current a phase of the cycle and i old is the firlal tinle step of the previous ph~~e
ct – 1 in the cycle. Dccause of its explicit dependence on a cyclic clock signed et(t), fi;a is called a
clocked obj’ectiw junction. It Inust be fundamentally connected to the original objective function E
if the resulting cyclic I,agrangian  is to have the correct functionality, but there are several ways of
making such a connection. l’his  possibility is explored further in section 2.1 of I’art  II ancl appliecl
extensively in section 2 of Part II.

It is troubling that there exists a wicle variety of different local and causal Lagrangians  (cf. (5))
each of whose dynamics will partially optimize the original dynamical objective function or action
given by (4). Ilow do we choose one over another, and what are the minimal criteria for any to
be acceptable? In other words, what are the rules of the game for proposing distributed cost and
functionality terms in (5)? ‘l’he answers must ultimately be related to algorithmic performance in
minimizing the action itself (see (4)). We begin our work on these questions in section 2.3.2.

2.1.2 Refinement to Continuous Dynamics

For the moment, let us assume that (14) and (15) describe an acceptable Lagrangian, which is a
decomposition of (1) and (2) to finite-sized time steps, and try to further refine them to a dynamics
with infinitesimal time steps, i.e. continuous time and continuous-valued (i.e. anZL]Og) variabies.

A stanclard  form for analog neural networks’ objectives E is given in (9). q’he corresponding
functionality term F’ may be derived with a series of three design transformations. Start ~vith an o1>-
jective  function J.’[v]  of continuous variables V1 v,,, ancl discrete O/1-valuecl  variables V,,, + ~ . . v,,,
with #i (vi) = O for the latter (where @ is defined in (9)). ‘1’he first transformation is to reformulate
the discrete variables as continuous variables each with the constraints that O < Ui < 1. ‘1’his step
may introduce new local minima at the intermediate values of u,; if this possibility can be analyzecl
away, or designed away by adding a “bump term” such as the penalty term ~~i ~itji ( 1 — ~ji) to
E, then we have a valid transformation. l’he scconcl transfor[natioll  is to replace the constraints
with penalty or barrier terms ~i (vi) addecl to F; for unconstrained, continuous-valuecl  optimization.
Steps 1 and 2 together may sornetitncs  be replaced by the one-step Mean Field ‘1’hcory  derivation of
continuous-valued objectives for discrete-valued variables (first discussed ill [I IopS4]  ar)d cxtendec]
by others inducting [Sir]190, 1’S89, G\’91]) with improvecl control over local rlli[lirlla. Ilut  ill section
2 of Part II we will have occasion to separate the two steps,

As an exanlple  of these first two steps, the i[nage region segmentation objective (3) can bc
refinecl to an analog neural  net with cliscrctc  variables s E {O, 1 } replaced by continuous variables



lE [0,1]:

(19)

Firlallyl wc must refine the global objective E irlto an arbitrarily large number c)f intlnitesimal-
step AE terms for use in the simplest cotltitlllo~ls-tillle dynarllics,  Using ‘1’aylor’s theorem for small
At,

F’coarse = Ah’ = At ~ E,itii = AtF~llC[v] (20)
i

(S0 that ~, IL0arw3 ~ J dtFfil,.), where

(21)

and v is a vector of variables comprised of all the f, 1“, and /h variables of (19). This third
transformation step does not yet specify the associated transformations of the fine-scale cost term
L’fine[{v,,t}]  which we will work out in section  3. ‘J’he result will be of the form G,,,[v1 = xi ~~[~i, vi]
(cf. (117) of section 3.2). l’ogether  with (20), this gives us the I,agrangian

(22)

and the action functional

s=
/

dtLfir,c. (23)

l’his action is in agreement with equation (1 1). For the region segmentation example, dFj/dt)i  is
given by (21).

In summary, we have tr-ansjormed  the problem three times along the way to the circuit-level
functionality term in (20) and an associated Lagrangian. ‘1’he transformations are intended to
preserve (approximately) the fixed points ofthc equations ofrnotion, while making the dynamics
progressively rtloreirllplenlerltable  manarlalog nelrralr~etwork.  I]oth thetransformations) validity
(as measured by the functionality term of the original coarse-scale action (4)) and their efficiency (as
measured by the cost term of (4)) must still be demonstrated, since the finer-scale versions of this
action functional are only partially optimized. T’he three transforrnations used to obtain equation
(20) were: (l)discrete variat>les +continuous  variables, corlstrairled  to intervals; (2) constraints
+ penalty or barrier terms in unconstrained, continous  optimization; and (3) tenlporal refinement:
F,= AE%sdtfi.  (rI'herefinerllent  of Cmuststill beworked out  before wehavea derivatiorlof
the fine-scale I.agrangian.  See section 3.)

2.2 Greedy Functional Derivatives

Based on the foregoing work, we seek to derive continuous-time dynamics from suitable I,agrangians.
This requires formulating the greedy derivative of (6) for use with continuous-time dynamics, hence
formulating it as a functional derivative.

Following equation (5), we argued that the local cost ancl functionality terms F$,t and C’,,t in
a Lagrangian shoulcl depend on variables z$,,t~ only for t’ < t, and that only variables with t’ = t
shoulcl be varied in the optimization of F,,t  + C~,t; all values of earlier variables are helcl fixed.
‘J’hen F ancl L’ are said to be in retorded intcructio)i  ~orw. ‘1’hese  constraints can be irnposecl on
any continuous-time Lagrangian in differential form,

I,(x(t), x(t), x(t),. .), (24)

as follows. First wc replace the clerivativcs by difference expressions (x(t) – x(t -. At))/At, and so
or], taicillg care that the largest time t’ to appear  is t. ‘1’his yields an approximate cliscrete-time



I,agrangian,  wllicl, we t,tlcn ol)tilllize  wittl reslwcl t o  x ( t )  l,y dilIerelltiatiIlg  to lilld tlic dyllallli,s,
‘1’licrl we take  tile linlit  as At ~ (). Ill tliat way ~vc ensure that t’ < ( (retarded iliteriutior)  forl)l)
slid that only variables for wllicli t’ = 1 arc actually o~)ti(tlimd at tirlle f, as requirml.

‘1’his procedure for finding tile co[lti[ltlo~is-ti[ll(’  dyualllics  for a I,agrangiafl  ill diflirclltial forlll
(24) may be forlllalized  by means  of the greedy ~u,ictio~lal dcc~uat,ue  i[ltrod(lccd i,, [hIG90,  hlhl!) I],
IIere we provide a ncw formal clcrivatiou of the greedy functional derivative 6G Jvliicll cxl)loits  tile
retarded interaction forln of a Lagrangiall,

I,ct N be a nornlal  forln operator 011 derivative expressions:

fv[z(t)] =  z(t),
N[i(t)] = (z(t) – x(t  –  A t ) )  /A t ,
A’[i(t)]  = (r(t) –  2z(t –  At)+ z(t –  2At))/(At)2, (25)

. and so on. Also
N[F[y(t)]]  =  F[N[y(t)]],  y  =  T(i), i(t), i(t), i f  1’ i s  autonor[tous.

So N serves to replace time clerivatives by temporal difference expressions for which t’ < t, which
we can differentiate with respect to x(t). In other w’ords, it suflices  to put  a Lagrangian  1, into
retarded interaction form, so that a greedy variation can be taken while preserving its value in the
At -+ O limit. (N is known in nu~uerical  analysis M the “bacfcwarcl divided difference operator”. )
Then thegrecdy functional derivative may redefined, evenon I,agrangians  L not yet in retarded
interaction form, so as to agree with (6): For any small At >0,

c$~
—~d@(&i(&...) s ~dh(~-t)

a
s~x(t)

—NL(f(~, ti’(i), . )
r%’(i)

—— &VL(2(t),i(t), . . .) (as in (6))

—— &l/(N[r(t)],  N[i(t)], . )

8
—L(z(t),

I(i) –r(t – At)——
dr(t) At ‘“”” ))

(26)

where the last step used (25). Continuing,

& 1 Cm(z(i),i( i),.. .) =
8 r(t) – x(t – At)——

c$~x(t)
—L(x(t), - At ,.. .)
(%(t)

m
—-  (L

—.
~=; (A:)n 8(dnz(t;/dtn)(t)

)L(r(t), i(t),...)

(by the chain rule)

= /cti,(t+(~ ‘ d )L(4H),...)
~=o (At)n  d(dnx(t)/dtn)(~

—— (5~=0 (At)’l 6(d’’z&/dt’’)(t) ) /
dtL(z(:), i(:), . . .).

(27)
IIere the functional derivatives 6/6(d’’r(t)/dt”)  are taken to be independent of one another as partial
functional derivatives (so for example c$i(~)/6x(t)  = O, rather than di(i)/r5r(t) = dd(~ – t)/d~ as
would be the case for total functional derivatives).

So the greedy functional derivative CfG/C5GZ(t)  is given by the operator equation

(28)

where At is infinitesimal, Again, the conventional functional derivatives are independent of one
another (they are partial functional clerivatives).  Necclless  to say, the highest powers of ( l/At) will
dominate all others in the limit At -) O. For exa[uple  if 1. depencls  on v ancl v, but not 011 hi,gller
tilne clerivatives,  then the greecly  functional clerivative will be (1/At )d/dv.  ‘rhis will generally be
the case for our circuit Lagrangians.



\Vt, CiLll (Ieriv<’ a[lalog, [;<jlltillllolls-ti[]lc network
{l(ri~,ativc to tllc collti[tous-tilnr  [Jagrallgiall ( 2 2 ) .

[Iy[lalllics  Ijy a[jl)lyil]g tllc ,grwdy functional
Sillcc tli(, Ilig,llcst t i l [ le-derivat ive irl ttle l,a-

gratlgiatl  is ij for oattl variable IJ,
tile equatiotls  of Inotion becor[ic

ttle grdy functional derivative is [Jro[)ortional to 8/6v. ‘1’heII

(29)

l~or fi[i~,  u] = (l/Z)T}[iJ~/g’(g-*  (l~i)), the circuit-level cost tcrlll  which will be derived in section
3.2.3, ancl for an objective function E given by actuations (9) ancl (10), the greedy variation equations
become IIopfielcl/G  rossberg dynaltlics:

‘1’his type of clynamical  systeltl  describes an analog rleural network, and we will make no clistinction
bct,ween such a c]ynamical system and the neural network itself.

As an example, we may work out the cfynamics  for the region segmentation I,agrangian  given
by (22) and (19). Specializing the dynamics of (30) to the region segmentation objective (19), we
can expand the first term of the objective to find a potential term (A/2)~,~ for the -f,j variables.
“1’hen we find the standard Hopfield/Grossberg  equations of motion for this analog network, which
are

Tf&lj  + e~j z A di j  – ll(~ij – -fi+l,j)(l – f~j) - -  lJ(-f,j – ~i,j+.r)(l  – ~~j), -fij =  (l/A)~ij,
r~k~j +  k~j = lJ/2~i~(\i+l,j –  \ij)z –  11, l;j = g(k:j),

hTk k~ + kij , = 19/2~i~(f1,j+l  –  fij)2 ‘/1, 1:. = g(qj).
(31)

2.3 Theory for Refinement to Circuit Lagrangians

We have found a path of argument from computational first principles to specific neural networks,
but the status of some of the steps along the path is still unclear. The basic problem is that
various transformations of the original action functional (4) are recluirecl to get an implementable
dynamical system, and limitations of causality and the simplicity of elementary processing devices
recluire  that the spatially and temporally distributed Lagrangian functional (such as (5) or (1 1))
be optilnizecl  only partially (as irI the discussion following (5)).

Our approach to this basic problem is to catalog a variety of useful transformations that lead
towards circuits or parallel algorithms, ancl to re-use the fundamental dynamical objective function
(4), or closely relatecl quantities, as a measure (i.e. a criterion) for judging the success of such
transformations. Such a criterion may be called a meta-objecttve  since it is an objective function
used to select a dynamical objective function for the neural network dynamics.

l’his approach may be thought of as a symbolic search procedure to be carried out by human
designers, who select the likely transformation secluences, with machine assistance in evaluating
them and perhaps also performing them. On occasion it may be possible to elirnirlate  the search
procedure by proving the (meta-)  optirnality  of a given Lagrangian, but we CIO not think that this
will be possible in most cases.

2 . 3 . 1  Transfornlations  of  Lagrangians

Itecall  the tl[ree transformations leading to circuit-level I,agrangians  in section 2.1.2:

T1. cliscrete variables -+ continuous variables constrained to intervals

T2. constraints + penalty or barrier terms in unconstrained continous  optimization

T3. refincmellt:  F’, = AE x ~ dt~;, (’1’he refinement,  of C; will be worked out ir~ section 3.)

Wc conlrnent  on each of these transformations.
‘1’1  arlcl ‘1’3 arc rcqllirecl to achicvc a circuit illll>lelllerltatioli,  but Inorc  generally they serve the

p(lrposc of nlakirlg  a parallel algorith~ll,  I)iscrctc-tirile  ul)clate schemes r[lay be introduced irlsteacl,
I)ut  SOIIIC care is required so that the ul)clates  of indelwrlderlt variables done irl parallel clon’t }Lavc



tiIC> joint  cf[r’ct  of itlcrt>asitlg  ratllcr  Ltlall  (Im-rcrrsi[lg  /’,’. [<’or  PXarIIIJ[C)  for SOIII(  [I[>tw’orks i[ is [xwsit]it)
(0 “color” tllr variablm  wittl il Sllliill IIul]ltwr of colors  SO  that  110  tlvo collllr?ctecl  Viirial)lPS  (J’, ILIICI

JJ Such ttiat ‘l~j #. 0) have tile sa[tle color; then cliff’crcllt colors CaII be upclatcd at, diflrrrllt  tinles
ill a clockrxl  objective functiorl, arid all the varial)lcs of tile sa[ne color  can be updatml  ,at ollcc
(cve,l by discrete  ju*ll[~s)  kvilllout i[)terferc]]ce  in 1;. (l[,tcrfcrc*Lcc  would *tlca*l tliat several variables
woulcl each, if updated alcrnc, dilnirlish  F.’, but if the sanle uldates  were dorle togrtllcr tltcll l; could
increase. ) Such (fairly standard) ~Jarallcl update scllclllcs are not so in]portant  fo[ c-c)liti[lc>~ls-tilll(:
and arlalog-valued  networks, whose descent clynan)ics  are explicitly parallel.

‘1’ransformations like ‘1’2,  which incorporate static collstraints  into the static optimization prob-
lem, may change the nature of the optimization problem significantly. Penalty arid barrier terms
on constraints that involve many variables destroy locality, unless they are further transfor[ned  to
a local form by methods sLIch  as those described in [M G90]. In this case a millir[lization  problem
is replacecl  by a saddle-point prob[e[n. Alternatively one can introduce Lagrange multipliers, but
that also changes the static optilrlization  into a sadclle point problem [1’1187], Either  way, the
dynamics associated with the La,grangian functional 10SCS its obvious convergence properties (be-
cause limit cycles arouncl  a saddle point beconle possible), and it may be necessary to engage in
TJ~eta-optin~zzatzoTI of some kind in orcler  to secure convergence for a local circuit implementation.
Another alternative, which recluires  clockecl objective functions but does not explicitly introduce
saddle points, is to use an algorithrrl  similar to the “gradient projection algorithm” or “scaled
gradient projection algorithms” [11”1’89] to repeatedly reestablish the constraints as the dynamics
proceed. Such an alternative will be employed in section 2.1.6 of Part II.

In previous work [MG90]  it has been clernonstratecl that static neural network objective functions
may be transformed in a variety of ways in orcler to acheive design goals such as reduced wiring
cost or attaining an implementable form while preserving the functionality (the f(xecl points) of an
optimizing neural network. Likewise, in this paper Tvc will introduce a number of transformations
from one Lagrangian to another that satisfy design constraints while preserving or improving the
functionality of a cornputatiorl.

A fundamental aspect of (5) is that, clue to its linearity, it naturally supports the hierarchical
decomposition of computational dynamics into large state changes (or decisions), each achievecl
through many smaller state changes or decisions. This is in analogy to multiscalc  or mrrltigrid
algorithms from numerical analysis, or to renormalization group ideas in statistical physics, or to
the idea of stepwise refinemerlt  in the desiga  of computer programs. As in (5), the action S can
be decomposed into a sum over state-change decisions. FJut if each of these decisions is in turn
made by a dynamical system consisting of a secluence of sub-decisions at a finer time scale (which
may also involve a finer spatial scale), then we can relate the two time scales (“big” decisions
and “sub-decisions” ) and reexpress the action in terms of the fine-scale decisions alone ( “small”
decisions):

S = A x Cj,~({X(t’)})  + 11 E Fj,~({X(t’)})

big Clecisions(;  ,i) big decisions(?,i)

r 1
=A

‘1
E C,,,({x(t’)})

big  deci.qior)s(jr~)  sub-decisions (s, ~) J.

+1{ ‘Jgde~@i,i) [S.b-d.Zon.($,t) F’’t({x(t’)})]
= A E C’,,t({x(t’)})  +  11 x I;,t(

s m a l l  d e c i s i o n s ) small decisions(s,  t)

X(t’

(32)

})

Notice that the step from eclrration (4) to equation (5), or more specifically to (7) ancl (8), can
be given a similar hierarchical interpretation: we arc expressing a single clrrantity,  optimized over
the entire circuit convergence time, as a su[n of quantities to be optimized [Iiore  locally in time or
space. ‘l’lie further refinement, to in finitesirllal  time steps, (23), is another example. ‘1’hcn ecluation
(32) subsunles  all these cxa[np]es of hierarchical dcsigrl.



2 . 3 . 2  M e t s - O p t i m i z a t i c ] n

Li’c lIave  discllsscd tllc nccrssity  for SOIIIC criterion or figure of ltlerit by which to c-ornparc alternative
I)agril[lgialls alIcf tile dyrlalllical  systcnls  to wllicll tllcy give rise. (;eueral]y  we start with some global
olj.jm-tivc  fuil(”tiou such as S in (4), t,tlcn transfor[n  it though a series of spatially arid temporally
localized I,agrangians  of the fc)rm (5) to a final circuit-level I,agrangian  t., which is only partially
o~jtimizcd (i.e. is grccclily optimized) by the dynaruics.  h’inally wc wish to quantify the performance
of the rcsulti[lg  dyuanlical  systerli,  i.e. to evaluate tile quality of the associated computation, for
cxalnplc  by computing the value of S at the end of a run. ‘1’he [nets-optimization problem is to
optimize the resulting evaluation, treating it as a functional of the exact fornl of 1,.

An obvious way to do that is by means of a retrospective (a posterior) evaluation of the original
. . .

ot)jectlve  S of (4). I)ut  optzmtzzng  with respect to this protocol of retrospective evalrzatlon of SCOarse
seems out, of the cluestion, since that involves many repeated tests of the zleural network dynamics
with clifferent  values of the parameters that specify the (transformed) I,agrangian  and is therefore
far more expensive than one relaxation run of the zletworlc. (rl’he pararneterization of 1. may involve
real-valued parameters or may simply be the discrete choice of a sequence of transformations to
derive L froln SCOa,,,. )

Fortunately the cost of optimizing S...,,, as a function of the form of L (i.e. the cost of meta-
optirnization)  may by amortized over many inputs h (cf. (9)) to one network, drawri according to
some probability distribution, or even over many network connection matrices T drawn according to
another probability distribution. Optitnizing  M may be very expensive but the expense is amortized
by using the resulting dynanlics  to improve the performance of many different ccunprrtations.  An
apparent obstacle is that different h vectors and 7’ matrices will in general have uz]related meta-
objectives M, so amortization may be difficult to accomplish.

Such amortization may still be achieved if the meta-objective function M[L]  is alterecl to become
an average-case measure of SCOarsd:

M[L]  =< S,.., s,[1.] >A,7’  . (33)

Just as in neural network learning procedures, the distribution average would be sampled by a
finite sum over a training set; this sum would be optimized, and then a further sampling could
bc made to test generalization from the training set to a testing set. If such generalization is
to be expected, either on experimental eviclence or according to theoretical criteria such as the
Vapnik-Chervonenkis dimension [Vap82, IlH89]) then arnortizationw  illbepossible. For the cost of
computing (hence of optimizing) MII,] is tnultipliecl  by the size of the training set, but that large
initial cost is then effectively divided tzy the nu[nber  of times that L is usecl subsequently, which
may be far larger tha]l the training set. Thisgi vesthe desired amortization.

Alternatively, one could amortize the cost of optimizizlg  M by taking M tc) be a worst-case
rneas~lre of Scoarse which can be wtimizcd anaMi CaW. The  worst case performance is very hard
to evaluate experimentally, but it may tzc more easily subject to analysis than the average-case
performance, at least if we are allowed to alter the form of Sco~,s, somewhat. ‘I’hat will be our
approach in section 3.2.

3 C I R C U I T  D Y N A M I C S

3.1 Refinenlent to a Circuit

Llpon refinement, the Lagrangian  L = C -11’ becomes

I, = ANAt + BAE. (34)

F$’c  woulcl like to take the limit At + O, refining to infinitcsin~atly  srtrall time steps in a continuous
analog circuit. We expect this to be both simpler than a discrete-tizne (finite At)  clyuamics,  and
also more relevant  to neural  z~etwork  irnpletnezltatiotls.  Ilut  performing the greedy optimization of
s[(cl  a I,agrangian  presents some surprising prohlerns.

For instance, a first-orcler expansion of AL’(At)  yields a I,agrangian  proportional to At: 1.[+, At] =
At((~-i 11 ~, ~~,i[v]i~i), which cannot be opti[nized  witt~ rcs[wct to At z O without going outsicle the



~~l)ii[isio[i’s  (loitiiiiti of valid ily. ‘[’<)  nvoi(l this [)rOl)i(>III  At tlliglll b(~ taken to I)(J a sIIIall (’()[ls\;\]lt , ~)(lt
ttlat W’OUI(I  [llak(’ tll(’ entire  (’os1 t(’r[ll f: = .’l NAt (’ollstallt ali(l therefore irr(l(,villlt to (11(’ dy[~a[llic
ol)ti[llizatiotl  I)rotjlet[l. More seriously, Imrtial  optirllizzrtiou  call oIIly affect + wl[icll  a[)l)CiLrS  Iillcarly
ill ttlis  I,agr:ingiall;  i~i = +x, will he tlic ol)tilnuln,  wllicll ~vould [lot only invalid iite tllc cxl)ansioll
of F,’(l) again, hilt would violate ~Jhysical limits on circuits as WXII.  A solnclvt[at  ]Ilorc  l)llysical
dynanlim would result if we arbitrarily followed tile arlalogy  frolll tllc I,agrallg, ia[ls of l)hysics and
cllarlged the cost tcrrn to a kinetic energy (1/2) ~~i r’~ ~, but we Ilavc no conll)utational  justification)
for doing so.

On the other hand, not expanding AE(At) at all leaves a fine-scale optirnixatio~l problcrll ~vhich
is equivalent to optinlizing  tl[e full coarse-scale objective E in much less time, This is simply not
possible. And even a seconcl-order finite l’aylor  expansion of AL’(At)  is problematic, since the
optimized values of At and i are likely to lie outsiclc  the expansion’s small Cfomaill of suitability as
an aproximatiou.

l’he  essential problem here is that each fine-scale optimization, to be irnple~ne[ltab]e  as a circuit,
must be more constrained than the coarse-scale optimization. We must stay within the domain of
convergence of a l’aylor  expansion of Aij(At), and we mwst not violate physical speccl Ii[llits (e.g.
for physical implementability we must prevent circuit ti[ne constants frorrl  becc)mirlg  too sr~lall),
ancl so on. Such constraints are either (a) direct physical limits on circuit implementations, or
(b) computational limits on what can be achieved with a small amount of physical computing
(computation which occurs irl a physical medium) in time At. These constraints are generally too
complex to state exactly in a simple Lagraugian.

We identify two general approaches to formulatingsuch  circuit constraints aucl the corresponding
fine-scale Lagrangiaus. In the “unclerconstrained’) approach, we irrlpose si[nplified,  loose versions
of the physical ancl computational constraints on the optimization of 1,,-Oa.8., in the hopes that the
resulting dynamics will be constrained enough for a genuine physical implementation (perhaps at
an even finer time scale). l’hese  loose constraints can be tightened up for analytic or computational
convenience, and then expressed as penalty or barrier furrctlons  whlcll are acldecl to 1, to forln l, Jine,
the fine-scale Lagrangian. By contrast, the “overcoustrained” approach stays within  the realm of
physical irnplementation by hypothesizing a pararneterized  class of fine-scale I,agrangians  kIIown  to
be irnplementable, which can be thought of as alternative strategies, and optimizing some measure
of their relationship to the original coarse-scale Lagrangian 1,. In particular, the cost terms of l~fin.s
xnay be optimized while the functionality term is taken to be AL’ x At~j  as iri the coarse-scale
Lagrangian.  Thus the underconstrained  approach applies looser constraints than implementability
may actually require, and the overconstrained approach applies tighter constraints than are actually
required. We give examples of each.

3 . 1 . 1  Underconstrained  R e f i n e m e n t  # 1

We will require Av be small enough so that AE[Av]  can be expanded to first (or seconcl) order in
a I’aylor  series, and that each /ii I be bounded by a physical speed limitation. So we must optimize

L[v, At] = AiVAt + BAE[Av] (35)

subject to
[[Vllm = tIl:X1’ill  < S (36)

(where v % Av/At) ancl
IIAv112  < r(u), (37)

where r(v)  is chosen to ensure that a first (or second) order expansion of AE[Av] is sufficiently
accurate. Also, there are two approaches to varying At. If we let At be optimized (subject to
At z O), the cost tertn  in the Lagrangian will keep it small but not necessarily drive it to the
continuum limit At a O. Or, we can let At = x7, where ,y E {O, 1 } is a discrete clynarnical  variable
which “stops” the neural network when x is optimized to zero, and where ~ is a srllall constant
which we earl analytically drive towards zero to extract continuum cly[la[nics.

Ill the latter case, IIAvIIZ  N ,yTlli’llz  < ~Tfi5’ is more restrictive ill the lin~it I- ~ O than
constraint (37) except when tile Iletwork  firlally stops, at which ti[rle bottl constraints become



ItxccI)t  for the new ~ variable, this  is the same for[n of [,agrangian  for neural [(et, works  ttlat we
t,ave pro~,oscd in [K1G90,  Mjo87]. ‘1’he  corresponding clynamics are (varying v, cf. (28))

i~i z ‘S9+1(}2’,:), (39)

and varying ~ to get the stopping criterion, we tl[ld the optimal values of ~ occur only at the
boundaries of the allowed donlain  of ,y:

(40)

Ilcre  @(r) is the Ileavisicle function (1 for x ~ O; O for x < O).

3 . 1 . 2  Underconstrained  R e f i n e m e n t  # 2

If, on the other hand, we let At be optimized freely, then we are taking a computational step that
requires a small but nonzero  amount of time to change the state by Av, which is constrained by
both (36) and (37), which in turn are related by v x Av/At. We will express constraint (36) as
IIAvIIK,  s sAt, which can be tightened to the more tractable

(l/s)~lA~il < At.
i

Also we can tighten constraint (37) to

r(v)

“A’’”m  s ‘F= ‘(”)

(41)

(42)

(which implies (37)). Optimizing L[v, At] of (35) with respect to At, which occurs linearly in (35),
as constrained by (41) just saturates the constraint: At = (l/s)~i lA~i 1.

l’he  remaining constrained optimization is with respect to Av. Using barrier functions, we find
an unconstrained I,agrangian

or

(43)

(44)

{

– 1  i f  E,i– AN/s>O
A~i/T(~)  = 0 if E,i – AN/s <0 and E’ i, i + AN/s >0 (45)

+1 i f  E,i+ AN/s < 0

A number of calculations of bounding expressions t(v) are possible, but we will not pursue this
approach further here.

3.1.3 Stopping Criterion

I,agrangians  (38)  and (43) each have intrinsic stoplji[lg criteria which compare the expected inl-
I)rovcmcnt in functionality AL’ with a cost of movement, ancl allow movement only when it is
sufficiently beneficial. Ilut l,’ may not always be the right function for this purpose. A monotonic
function 6( L’) may be used in place of E in (8) ancl may likewise be clccomposed into a sutn of
A6 terms. ‘l’l/e latter WOI]ICI alter the tracleoff’ with the cost term for incomplete optirnizations ancl
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Figure 1: Potential ~+lOi_(Z) incorporates automatic stopping criterion. Whcll c)ther  terms fail to
alter the ordering among 4(– 1), @(O),  and @(l ), then Av = O is favored and neuron ~~i stops.

therefore the stopping criterion (the point at which a further decrease in F is smaller than the
expected cost of obtaining it).

One major drawback of using a monotonic function b(E) in place of E in a Lagrangian  is that if
E is of the standard neural network form (9), it is already a sum of local terms and therefore close
to neural implementation. By contrast, direct optimization of b(ll’) requires a global calculation
of E even to get the gradient, Vb = b’VE needed for the dynamics of every variable. One can
circumvent this problem by transforming the objective function with a particular type of Legendre
transformation [MC:90]:

~b(f;)  –> –al? + ,y’r + cd-l(T). (46)

In the resulting gradient dynamics, only the one variable a recluires comprrtatiori  of the objective
function E. Unfortunately this transformation replaces a static minimization objet-tivc with a static
saddle-point objective, since some of the new variables are to maximize rather than minimize the
transformed objective. To find a I,agrangian  which always converges, rather than cycling around
the saddle point ,  may then require  an appeal  to nleta-optinlization  (e.g. either experitllerlt  or cleeper

analysis) of the saddle-point-seeking Lagrangian.

3.2 Overconstrained Refinenlent: Mets-Optirrlization of A’

A second, more systematic way to overcome the probletns  with refining the I,agrarlgian  through
expansion of J?’(At)  is to define a class of I,agrangians  whicfl are known to be physically imple-
mentable ancl mathematically tractable, though they are not the only physically implementable
expressions for a circuit-level Lagrangian, and to pick the best member of the class basecl on a
meta-optimization criterion. So we overconstrain the set of allowed Lagrangians and optimize. We
will be able to do this theoretically for a meta-objective  that measures worst-case performance of
a Lagrangian for minimizing an especially simple CIZMS of neural network objective functions.

The allowable class of objective functions will be those of the form I~[v]  = –( 1/2)  ~ij  ~;j~ji~j  –

xi hi~:  + ~i @(ti),  in which the matrix 7’ is negative semi-definite ancl has eiger,values whose
absolute values are boundecl  above by some number t“,aX. An example of such an objective
function is the hysteresis-free version of the common winner-take-all network objective [11”1’85]
E = (A/2)(~i vi – 1)2 – ~i hivi +- ~i @(vi).  l’here  is a straightforward generalization to the
case in which different neurons ~fi have different potential functions ~i(~i),  but we won’t work
that out here. The negative-definite restriction on T is severe because it means that 1? must be
unimodal  (since each ~i is unimoclal  too), LJnin]odal objectives have sornc cortlputational  uses,
such as in the winner-take-all network or the “invisible haucl” algorithm for rllatching  [KY9  1], but
our meta-optimization results will not be widely applicable until they are generalized to multi-
modal objective functions. Nevertheless we earl present the unirnodal  analysis as an example of the
meta-optimization of a circuit-level Lagra[lgiau.

What rllatllerllatical  conditions woLIld  rnakc a I,agrallgiall  physically  illl~)lerllerltat]lc, so the as-
sociated dynamics can be irnplementccl  wittl a circuit, ant] also result in good per fornlaucc?  ‘1’he
essential limiting factors for circuit speed arc tile tinle constcrrlts (such as resist a[lcc-capacita[ice



I)roducts  in an cl(,ctrical  circuit) ttlat govcrll  ttic alj~)ro:icll to iill~  stable state of any one- or two-
clcl,iellt  sllbcircllit,  ‘1’  IICSC  t,il[le  co[lstants  must be Iiirgcr  tharl so~[ic I)hysical  lower bound, say Tfast.

\\re also want the stal)le  fixed poitlts  to bc lflinirila of solllc neural network objective F;. Subject to
tllme  constraints, we want to rrlinimize the slowest tirnc constarlt  for the full circuit (which as we

) Of course time constants arc only clefinccl for a local lineariza-\vill SIIOW is also Iargcr than ~ra~t
tioll of a dynamical system, so wc must con.strairl  thclll in tile neighborhood of each attainable
configuration, arid wc may optirllim  the worst case tirnc constant over all such configurations.

With these points irl rl~ind, we define a constrained optimization problem over a limited class of
I,agrallgians  of the forln

i i

where the objective takes the form

(47)

(48)

and h includes the input to the network. Note that the cost term in (47) is a sum over kinetic-energy
terms each pertaining to only one neuron; this is a form of locality. Also the equivalence of stable
fixed points and local minima of E can be ensured by silnple  constraints on l{. (47) together with
the time constant constraints and A’ constraints to be introduced specify the class of Lagrangians
that we will call “circuit-implementable”. ‘I’his class is paramcterized  by the kinetic-energy function
A’ from 3?2 to Y?, suitably constrained.

Onc important propert,y of equation (47) is that it retains its form under componentwise repa-
rameterizations  ~i = /i (xi), where fi is monotonically increasing, differentiable, and its inverse is
differerltiable.  (Note that such repararneterizations form a continuous group under composition.)
‘J’hat  is, under such a reparameterization the d&;/df term is invariant, and the 1{ term, while not
invariant, becomes another function l~[ii, xi] of the corresponding new variables. So the problem
of optimizing with respect to K can be solved equivalently in any such parameterization we choose,
if only the objective ant] constraints are also chosen to be parameterization-invariant in this sense.
We will insure that condition by deriving them from physical circuit time-constants for exponential
convergence to fixed points.

~’he greedy  f u n c t i o n a l  d e r i v a t i v e  w a s  clcrivccl  irl s e c t i o n  2 . 2 .  WC  u s e  t h a t  r e s u l t  t o  f i n d  t h e

greecly optimum of the action J dtL with respect to the trajectory v(t). ‘lhe dynamical system
that results from calculating the greedy variation of 1, with respect to v (i.e. t}~c regular variation
with respect to v) and setting it to zero is

where l~[u~, v] is the inverse of K[ti, V]U on its first argument. ‘1’his  forces us to constrain K to be
monotonic in its first argument. IIere we introduce the notation

“i[v] = ‘l;,l = x 7~j71j  +hi ‘@’(t):). (50)
3

For stable fixed points to correspond to local minima of E (for which w = O), it suffices to assume
that

1~[0, v] = O and ~[ul,z~],U, z O (51)

for all w ancl V, The linearization of this dynamical system at v is

(53)

Now we are in a position to derive the constrairlts  on the function Ii that result from considering
the tiil~e-constants  of the dynamics specified by A = (Aij ). We want the circuit elements and their



{.olltlcctiolls  to t)c ~)tlysically  illlljlc~]]lcllt;il)lc,  so we’ll constraill  onf>- and two-elerl]cllt s{llx:ir(.liits of
Ltlc linearizfxl systc[ll (52) to bc slower than ~fa.t. We do this by scttillg  all eler[lr[lts ot’ A to zero
e~[c[)t for A ii (for a olle-cle[[]e[lt  subcircuit)  or {)Iii, tlij, /lji, /tjl } (for a two-cl~[[l~[lt  sul)circuit),
to get a 1 x 1 or 2 x 2 nlatrix A(i) or A(il  j). Furttlcrinore,  we r[lay arbitrarily pick thr sulwircuit’s
fixed point v* by adjusting the input vector h; this does not alter  any ele[llellt of A or ,{, Iti
that case l~[llJ:, v,] = O, and the linearimd  dyna[nics  (52) co[lvcrgcs  exponentially to v ~vittl a tirlle
collsta[lt  cleterminecl  by the largest cigenvalue  {Ji} of the matrix A, i.e. by its rllatrix  [Iorltl  lli~llz.
So the physical constraint would be

nlaxllAl12 < l/~fast, (54)
ACA

where A c A means that A is variecl over all 1 x 1 ancl 2 x 2 submatrices of A ancl over all state
vectors v.

The constraint (54) is parameterization-invariant. Invariance follows for ally ~i by applying
‘1’aylor’s  theorem at a fixecl point  v* of y, to get the linearized clynamics in a new coordinate
system  {~i = -fi(~i )}. ~’he new lrlatrix  A is just a similarity transforln  JAJ-l  of ~~, where J
is the (nonsingular) Jacobian of the change of coordinates. Therefore A and A have the same
eigenvalues  (cf. [Ner70], l’heorenl  5.2or 5.3) and IIA112 isparameterizatiominvariant  as Iongas the
Jacobian J is not singular (which ours never are). Furthermore, the identity of the 1 x 1 and 2 x 2
submatrices of A are invariant under  our coordinate-wise reparameterizations {~i = -fi (vi) }. So
the whole constraint (54) is parameterization-invariant. This invariance confirms the intuition that
exponential convergence to a fixed point in one coordinate system {Vi} ( i.e. v – v* x c exp —At)
does not change its convergence exponent J in another coordinate system {~i = -fi (tji)}.

Note that because each ~i is assumed to be rtlonotonic,  differentiable, and to have a differentiable
inverse, constrai~its  (51) are also parameterization-invariant. That’s because each ~ji = —E, i i s
multiplied by ~~(~i) in reparameterization {~i = ji (t~i)}, where O < fj (~~i) < cm.

Constraint (54) is not a sufllciently  convenient form for all our subsequent analysis, so we will
relate the constraint to something more tractable. ‘I’he matrix norm of each A C A is bounded
above and below by multiples of rnaxab 1~.bl (cf. [G I,83],  p. 15):

(55)

whence
InaxlAijl < n~axllAllz ~ ‘2m:xlAi~l, (56)

~~ AcA

where as before A ranges over all 1 x 1 and 2 x 2 submatrices  of A. So a closely related but more
tractable constraint may be fornlulated:

max rnax lAij(V)  I < l/~fast.
v z.)

(57)

of course, the bounds of (56) hold regardless of what coordinate system is used tc, clerive A, so
long as A is expressed in the same coordinate syst,crn. Still, constraint (57) is not paranleterizatiorl-
invariant, since si[nilarity  transformations do not preserve the elelnents  of a matrix. We }vill have
occasion to use both (54) and (57) in what follows.

Since one A’ is to apply to many connection matrices 7’ and state vectors v, we will also constrain
a worst-case estimate of the circuit speed over all 7’ in some allowable class T in the formula for
A, and over all state vectors v for each connection matrix:

(58)

As previously mentionccl,  we take T to be the set of negative-se. rniclcfinite  connection Illatrices  7’,
suctl that the absolute values of the 7“s cigenvalum (i.e. 7“s singular values) are bouncled  above
by t“,~..  Constraint (58) is pararlleterizatiomi[ lvariant but not as analytically tractable as the
alternative,

(59)

which will enter into the following analysis even though it is not paranleterizat ion-invariant,



‘lIIc illvarlat]ce  of constraitit (WI) is OIIC rea.wll to [Jrefcr tlie ti[l]c-constmt  cotlstraint (58) o v e r
111(, “slxml lirl)it” inll)osed ill scctiolw (3. 1. 1) and (3. I .2), ~vhicll exl)licitly  dc]mnds on the choice
of variables, OIi tile other  Iiarid the slwed-lilllit  colwtraints  take i[lto account the entirety of each
trajectory, rattler  than just the behavior near (all possible) fixed points.

Next we must forlllulatc  the objective functiori, which will be a worst-case estilnate of tllc much
slower tinlc constalit  for convergence of tile full circuit (as opposed to 2 x 2 subcircuits).  We want
to rnini[]lizc ~,lOW, where

Ecluivalently  we want to maximize

(60)

(61)

Again, the objective (60) will be parameterization-invariant because the time-constants arc invariant
under similarity transformations.

Because the optimization of (60) with respect to K[ti, v] subject to (58) is invariant under
reparameterizations Zi = ~i(vi),  wc may change variables to ~i = ~~ (w),  calculate A for the
linearized u variables, restate the optimization problcm,  and find the optimizing K. “~he functions ~
are the single-variable potentials appearing in equation (48), so each cj~ is monotonic, differentiable,
and has a c]ifferentiable  inverse. ‘l’he variables ~li were introduced in equation ( 10). Using the u
variables, one may express the dynamics by means of the I,agrangian

whence the equation of motion

7 at:
L = ~i’[tii,lli] + ~ ‘Iii,

i 8U:
i

ail;~i=]l;l[——-,ui
13Ui

1

(62)

(63)

(where the function inverse concerns only the first argument, ii, of ~,u, ). This may be rewritten
in terms of ~)1 from equation (50):

(64)

which enables us to define
~{[~)i, hi]  = k,~l [U)ig’(Ui)  , Vi] (65)

and reexpress the tii clynamics  as
Iii = ~[111~,  rf.:]. (66)

‘1’hen  the linearized dynamics is

(68)

(We have defined T ~ -7’.)



So our optimization problctll  is to find f{ which solves the following optilllizatioil  problclll:

with respect to (w. r.t.  )
I;, subject to

and al (~’) is the largest singular value of ~’, i.e. the largest absolute value of any eigenvalue  of 7’.
By introducing new notation

p[w, u] =  i,ti, [w, r)]
–1;,” [w, t)] (70)

U[w, u] =

and translating the constraints appropriately, we can treat p and u as independent functions  except
for the constraint on the mixed partial derivatives. Then the problem (69) is equivalent to the
following optimization problem:

Maximize
t) = m i n  llA-l(tt,T)ll~]

u,ur, i’E7
w.r. t. (p, v),

subject to

(71)

and IL,” = --v,W, ancl p  ~ O  and u[O, u] =  O )

where
T = {Flol (~) < in,ax and 7 is positive senli-definite},  and

(
–Aij = p[~li, ~~i] ~~jg’(~~l) + dlj ) +  ‘[u1i21ils:j

In the next section we will establish an approximate solution to this optimization problem: a (p, v)
pair that satisfies all the constraints and comes within a factor of 2 of the globally optimal value
of 6. Here we simply make several observations about t}le optimization problem (71).

First, one of the most irnpc]rtant  questions about this problem, and our solution to it, is whether
the restriction to positive semi-definite ~’s can be removed. Connection matrices appearing in real
applications can have boundecl singular values, but rarely are all the eigenvalues  of the same sign.
Second, we note the close relation of this proble[n to a worst-case  minimization of the condition
number of A, K(A) = [I A11211A-1 112.  Since max,j  Iaij( ~ I[A112  and p and u can easily be rescalecl
by a constant while preserving their constraints, the two problems look quite sinlilar.  Incleed,
maximizing K(A) over all u, u), ~ E ‘T subject to the p and v constraints would yield an upper
bound of rra,t~~ax for O.,,x. But our problem is more difficult because the extremization over
u, w, ~ E ~ is performed separately for the constraint and the objective.



3 . 2 . 1  Optinlization  of  11 a n d  v

A useful allxiliary  problcrn  to (7 I ) is obtained by rci)lacing (54) with tllc rlon-i[lvariant  exl)ression
(!57):

Maxi[nim

w.r. t. (p, v),
subject to

C(c) = (c max nl?x  IAij(u, 1’)1 s l/~fiist
11, U!,7-’E7 I.r (72)

(Jnlike the original problem (71), we will be able to solve this auxiliary problem exactly.
To solve the constrained maximization problem (72) and others like it, we will use the following

proof strategy. Given objective 0 and constraints C, we will maximize some lower bound objective
C)_ such that 0-. [j~, v] s U[p, v], subject to tightened  constraints C_ such that C_ [p, v] ~ ([p, v].
In this way we ensure that nlax(O_  lC_ ) s n~ax(OIC). Likewise we will maximize some upper
bound objective 0+ such that Cr[IL, v] s 0+ [p, u], subject to loosened constraints C+ such that
C[p, u] a C+ [p, v]; this combination ensures that nlax(OIC) < nlax(O+  IC+). Having solved both
constrained optimization, we will see that both give the same value for the objective:

nlax(O+  IC+) = nlax(O- lC_ ) (73)

which implies that all the extremal values are the san]e:

max(OIC) = nlax((?_  IC- ) = nlax(O+  IC+). (74)

Furthermore, the extremal values PI and v: of n~ax(O_  [p, v] lC-[p, v]) all satisfy constraints C
(since they satisfy C-) ancl thus constitute extremal  values of max(L7[p,  v]) as well. Thus we will
have solved the original constrained optimization problem of maximizing O with respect to C, by
finding the maximal value and arguments jt”, v*) at which the maximum is attained.

In the next section we will use this proof strategy to solve the auxiliary optimization problem
(72). A variant of the same argument can then be used to conclucle  that the (p, v) pair for the
c = 2 auxiliary problem comes within a factor of two of solving the original optirnizatiorl  problem
(71).

In fact, using (56), we see that the c = 1 version of (72) is a upper bound for (71) and the c = 2
version is an lower bound. In other words,

nlax((?lC(c  = 2)) ~ max(~l[~)  ~ nlax(OIC(c  = l)). (75)

Rrrthermore, C(c = 2) ir~lplies  ~ so that the extremal  (p’ , u“) for max(OIC(c  = 2)) are in the
constraint set for nlax(OIC).  As it will turn out, nlax(OIC(c))  is proportional to I/c, so ~(p”, v*) =
~(p”, u“) is proven to be within a factor of two of its optimal value, nlax(UIC).  In other worclsl

O(p*,  v“) E nlax(OIC(c  = 2)) < max((51C)  = 2 nlax((91C(c = 2)) (76)

which implies
(1/2) rnax((~ld) ~ fl(p’,v”),  E nlax(OIC(c  = 2)) (77)

and (Ii=, v*) is an approximate solution (satisfying the constraints ancl optimizing the objective to
within a factor of two) of the meta-optimization problem (71) or ecluivalently  (69).

3.2.2 Solution of the Auxiliary Problem

We may solve the auxiliary problem for c = 1, then scale it to any other c by scaling Tra,t
ately.  So we’ll assume c = 1 in tlic following solution of (72), ‘1’he basic strategy will be

appropri-
to obtain



u~)pcr bounds  by rmtricti[lg  consi~lcratioli to diagotlal  conlle(’tion  [Ilat, riccs 1’, and to corill~are t 11(.sc
upper  bou]]ds  with lower houtids  that follow fro[ll  [Imtrix theory. III soll~e cases, we will fil~d it uscf[ll
to repeat the above reasoning to solve the bounding constrained olj~inlization  proble[tls  tllelllsclvm.
For cxanlple,  lnrLx(O- [[!-) will bc fou[ld by way of [llax(L9-_ lC__ ) and [l\ax(Cl_+ \C_+). f]ut first
we will treat the upper bouiLd [llax-(O+ IC+).

Dy simply restricting the class T ir~ problclll  (72) to the subset ?+ of ~’ [l~atrices \vl\icl\ arc also
diagonal, we simultaneously increase ttlc value of 0[~~, v] (since it’s a mininlunl  over a proper subset
of 7’ E T) and loosen the constraint C[p, u]. So onc lower bound opt, i[llizatiork problem is:

Maximize

w.r.t. (p, u),
subject to

C+l = ( m ax max lAij(tl, ~’)1 < l/~fast
U, UI,  iE7+  ij

and ~~,,, = –v,U, and p ~ O ancl vIO, u] = O
)

where
~+ = {~1~’ is diagonal and al (~’) ~ tn,ax and ~’ is positive semi-definite}, and

(
--Aij = ~~[~~ij vi] Ijg’(u:) + ~ij )  +U[ui,uildij

(78)
l’his will not be the sought-after 0+ and (?+, but it moves in the right direction since O < CJ~l
and C ~ C+].

If ~ is diagonal then so is A. For a cliagonal  matrix A = diag(ai), llA-lll-l == mitli Iail and
maxij  lAij I = maxi Iail. SO we can calculate more detailed bounds:

~ min min Pi(Fii9~ + 1) +- Vi
U,T67+ j U>=o

—— mill  n!n }li(~ilg$  + 1) ~,=0 (since vIO,  u] = O)
U,? ET+

Likewise we can bound the main constraint of C+l, which is that ~+1 < l/~f=t, where

(79)

(80)



(81)

S o  tll(~ []ljl)(,r ljc)llrIcl  ol)t.illlizatiotl”  l)rol)l(~ltl l)rxoIIIcs

Klaxitllizc
0+ ,:== 1[11[1 //[0, If]

w.r, t, (/f, v),
sut)jcct  to

c+ == (IIlax,l[o,u]~,l,ax,/(it)+ 1) < ,,T,a,,
u

ancl Ii,,, = —u,t~, a n d  ~~~0 and u[O, u]=O)

l’ottliso pti~tlizatiorl~  )roblel[lwc propose tllcsolutiou (p$,  u~):

~1~ [u, u] = l/Tfast  (tr!,axf70 +-1)

U:[w, u] = o, (82)

where go s nlax Ug’(u).  l’hesc  values for ii and u are constont,  i.e. indcpcndcut  of w and u, so the
mixed partial derivative constraint of problcm  (81) is trivially satisfied. Clearly also p} > 0 and

v~[O, u]= Oaresatisficd.  Theti+ ~l/~r~gt constraint carlalso reverified:

lllax. ~.a.l(”) + 1,t+[p~, u~]=lt~axP~[o,  ul~nla~9’(u)+ l)= ~fast(tn,axgo+l)

So (p;, v:) satsifies  the desired constraints. ‘1’hc objective is 0+ [p;, u:]

= l/Tfmt. (83)

= minu p: [0, u] =
1 /~f~t[t”,axgo  + 1). But  from the constraints we sec this value is also an”upper  bound for” O+ [p, v]
as follows:

1 /~fast 2 t+ [P , ~1
—— maxu p[O, u] ~n,axg’(u) + 1)

~ (rninv p[O, u]) (maxU(t”,aXg’(u)  + 1))
(84)

= o+[jt, v] (tn,axgo + 1),

which irnplics  0+ ~ 1 /m~st (t,,,axgo  + 1). So (p}, v:) in (82) solves problcm  (81).
Next, we use matrix theory to find and SOIVC a constrained optimization problem nlax(O- IC- )

which can serve as a lower bc)unci for max(OIC).
‘1’o  bouncl 0 below (in probletn  (72)), wc must simplify llA-lll~l. In matrix notation, llA-lll~l

is just an (A), the smallest singular value of A. Also A is given by the matrix expression

A = diag(p)(idiag(g’)  + 1) + diag(v). (85)

‘1’hc  smallest singular value an (M + N)  of a sunl of matrices M and N is bounded below by
o.(M) – O1(N), as shown for example in [GL83]  (Cor. 8.3-2, P.286). We will take A = M + N
with N = diag(v)  and use al (diag(v))  = n~axi l~il to find a lower bound O_ for 0:

(86)

We can also bound the nlain  constraint of C, which is that ~ s l/~r~st. We will use the fact
that al (A4 + N) ~ al (M) + al(N), which is also shown in [GL83]  (Cor. 8.3-2, p.286).  The bound
is as follows:

(![/L, u] == rllax - tl~,?x lAij I
ti, u,,7-’c T ‘J

< max. IIAIIZ
11,  UI,  TE7

(standard matrix rlorln bounds, e.g. [G1,83], 2.2-10, I). 15)
max . 01 (A) (87)-—_—

u,uI,76T

~ “:1::7  [~(diag(~~(~cliag(g’~+  I,) +Inax[utl]. -! i, )

:= L_ [ p ,  1/].



So tllr lower tmull[l crpl,illlizatiorl I)roblclli bccoltlcs

hlaxirnize
(’) _ = [Iii!) [a,, (Ciizlg(ll) (’;’cliag(g’)  + 1)) – m:x lf41 114,11 ),7-’67

w.r, t. (p, u),

and Il,t, = –u,u, and p ~ O and u[O, u] = O).

Consider the related optimization problem

Maximize

subject to

C-+ = (Uy~;T [al~iago)(~diag(g’)+1))  +m?x,vil] s I/~~..,1,, .

(88)

(89)

and p z O and uIO, u] = O),

which differs from (88) by removing the partial derivative constraint that relates p ancl v. Clearly if
we solve this problem and find a solution that also obeys the partial derivative constraint, then we
will have solved the original problem. l’hat is what we will do. But the new probleln  (89) can be
further simplified by observing that the optimal v~+l  must be identically zero; otherwise, an optimal
(/i:+l, v:+, # O) would have a lower value of the objective than (p:+,, O) Which equally  Well
satisfies the constraint C-+l; that would contradict the assumed optimality of (f~t. +l, V1+I # O).

So to solve max(O_  Id-), i.e. problem (88), it srrfLces to (a) solve problem (89) assuming u = O,
i.e. to solve:

Maximize

O_+  = “ :$7 a,, (diag(p)(~diag(g’) + 1))
,,

w.r. t. (p, u),
subject to (90)

c-+ =
(

( rnax - al diag(p)(~diag(g’)  +  1))  ~ l/~fast
u,lLI,~ET

)
and p > 0 ,

and then (b) verify that the mixed derivative constraint p,” = —v, U, —(– O) is satisfied by the solution
(p:+, O) to (90). lhrrthermore,  the optimizing values (j~~, v:) will just be (p:+, O).

We will solve max(O-+ IC-+) using the same strategy as for max(OIC) itself: by construct-
ing an upper bound prob]en]s by restricting to diagonal connection matrices ~ E ~+ = ~ (1
{diagonal matrices}, and a lower bound problem using more matrix theory, and showing that
they have a common solution.

The upper bound for 0-+ is calculated as follows:

c?_+ =

<

=

<

——

—

——
———

min - o,,(diag(p)(~diag(g’)  + 1))
u,w,  TGT

min .  a,,(diag(p)(~diag(g’)  + 1))
u,ut,2%T+

m-in - min ~ti(~llg~ + 1)
U, W, TE7-+  1

m i n  - [lliIl}ti([~~i]g~ + 1)
U, Ut,7-’ ET+ :

~~$rl!inPi(~~}~ li~i19; + ‘)

Illln 1111 I1/l[U~l,  tL1 1u,w i

[Ilirlp[u), u]
U,ul

C?-++.

(91)



‘1’IIc (mrrmlmlldillg  (Iomvr)  lx) IIrId for C!_+ is calr,llakl as follows:

c-+ = ,, :; I;:,f o, (cliag(~t)(~cliag( g’) -t 1))
,)

> rllax. 0, (diag(~t)(?cliag(  g’) + 1))
TL, tll,’icf+

—— max llI?X ~il(~llg~+  1)
11,11  I,FET+ 1

—— min. 111111 /l:(Tiig~+  1) (since T;l ~ O)
tI, UI, f’ET+ 1

—— Ula XIlli Upl
(

!ll?X~~ifJ~+ 1
td, uI i TET+ )

—— max min ~i[UJ~,  Itl]~n,axg’(it,) +1) (since nmxf,~+  fii = ~n,ax)
u,ul i

—— Irllxp[w, u] (tn,axg’(lL)  + 1)

= (:-++.

So the upper bound optimization problem becomes sinlilar  to problem (81):

Maximize
(9.++ = rnin p[w, u]

u ,U!
w.r. t. (p, v),

subject to

C-++  ~ (,llax/[~],~l~nax9’flJJ+l)<l/Tfa,tU,w

(92)

(93)

)a n d  ii z O

l'otllis optin~izatio~~  problerll  w'eagair~propose  thesolution  (cf. e q u a t i o n )

1~~++[~), ~] = l/~fa.5t(tn,a.90  + 1), (94)

where go ~ maxtig’(u).  The proof for this solution is the same as that of the solution of problem
(81) byequation  (82), except that nowwrnus tbeoptimizec  feverywhereuis.  ‘I’his establishes the
solution ofproblern (93) by equation (94).

We must now find a lower bound nlax(O-+-  lC_+-  ) for rnax(O_+  lC_+), and to do so, we require
another matrix theory result: that for positive senli-defiuite  tnatrices  A4 and A’, m~(~ + ~) ~
a,l(M) + Cr.(M) [sgs90].

(Note on the proof so far: We could not use this result earlier since diag(v)  was not positive
semi-definite. Also the use of this result and equation (92) are the only places in the proof that
depend on the assumption that ~ is positive sen~i-definite.)

Thus,

o_+ = ~ ;~n~ an (diag(p)idiag(g’)  + diag(p))

> ~’~;n; [ ( ( )an dlag 11 ~diag(g’)) +  an(c]iag(p))]

> ~’;~~;~  [a~(diag(~~))an(~’)a~  (diag(g’))  + an(diag(~~))]
,)

(since IIA4N112  s IIA411ZIIN112,  [GL83]  p.16)
= rn$ [an(diag(p))  (rm~} an(~) )an(diag(g’))  + un(diag(p))]

(95)

. .
= min rnin }t[~li, I/i 1u,uI i

(since rni~~~ an(~) = O)
= [nin p[w, u]

U,ul
:: 0-+-[}1].



IJilwwise,

—— nlax(rnax~t[wi,  If: 1) (tma.(1t1~x9’(ui) + 1,u,w i

(since nlax~~~  ~1 (~’) = fn,a.)
E C_+-[/l].

Wc can assemblethese boundsinto  theconstrainecl  opti[l~iTatiorlIJroblelll

hfaxirnize
0.+. = min p[w, u]

U,lu

w.r. t. (p, v),
subject to

C-+- =  (rtlax(rtl?x/[~:j~il)(~ nax(I1l?x~’(lli)+l)  < l/~fastU,w 1 a\

(96)

(97)

Tothisoptilnizatiorl  probletll  weol~ce agaiIlprolJose  ttlecorlstarlt soIutior~  (cf. e q u a t i o n )

~fl+_[W,lf]= l/~fast(~r,laxgO+ 1 ) , (98)

where go s nlaxU g’(u). Clearly the constraint pi+_ > 0 is satisfied. l’he t–+– < 1 /~fast constraint

can also be verified:

‘lax. ~...!(u)”)+ 1,
C-+- [p:+-] =  fn:xPl+_ [~, IJ] (tn,ax9’(4  +  1) = ~fa,t(tn,axgo + ~) = l/~fmt (99)

So pi+_ satsifies  the desired constraints. The objective is U_+_  [pi+_] = rnin~,,”  p:+- [w, u] =
l/~fa.t(tn,aXgo  + 1). But, once again, from the constraints we know this value is also an upper bound
for 0-+- [/6]:

1 /Tf&9t > (?_+_ [p]

= maxu,,u  p[w, u] @“,aXg’(rr)  + 1)

> (nlirIW,U p[w, u]) (rnakj,u (t”,aXg ‘(u) + 1))
(loo)

( )
== O_+_  [p, v] t“)axgo  +  1 ,

which implies 0-+- < l/~f~,t(t,,,~.gO + 1). SO equation PI+- in (98) SOIVCS problem  (97).
We have previously solved problem p:++ in (93) with equation (94). The  resultir~g rna~inlal  val-

ues of 0 are the same for the two problems (97) ancl (93) (nlax(O-+--  IC-. +- ) = nlax(O-++  IC–++ ) =
l/~fat(tm.Xgo  + l)), and they are attained by the same p“ = constaut  functions. SirIce these were
lower and upper bounds for nlax(O_+  lC_+), we conclude that the same p* and maximal value of (’l
also solve problem (90), namely the calculation of n~ax(O_+ lC_+ ). But  in the discussion of problem
(9o) we pointed out that, if pl+,U  = O (as it certainly is, since Ii:+ is a constant indeperlder~t  of both
u and w), then (p:+, u = O) is also a solution (P1,  vl) of problem (88). This  result  is ttle sought-
-after lower bound for the original problem (72), al]d may be joined with the solution of (81) (an up-
per bound for (72)) by (82) to finish the entire problem: nlax((~-  lC_) = n~ax(OIC) =. n~ax(O+lC+)
= l/m,t(t,,,~~gO  + 1); and the optimum is attained at (p”, u“) = (p:, u:) = (Jt\, v;), i.e.

p“ [711, “11] =  l/Tfm(~rl,axgo  +  I )
(101)v“ [w, ?f] =0



is  Sllowll to 1)(’ il sollll,  ion of (72)  for  c  = 1. otllcr  v:llll(~s of c lIl:~y I)(, :tt)sort~f~cl i[)to  tl]c  clcfirlitiol]

of ~fi,st, S(J WY, ltavc establisl]ed  J,rr[)rl)a 1:
I,clnllln  1. ‘1’IIc o~)tinlizatiou  problc[[l

Maxinlizc

C(c) = ( max clll~X lA:j(ll,  7’)1 < l/~fast
U, UI, T-’E~  ‘ J (102)

ancl ~l,ti = –u,U, and p z O and uIO, u] = O)

where
‘i- =: {7-’101(7)  < t rnax and ~ is positive senli-definite}, alld

(
‘A;j = ~i[’tr~l, Uj] fijg’(11:)  + dij ) +  ‘[t(ttl~j

has as one solution
p“ [w, u] = l/(cTf=, (tn,axgo + 1))
U*[W, U] = o. (103)

It remains only to translate this solution for p[uJ, u] and U[W, u] back into a function ~ (as called
for in (69)) and thence to the desired “kinetic energy” or “cost of movement” function K[ti,  u] or
its equivalent, I([ti,  v].

3.2.3 Approximate Solution of the Meta-Optimization Problem

~I~ron~ equation (77), we can apply l,emma 1 with c = 2 to find a (p”, u*) pair which comes within
a factor of 2 of solving the rneta-optitnization problem (71) or equivalently (69). (Note that (77)
was derived assuming that rr~ax(OIC(c))  is proportional to I/c, which has now been established in
I,emma  1.) Changing back to 1/ notation,

i{,u, = l/T1,, k,. = o, (104)

where
TH = 2Tfast(~n]axgtr  + 1) (105)

is a constant. (The factor of 2 comes from c = 2.) ‘1’lle general solution of these partial differential
equations is I?[u), u] = w/~H -t- c1, but from the statement of problem (69) we must take 1? [0, u] =
c 1 = O. Then

k[w, ~] =: ~1/~H. (106)

lJsing  (65),
R,u[i,,  u] = X--l[ri,  Il]g’(u)  = T,,rig’(rf). (107)

‘l’his has the solution ~[ti, u] = (~Ii/2)ri2g’(u)  + C2(U).  Hut the term C2(U)  h~~ no effect on the
dynamics, since its greedy derivative is zero, and without loss of generality we can take Cz(u) = O.
q’hen

fi[il, u] = :;il~g’(u). (108)

This is the sought-after kinetic energy or cost term for i~, ancl the associated equatic)rr of motion is
(from equation (63))

1
ill = —

(x )
Tij Vj + hi  - U: ,

TfI
j

Vi 2= g(Ui).

(109)

‘J’his 1: [nay also be translated back to a Lagrangian expressed directly in terms of ii, using
[([i), v] = I[it(v), u(v)]:

K[r!J,  v] = ~i~2/(g’(.q-  l(v)), (110)



or equivalently
/i[i),  v] = y~’’(l)). ( I l l )

If g(u)  is linear (i.e. if 4(v) is quadratic), Ll]is kinetic e[lcrgy expression i s  pro~~ortio[lal to tlic
conventional (rn/2)i)q expression cncoulltcred  in ~Jhysics, but for Ilonlillear  g this Cxl)ressioll is
different froni a kinetic energy ill physics, (1 10) is the circuit cost-of-n~ovclllcnt (or kinetic  ciicrgy)
term used elsewhere in this pa~mr, a[lcl a greedy variation of the associated action  fu[lctiollal  yields
equations of motion ecluivalent to the IIoI~fielcl/GrcJssberg dynalnirs  of ( 109).

Assembling Lemma 1 and (47), (48), (52), (58), (61), (77), (105), and (1 11), we have denlon-
strated the following theorem:

Thcorwn 1. The linearized clynamics determined by a greedy variation of the Lagrangian

may be computed to be

(113)

If wedeflne  the objective
M,(K) = n~rl~~:llA-1(v,7’)11~1, (114)

where
7-= {Tlr7, (7’) < i “,~X and 7’ is negative semi-definite}, (115)

and if we impose the constraints on K that

(a) nlEiXv  I[lZiX~~T r[~ax~c~  IIAI12  < l/~f&t,

(where A runs over 1 x 1 and 2 x 2 subrnatrices  of A), ancl
(b) K is continuous in its frrst and second derivatives, (116)
(c) fi[O, zI] = O, and
(d) Il[w, v],ti, <0,

then the function
K[i, v] = (~~//2)i~2~’’(v)  where

Tf[ = 2Tf=t(tn,axgo + 1)
(117)

satisfies the constraints and comes within a factor of two of the globally maximal value of AI(K)
subject to these constraints. Furthermore, the objective M. and the constraints (a) – (d) in
(1 16), with definitions of A, ~ and w as in (113) are invariant with respect to coordinatewise
reparameterizations ~i = ~i (vi) in which each -fi is monotonically increasing, differentiable, and has
a differentiable inverse.

3.2.4 Notes on the Solution

If @ differs from one neuron to the next, and is indexed by i as @i, then the optimal A’ term will
still have the above form if it too is allowed to depend on i. The proof in sectiorl 3.2.2 can easily
be altered to establish this generalization of the result.

Note that (105) relates the fastest physical time scale ~fa~t in a circuit to an optimal value of
the neural time scale r~f appearing in IIopfielcl’s version of the analog neural network [lJop84],  ancl
the two are not the same. ‘1’hc best value for the neural time constant is the slowest time constant
in the system. l’hc ratio of the latter to the fastest time constant is roughly tile product of the
neural gain gO and largest eigenvaluc  of ~’.



which is Slrpposf’(1  to be identical to i~l = –f3E/f3u , , t~i = ~(rri) (cf. (12)). This can be arranged by
choosing w:

~Uki~i = ~Fl du~
du , au, du,,

du, _ AL _ du, fdu,
+’ & —  dug,  —  

du,, /du, (119)

“%=m
i.e.

(120)

4 Discussion and Conclusions

We introduced a Lagrangian formulation of the relaxation dynamics of neural networks which
compute by optimizing an objective function in a standard neural network forln, This optimization
involves a trading-off cost and functionality in the formulation of optimization problems. ‘The
I,agraligian  formulation makes novel use of a greedy ~rrnctionrd dcriurrtioc, which we defined and
computed. With these tools we demonstrated the use of three levels of optimization in the design
of relaxation neural network dylLarnics: the original objective E, the I,agraugian  L, and a rneta-
objective M which measures cost and functionality over many trials of the network.

Applications of the Lagrangian fortnulation  were diviclecl into two broad groups: analog circuit
Lagrangians, and Lagrangians that require a hidden switching mechanism to implement as a circuit.
At the circuit level, we showed that a limited meta-optimality criterion is nearly optimized (within
a factor of two of t}le global optimum) by a Lagrangian corresponding to the conventional Hopfield-
Grossberg  continuous-time analog neural network dynamics; we also provided several alternative
I,agrangians  which might be preferable under  less analytically tractable rneta-optirnality  criteria.
In part 11 of this work we shall introduce a generalization of such relaxation Lagraugians  to cyclic
I,agrangians  with clockecl objective functions, which have a simple circuit implementation involving
external clock signals. We shall present suitable algebraic notation including a clocked sum and
clamped variables and use the notation concisely to express neural network dynamics for a variant
of line minimization and for relaxation networks that contain feed-forward netwc)rks.
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