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Abs t r ac t

In Part I of this work we showed how a tradeoff between measures of neural net cost (of
operation) and functionality (efiicacity)  could be used to derive the dynamics of the net, and
in particular, optimize thereby a class of objective functions. IIere we extend that methodology;
a I,agrangian  formulation and greedy variation to treat more ramified problenls.  We introduce
a notion of clocking and a class of clocked objective functions to CIO this. A kincl of switching
dynamics occurs which is suitable for many applications. This notational clocking calculus makes
for time-scaled computational techniques employing a “focus of attention” (similar to saccading,
foveation, and covert attention in biological vision). Experiments dealing with  applications are
referenced.

1 I N T R O D U C T I O N

In Part I of this work [MM] (to be referred to hereafter, simply as Part 1) we introduced a La-
grangian formulation of the dynamics of a class of relaxation-based analog neural networks. These
Lagrangians incorporate a trade-off between measures of the operational cost and the functionality
(efficacy) of neural networks employecl  to optimize a given objective function E. Because of the
need for nonconservative or clissipative  dynamics, our I,agrangians  are to be variecl in a nonstan-
dard  way using the so-called “greedy variation”. “1’his results in dissipative analog circuit dynamics
described by first-order systems of differential equations. Within a class of candidate I,agrangians,
we proved the near-optimality (under a suitable meta-objective  function) of a particular Lagrangian
corresponding to the IIopfielcl/Grossberg  analog circuit dynamics. IIowever, for efficiency, elabc-
rate computations may require tnore complex clynarnics specified at a coarser scale of temporal
resolution, and this is a theme of the present work.

}Iere (in Part II) we proceecl to consicler  more elaborate I,agrangians  which are capable of spec-
ifying [Ion autonomous dynamics. For example the clynaruics may clepend on which subset of the
probletn  variables is currently being optimized, as well as the subset next to be optimized. This
kincl of ‘[switching” dynamics occurs ill many ai)plicatioas  and requires a more general formula-
tion of the Lagrangiall  whictl we develop [n section 2 we introduce a ti[ne-varying  or switched
version of tllc problem objective function f~, called a “clocked objective functio~l”.  We relate it to
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o u r  l,agrilllgiall  forllluiation  of dylla[lli(x,  l)ro(lll(.  ilig so-(,;  dl(,(l (.y(li(.  I,:igral)gi;ltis  \\”(~ tl(v(,lol) sllit-
al)lc Ilotatioll  for exl)ressi[lg  a ]Iullllwr of cxisti!l,q  ol~tiflliz,atioll IIICIIIO(IS  ill tcrllls  of” SI!(’!I  {’l(x’!ied
object ives.  l{efcrcllcf is IIIade  to a nuIIIl)cr  of rxperi[[lf[lts, a~)~)licatiot~ Mid collll)lltatioll,  Jvlti(ll
utilize t,tlis clocking calculus. in scctio[l 3 tvc stlow Ilow to specialize these ideas to tllr (’asc of a
coliiputationat “focus of attrrltion’)  (similar to saccading,  foveatiorl, and covert attrtltiou ill bio-
logical vision) which iteratively and opportunistically selects a subset  of the problelll’s  variables
for  optirnizatiou, arid optilnizes  thclll.  \Vc SIIOW  how to develop I,a,grangians 011 diffcrctlt problcn]
scales, CTrecdy variation then leads to tile dynamics relevant to each scale. ‘1’lle ivor-king of the
clocking or switching in the problem cleveloplnellt and its solution is worked out, In sectio[l 4 we
derive ancl relate various particular focus of atterltiou  mechanisms, inducting several which have
been tested in previously reported computer experilnents.  “1’hese include priority queue attention,
multiscale  attention, jumping and rolling windows of attention, spreading activatic~u (of neurons)
and orthogonal windows. Sectio~l 5 provides a sunl[nary,

2 DYNAMICS WITH SWITCHING: VIRTIJAL
NETWORKS

Suppose we have hardware capable of switching different sets of neuron output values from a
static (backup) memory into an active neural network, where they can bc updated. \Vith  such
hardware it is possible to implement a computation which would require a much larger neural
network if every neuron were to be actively updated at all times. This situation }VOLIIC1  be analogous
to the use of virtual rncmory in a conventional computer, in which one has a lirnitecl amount of
physical memory (Ranclo~n Access h4ernory)  augrtlcnted  by a much larger amount of secondary
storage (magnetic disks). Equally, it is analogous to the distinction between the small cache memory
associated with a central processing unit, and the larger physical memory (RAM). In either part
of the memory hierarchy a relatively small and fast memory, in concert with a relatively large and
slow memory, simulates a large fast memory (with occasional slowdowns due to page faults or cache
misses). In like manner, we seek to design a switching mechanism for obtaining the computational
power of a large neural network with a small neural network plus a large, slow and relatively
inexpensive memory. Furthermore, in some cases it will prove possible to disper~se  with the slow
memory entirely.

Such a system would be useful not only for making space-time tradeoffs in situations where
only a limited amount of spatial resources (neurons and connections) are available, but also for
formulating search algorithms (sLIch as binary search) which can’t be fully parallelized  due to their
unpredictable total resource requiremerlts.

What kind of cost and functionality terlns  WOUICI model this situation? l’his  is a hierarchical
design problem. At a coarse time scale, we have just two kinds of decisions to make: what the
active set of neurons (the $OCUS of attention) is to be at any given time, and what their new values
are to be after some period of active dynamics. (In the memory hierarchy analogy, one would like to
decide which part of slow memory to bring into fast memory as some computation progresses.) At
a fine time scale we must repeatedly make circuit-implementable state changes which move towarck
answering these two coarse-scale questions.

A strong constraint on the system is that, under reasonable cost metrics such as network space-
time volume, no savings will be realized unless the focus-of-attention decision has converged to a
definite answer by the time a switch of attention is to be made (i.e. by the ti[ne that clecision
is to be implemented); partial answers as to which neurons should be active woulcl just force all
the candidate neurons to be active. (An attentive neural network which unhapl)ily  violates this
constraint is described in [Mjo87]. ) of course one can contemplate clyuarnics in which by \vay of
exan~pIe a linear combination of neuron values is rnacle active, but such a system shoulc]  be designed
by introducing new variables for the linear combinations and a discrete switching circuit which still,
to be physically cost-ef~ective,  nlakes definite clecisions about the active set of neurons.

So, our problem is to find both coarse-scale ancl fine-scale cost and functionality ter~ns to moclel
a focus-of-attention nlecha]lisnl  which switches many storecl ucuron values into and out of a snlall
active network, where the ]Ieural values are updated. We will not consider all aslwcts  of this
prohle[n.  Rather wc shall stlow how the [,agrangiau  for[tlalisms  provide a trar-tal)lc  frar[lcwork for
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during nonoverlapping intervals of an underlying

physical time variable, t. For  example  T1 = ~ dtvl (t) arid T2 = .[ dt~z(t) where +1 = CiT1/dt  and
~~2” = dr2/dt are nonoverlapping  clock s ignals . ( a ) ’  ~’he pararne~ric curve (~, (t), ~z(t)).  (b) T h e

functions r/J1 (t) and 7/12(t).

c}ur approach. This is illustrated through derivation of a few plausible Lagrangians  in the form of
clocked objective functions. Related work appears in [CO089, kfjo87, MM91, IISB+ 91].

2.1  Cyclic  Lagrangians

In discussing coarse-scale cost and functionality terms, the idea of a repeating cycle of a fixed
set of dissimilar coarse-scale decisions will be fundamental. This idea is analogous to a “loop” in
programming, or to the use of cyclic clock signals to control an electronic circuit. The idea may
be expressed in terms of Lagrangians  in several different contexts which we will discuss here. In
all cases we will fincl a simpIc formulation in terms of a “clockecl objective function” [MGM91]:  a
version of the AE functionality term of the Lagrangian in w}lich the structure of E is regarded
as time-dependent according to a temporal cycle corresponding to the fixed cycle of coarse-scale
decisions. The possibility of formulating a cyclic I,agrangian  in terms of a clocked objective function
was introduced in section 2.1.1 of Part 1, equations (17) and (18).

As an example, consider a line-minimization algorithm for local optimization. Repeatedly, one
calculates the gradient at a current location x, does a one-dimensional minimization of the objective
function along the gradient direction, ancl updates x. During the cycle it is necessary to store an
old configuration xold for use iI1 updating  X, and to reset to zero the scalar parameter s which

measures displacement in the gradient direction.
To express these ideas we recall the clocked objective function notation [M Gh191]:  Suppose

that we have a small set of objective functions { Eo } which are to be partially relaxed (i.e. par-
tially optimized) in a cycle. We define one nonoverlapping clock function, ~~~ (t) = O or 1 (with

~ad~(t) S l), foreacl~phaseo=  1 ,2 , . . . , A of the cycle. ‘l’he clocked objective function is written

mkl(d[x!~l = ~ia(t)~;a[x’’e’l.r:~’d],c1 (1)

. freewhere ,%0 and ,Ia‘fixec’ arc subsets of variables fro~n the entire set {~i].  During phase o (i.e. when
rjla(t) = 1), Ec,ocked = Fa . @- [ Tf’WIX~Xed]  is to be extrernized  with respect to all variables in %$,
while all variables i[~ A’~xed are to be held fixed or clamped. Figure 1 shows o~ie interpretation of
tile nonoverlapping  clock functions @n (t).

h’or  example, a simptc  clocked objective function for line minimization woulcl tm

h’,1~.k.,(  =

[

#, I(t); /lx’’’” - xll~ + ./)[xqx] (il)itialize  xO1’J and s)

++2(t) ~~[x + svqxo’~]])  [sIx, x~l~] (line minimization) (2)

+W);(llx – X“’<’  – Sv f;[x~’” ]11~) [X1.$, x’)l(i ]  (Itpdatc  x),

—..



Since tile ~1 = 1 at]cl n = 3  phases  are rs~x’cially  easy qliadratic  o~)till~izatio[ls, o[le Coul(l arratlgr
tliat these terlns  arc relaxed alllmst  to zero clurillg tile clock })lliiSe interval al)l)ro~)riatr to each.
‘J’hcn equation (2) is a Colltitl(lolls-titllc refille!netlt of tl)e coarsf-scale Lagrangiit[l’s {Imisioll  (y(’lc,
wtiicli partially relaxes 1’.’ill a gradient direction and tllcll resets tllc varial)!cs  for tile Ilr-xt partial
relaxation,  At the end of phase 2 in earl] cycle, tl~e clocked objective functiotl  takm ttlc val[]c of
1; at the new point. So the clocked ol)jective  function [nay be interpreted as a rcfillclllcl~t of the
functionality term of the coarse-scale decisiomcyclc  Lagrangian. ‘1’his interpretation also requires
that the appropriate variables be helcl fixccl at the correct ti[lles; this may be acl]ievcd  with a cost
term C’a which strongly penalizes any change in the clamped variables for the relevarit clock phase.

hlany  variations on equation (2) are possible; the clockecl objective could interpolate an extra
cycle for the calculation of the gradient vector, and the x used to calculate the ,graclient coulcl be
taken as the u=g–l (v) rather than v variables for F;, and soon.

2.1.1 l& ’kIkiOn  of ~;CIOC~,d to ~;

So far we have only argued that clocked objective functions proviclean  interesting special case of
the distributed I.agrangian  equation (5) in Part I; we have not shown how they can be related
to the static objective function E or the dynamicohjective function equation (4) in Part I with
functionality term F = EfinaI  – Einitial. Ilere we will discuss three different classes of clocked
objective functions, each of which can be used to make some progress on minimizing E in every
complete clock cycle so that AE ~ Ofor each cycle even though  the functionality terttl  is not simply
equal to AfII.  In this section we refer to such a clocked objective as “valid” for objective E.

Transient TermM For the first claw of clocked objective functions, of which the lilie minin~iza-
tion objective (2) is an example, F~C\O&cd  is valid if one of its components Ed is ectual to E itself,
perhaps with restricted arguments, and if the other components can each be expected to relax to
near-zero values within their own phase of the cycle. These other components will be referred to as
tmnsient terrnsof acloclced  objective function, since they approach zero quiclcly.  ‘1’hen  progress is
definitely made  during  phasep,  anclat least nohar~n  is done (i.e. no increase in A’fl is suffered) in
theother phases a. Gerlerally  these otller~~}lases are~lsed toerlsure thesuitability  of thearglin~ents

. .of F,p == F..
Subspace  Terms In the seconcl class of valid clocked objective  functions, E~ is equal to f?

during all clock phases, except that it is a function of different sets of variables (or more generally,
is a function c)n different submanifolds)  during different clock phmes.  We will refer to this type of
term a-s a subspace term  of acloclced  objective function. “l’here can be no significant calculation
required to decide what subset of variables L’ depends on during each phase (otherwise we’d neecl
a further phase to make that calculation). One simple arrangement is to partition all variables into
a few blocks ,1’a, with the variables in one block allowed to change during each phase of the clock.
Then equation (1) simplifies (since every Ea is just L’) to

‘;clocked[x,  ~1 = ~ @a(t)  B[~~elX~xed]. (3)
a

I’his  permits concise expression of blockwise coordinate descent algorithms.
I t  1 S  perhZipS  SUrPrlShWj  that k’clockd[x, t] is not nuI~lerjcally  equal ‘0 ~;[x(t)] ‘ o r  all t ‘r~ ‘llis

c~se, owing to the nonoverlappecl  clock factors @O (t) ● [0, 1] whose sum varies between O (between
phases) and 1 (during a clock phase). As we will see in the next section (2.1.2), this is necessary so
that the continuous-time Lagrangian will force all variables to completely stop ctlanging  between
clock phases, as they should.

We note that the second class of clocked objective functions can be used for the cliscrete par-
allelization  scheme mentioned at the beginning of scctiou 2.3.1 of Part I. l’here we postulated a
partition of the network variables into a s[nall number of “colorecl” blocks, with neighboring vari-
ables in the network having different colors. (Colors are in a corresponcleuce wittl phases. ) Such a
partition can he usecl to ensure noninterfererlce  of cliscretc-tirne  parallel u~)clate clynamics.  Clearly
ecluatic)u (3) is the correct (locked objective for tllis situation, and f“ would just be AfjCIOCk~C1.

~o~itrol TCIWIS  For ttle thir(l class of valid clockccl ol)jective  fllllctions which perform optinliza-
tion, onc constituent objective I;ti is a,gai I1 taken to be 11 with restricted arguillents  (a subspace
ter[ll,  as ill tl~c first and sem[ld classes), ancl ttle other  [)llases either  relax to nearly xero (being



(Y)II)IXMNI  of tra[lsirrlt  t,ertns :Ls irl tllc first c l a s s )  or s(>rve to (Icter[llinc tile c}loicc of  active  argw
]Ilents for [)hwe [j without directly changing  aIIy of ttlc origi[tal varial)lcs  x. Since this last type of
objwtivc is a SIIIII  of terltls  that ol)ly involve variat)les that control nlerntmrship  ill the active set
of arglll[lcnts  for /), its cotlstituent ter[ns  will be referred to as controf terms  in a clockccl objective
functioli.  (;lockecl objective functions with control terms arc tllc class of objective functiorls  most
rclevatlt  to ttlc atterltion  lllectlarlisrns of section 4. Irl ttlat section we will have occasion to usc
clocked ot)jectivm  colltainirlg  a variety of subspacc  terllls,  trarlsicnt  terms and control terms.

2.1.2 Lagrangians for Clocked Objective Functions

We have seen in equation ( 17) of Part I how clockecl objective functions may arise from coarse-scale
Lagrangians,  in which the the functionality term takes on a cyclic sequence of clifferent  forms. Our
purpose now is t,o relate  such clocked objective furlctions (M in (l)) to continuous-time Lagrangians.

The essential feature of a single term L’@[A’~c [~l’$xed]  in a clocked objective function E is that
it depends only on some of the variables, the rest being helcl constant at their earlier values. This
gives a property expressible in terms of derivatives:

(4)

where ~ai E {O, 1 } is a constant which indicates the presence (~ = 1) or absence (x = O) of xi
in A’&e. (For fixed cr, Xai is an indicatrix for A’~e).  Consequently, l;o[x&elx$xed]  is a low-
dirnensional  slice (restriction) of the higher-dimensional function EOIXa],  evaluated at values of the
fixed parameters which are dictated by the state vector x at the beginning of the a-th phase.

~From equations (3) and (4) we may now calculate d~jclOCked/d~l:

which is nonzero at any given time t only if ~i is in the free set of variables at that time.
We can take the final continuous-time I,agrangian  to be

(5)

(6)

where A’ is a cost-of-motion term (see section 1.1 of Part I). To see that this is consistent with the
desired pattern of fixed variables & a function of time, we examine the resultant
in equation (30) of Part 1, varying ii and using ~0 ~~oxai ~ {O, 1 }, and defining
inverse of ]{[i, z], ~ with respect to its first argument, the equations of motion are

dynamics. As
~[w, r] as the

(7)

Here we have used equation (5) and ~[0, z] = O to simplify the equations of motion. The factor  of
i~ct(f),yai ensures that the correct variables are clarnpec] at the correct times.

Ecluatiorl (6) is appealing because it has the same form as the continuous-time I,agrangian  for
unclockecl  objective functions, equation (22) of Part 1. This is the desired relationship between
continuous-time I.agrangians  and clocked objectives. Ilecause  of equation (6) it will often sufhce to
give the clocked objective alone, omitting the I,agrangian,  in order to specify a network’s dynamics.

2.1.3 Notation for Clocked Objective Functions

I;c[uations such as (4) can be expressed in a more convenient notation for algebraic calculations (by
human or computer). From an algebraic point of view, (4) may be regarded as the ~i derivative of
~~o, a version of L’a in which all fixed variables ~j ~ A’$xed are simply replaced by clcrmperi  uariccbjes
(or ‘{ flxecl variables”) ij for which

d.i’j
– () despite ttle fart that

L2J’j  ~,,
——

~J’i  – tlXi  — ‘3’
(8)



‘1’lIe  actLial  value of Jj i s  LIiKlat(d to tile current  value of J ‘, oIIly at tile (otllfrw’iw’  irr(l(’v:trit)
tilllc  intervals bctwccu ttle nollovcrlal)ped  clock p])ases, wheu LO @a(t)  = 0. Iklllatioll  (’l) lollo~ys

directly froltl this illterpretatioil of L’(, [41’c~Cl1’~x  C(l] in ternls  of ljo,
In fact,  we can design notation for tl)e substitutiotl that relates ~; to L’. Ikfrlle

Z{x}=xz+(l–y)i s o x{~a}=x,,  .x+(l–xn)’ x (!))

where ~ is a binary (zero- or oue-valuwl)  scalar (or can easily be roulldwl to zero or OIIC) and X(l is
just the constant array ~nl wbictl specifics with its mro-valuecl entries which variables are clarl)pecl
in each phase a. With this notation, fi~ is just f~a[x{xo}],  i.e.

Ea[x,pl.l’:’”q == Ea[x{xo }]. (lo)

We will use E@[x{XO  }] as the preferred notation. Furtherlllore  x need not be a constant; it can
be replacecl  with any vector-valued ex~)ressio~l  m(f) involving variables <. Equation (9) would still
define

x{7r(<)}  = @(7r(<)  – 1/2) x+ 0(1/2 – 7r(t)) x, (11)

where

{
c)(r) = :

ifz>O
otherwise.

(12)

@ is defined componentwise on vectors. ‘l’he purpose of the El function in (11) is to round m(~) to
zero or one, with a boundary at 1/2. Note that, in agreement with equation (9) in which x is a
constant, x is clamped in equation (1 1). ‘l’hat is because x’s focus of attention cannot shift cluring
the phase in which x is being relaxed without incurring excessive and uncontrolled switching costs.

As a further notational refinement, we may clrop the explicit r/~(t) functions from our notation
by defining a clocked SUITI,

@L= ~AwL (13)
a c1

which may be written out tern-by  -terrll as

( 1 4 )

(The  “~” symbol is evocative both of a rolling “+” sign, and of an analog clock face.) of course the
periodic functions ~~~ (t) still have to be specified before the clocked sum is a well-defined quantity.
The clocked sum is neither cc]mmutative  nor associative, but we may take it to associate over the
ordinary sum:

(15)
aa Cra

Moreover, parenthesized expressions such as h’l @ (J~2 @ h’s) may be used to denote nestecl loops
in which for example E2 and E3 are repeatedly relaxed in an inner loop, within one phase of an
outer loop, and h’l is relaxed once during the other phase of the outer loop. Again the timing
would be controlled by external functions ~~a (t), which must still be specified separately.

Note that the use of clocked objective functiorls  is reminiscent of time orderirlg of operators in
quantum physics. See also the so-callecl  Feynman  entangling calculus [MW66].

Perhaps the most important algebraic property of the clocked sum, for the purpose of forn]u-
lating descent algorithms, is its commutation with partial differentiation:

g+lm=q+”.
la

(16)

“1’his follows directly from the definition of the clocked SUIO  ‘1’he right hancl sicle of equation ( 16)
could be used as the time-dependent descent direction in a gradient-descent algorithm.

We may conventionally expect to find the a) sigrls outside the + signs in a clocked objective func-
tion, and accordingly we assigu @ a lower grammatical precedence than + in otherwise arllbiguous
expressiorls,  SO by convention, };l tl) 1;2 +- L’3 IIleans ~~1 @ (~~z -k ~;:)).



\\ri Ll] the a(ltliliotl  of clalillwd  variablcw J, (,oll(litic)lial  varial)le.s 7{ \ }, ;Ill(l [’lol’kf’d  sUIlls @<z I;n,
we are at)le to concisely express a wide variety of cloc’keel ot~jf’(”tivc functions. For cxal[lple  tl~e line
IIlillimization  ol)ject. ive (2) bccor[lcs

l(c)oc~t.d =  s~/2+llx0’d –x[[2/2 (initialize s, xo[d)
o) f’/’[x + SVE[X]] (Iitlc Illinimizatio[l)
6) Ilx–xol’l _sv~’  o l d[i ]]12/2 ( u p d a t e  x ) ,

(17)

or what may be easier to implement as a circuit,

~’/’c]ocke~  = “ s~/2 + I\x’”d – x\12/2 + IIw -- vE[x]]y/2
(initialize s, X“ld; find gradient w)

a) E[X + Sw] (Iille minimization)
(18)

@ [lx – X“’d – swl12/2 (update x).

Furthermore, clocked objective functions make new algebraic transformations possible. For ex-
ample, equation ( 11) Inay be implemented for X-expressions (assuming only that we can implement
it for O/l-valued variables) by introducing new variables q as follows:

.E[X{T(f)}]  + ~ [ -  rji(~i(i)  - 1/’2) +  #0/1(7)1)]  @ ‘;[x{’l}] (19)
i

IIere ~o/l  is a two-sided barrier function which limits its argument  to values between zero and one.

2.1.4 E x p e r i m e n t s

‘Jibe clocked objective function notation has been used to derive and express a number of experi-
mentally validated relaxation-based neural networks, including networks for multiscale  image seg-
mentation ~1’si97], visual pose estimation [LM94],  point matching [G I, R+95], and invariant learning
of point-set and graph moclels  of visual objects [RGM96].  In these applications, the problem vari-
ables were divided into an exhaustive collection of subsets each of which received an exclusive clock
phase. During the clock phase for any subset of the variables, all other variables were clamped and
the optimization of the free subset was relatively easy or even analytically solvable. l’his situation
is clescribed by equation (3), which may be rewritten as a clocked objective function using (13). It
occurs sufficiently often that we provide another notation for it:

(20)
o c1

2.1.5  Clocked Circuits

Clocked objective functions can also be used to specify circuits at the analog level. ‘1’he simplest
way to do this is to assign to each clock phase the dynamics of an analog neural network in which
some variables have been clalnped.  I’he clamping is under the control of the clock signals ancl/or
other variables. That is the effect of equation (6), either under the original definition of clocked
objective (5) or under the more powerful and convenient notation defined in equations (8), (11),
and (1 3); it is also a basic idea behind the design of clocked pipelines of cornbiriatorial  logic in the
data paths of si[tlple C}’U chips [MC80] where clamping is cleterminecl  only by the clock signals.
We take it as clear, then, that such clocked objective functions can be implemented as analog
circuits provided that each phase can be so implemented, and provided that the objective includes
i expressions (cf. (3)) but cloes not include  r{g}  expressions (cf. (8)). For example, the line
minimization clockecl objective of equation (18) can be implemented this way, as can the multiscale
optimization objective found in [MGM91].

In the next subsection wc show another such cxarnptc:  a clocked objective function which
incorporates one or lnore  general feed-forward neural  networks inside a relaxation-based neural
net, in a Ilybrid that may be of usc for colnbining  relatively efficient learning algorithms (from
feecl-forward  nets) wit Ii exr)rcssivc  power (frotn relaxation nets).

[,atcr,  we will discuss a set of applications that require the more powerful r {1/} llotation, without
speclllatlng  on the hidden circuit- lcvef irllI)lelllrl)tatio[l  of the switching mechanism. Thus the



IJrob]ell]  o f  elil!linati]lg  .r{y} exl)ressiotls  itl f a v o r  of J’ exl)rcssio~ls  rctllaills  f o r  f’uturc$ \vork;  il i s

related to the “llcural  nckwork routing l)roblc]ll>’ discussed in [hIG90], section 2.6. ,\ further OIN>I1
prol~lcl[l  i s  to rc~)lace g’lolml clock sigtlals ill a  I,agrangian  cir(uit forrt)u]atioll tvitl) a systcrrl of
self- tirl~cd subcircuits  in wllicll tile r/, ,t c’ont rol furlct ions arc replaced I)y rclat ivcly local variables
with indc~)endcnt  clynamics,  Solutions to analogous prot)lrltls  are i]nl)ticit irl tlic drsigrl of Iilarly
distributed computer systems but not wittlin a circuit-level l,agrangian  fral[lewwrk. ‘Illc J’{y}
notatiorl  represents a substantial escalation in expressive power, a n d  scctioil 4 is drvoted  (o soltle
of its uses in clesigning  computational attentior]  niechanisr[ls

2.1.6 F e e d - F o r w a r d  N e t w o r k s  a s  C o n s t r a i n t  P r o j e c t i o n

A feed-forward network inside of a relaxation network can be regardecl  as a set of consfraif)ts  on
the relaxation network:

Ih.’/rdax[x]  = E&[ax[x] -t ~ FF[V’, 7“, v’- 1] , (21)
I (layers)

where F1l  is the functional clependency constraint of a layer’s output neurons on its input neurons
(here taken to be in the previous layer, though neurons in any previous layer may be inputs
without causing problems for the following algorithm). Various methods are available for enforcing
constraints within a neural network optimization [PI187,  MG90,  PS89],  but the feed-forward network
constraints have a natural ordering cletermined  by the feed-forward pattern of corlnections.  So
in this special-case we can use a nonlinear projection method to enforce all the constraints. As
mentioned in section 2.3.1 of I’art  I, related algorithms are discussed in [BT$9],  for example, under
the name of “gradient projection algorithms” or “scaled gradient projection algorithms”.

Any incremental relaxation of the objective E,,laX is followed by a series of projections which
reestablish the feed-forward constraints, layer by layer (i.e. from earlier to later neurons in the
feed-forward neuron order), in preparation for further relaxation. l’he  clocked objective is

[ ] – @ {~{ –l)j~ljjip +di(v:)}}  a) Ert,ax[x].~~FF–projection  x, V – (22)
I (layers) i j

Note the especially simple form of each layer’s objective:

(23)

Every neuron vi in layer 1 is independent of every other in this objective, and the minimization of
this objective is best achieved just by assigning values to all layer-l variables in parallel:

This is the projection operation which immediately enforces the layer-i constrairits.  Later layers’
projection operations do not disrupt earlier ones. So, at the Legiuning of the relaxation phase of
every cycle, all the Fl” constraints will have been consistently satisfied.

3 FOCUS OF ATTENTION THEORY

A particular kind of clocked objective function formalizes the idea of a conlputational focus
of attention. We will derive this clocked objective by first considering the functionality ancl cost
terms of a coarse-scale greecly  I,agrangian,  and then developing the associated fine-scale greecly
I.agrangian  which specifies circuit-level dynamics,
3.1 Formulation of the I,agrangian  at the Coarse Scale

I/et x be a set ofdiscrete-valued  variables which determine, clirectly or indirectly, whic]l components
of the neuron vector v are actively updated at any given tirrle, In other words, x deterlnines  a



{

1 if l~i is active, i.e. ill tile focus of attention,
7r1(x) =

O ottlcrwisc, (25)

l~or example,  we could have as rllany conlponcnts  of x as of v and set ~: (x) = Xl. or instead, we
could introduce a partition of the cornponeuts  of v into blocks  i[ldexecl by cc, with a 0/1 partition
matrix Bia; this is a form of aggregation applied to y. (For now we will take n to be constant,
thougl) avariablen is sometimesuseful.  ) Then wewouldh  aveonecomponent  ofx to switch each
block of thepartitiou, and ~i(,x) = ~OBioXa. (That is, avariablevi isin the focus of attention if
andorlly ifits course-scale Lloclca isinthe focus of attention ascleterlniued  by~a.  ) Usually  fii(X)
can be macle linear in X.

Regardless of the actual formula for ni(x), there will be sorue sparseness constraint on x to
ensure that only a srna]l fraction of the neurons v are in the focus of attention at any one time.
For example one might itnpose~~iri(x)  = n, where n is the optirnalsize of the focus of attention
(and n<< N=thetotal  number ofneurons vi). Inthecase ofapartition matrix ~~with  blocks of
roughly equal size b (so ~iBia ~b), the sparseness constraint would become ~a,ya = n/b.

Whatever the sparseness constraint on x is, we will express it as a summand 6(x) in an
objective function. @ may be a penalty function, a barrier function, a Lagrange multiplier times
thccoustraint,  orsomecornbinatio nof these possibilities. Thus, we could choose froma variety of
``k-wir~rler'' objective furlctions  (kwirlners  allowedi rlacortl~)etitiveg  roup).  Assuming &(X)=@(e)
where e ~ xi ~i(x) –- 71, we can enforce or at least favor satisfaction of the constraint e s O with

O(e) =

(c/2)c’ (a penalty term), or
Ae + cue – (c/2)r72 (I,agrange  multiplier+ effective penalty [hIG90],

with o an appropriate auxiliary variable), or
Cf:mg(c)clz g monotonic and odd (a barrier term), or (27)

cm –  
Ling(y)  -Q(-l)(x)dz, (effective barrier, linear in e),

Stricter sparseness terms are also pertnissible,  such as a sum of nlany k-winner terms on different
sets of variables. And for a variable-size focus of attention, in which 71 k variable, one would also
need a cost term for n.

All components of v will be assumed to take continuous values, even if they are ultimately
supposed to converge to discrete values, Then the coarse-time-scale update rule implied by the
action S will be of the form

v’ = V’(v, x). (28)

For example
~~ –  ~~ = ~i(X)Gi(V), (29)

where G is the cumulative effect determined by the fine-scale clynamics within an active-v clock
phase. ‘l’his update rule is to be derived from the greedy variation of a multiphase  dynamical
objective of the form

E +O(t)[c’a(t)  + u(t)], (30)

coarse scale

“ a’{ =::;}tl~ f,e~o
decisiol] times t,

I/cycle >0
where @a is defined as in section 2.1. The principle  feature  of equcrtion
phases, one cluriug which the v variables are free to move and the x

(30) is that it has tulo C1OCIC

variables are clamped, and
orlr in which the roles are reversed, During the active-x  phase the focus of attention is determined
for the next active-v phase of the cycle.

Notice also that we have assumed a simple slopping  criterion, ZO 1,,, < 0, which means that
the coarse-scale dyuarnics continues only m long as its benefits (clecrease in F) outweigh the costs
(given by C’), nrld this decision is made at the etld of each coluplete  cycle. We must now find
suitable funct  lous CjCC, ar$e_v, I:oar,e-v  , c’ Icoarse– Y, all~ ~kmrsc-x.



3.2 C o a r s e - S c a l e  1’

‘1’0  find tile F’ tcr[lls, wc nlust
would Iikc I,~Oar.e to I]leasure
updating v accord i]lgly:

deconl pose li~~tal = A l; into a SLIIn of roars(~-scale (~ailsi~l Lertlls. IVC
tile irll~)ro~’(’[llc’llt  ill f; due to  choosi]lg  a col]figuratioll  X all(l tllell

(31)

IIOW can wc cfeconlpose  this combined effect of v arid x into separate II’ terms for each coarse-scale
clccision?  As previously mentioned, the difficulty is that the coarse-scale decision step which chooses
values for x cannot be made simultaneously with the decision of v values whose presence ill tile
focus of attention is determined by that particular X. One obvious way to accomplish this is to
stage alternating coarse-scale decision phases, updating the two sets of variables, each based on the
most recent value of the other:

x’ = X’(X, v)
v’ = V’(VI x’), (32)

‘1’hen, to decompose 11~ + J’y = E[v’]  – lJIv], we [nay interpose some especially low cost estimate.
i of v’ which could even be colnpute~  analytically given any candidate x’:

~coarsc ,y’ [X’ Iv] = I;[i(v, x’)] - E[v] +  @(x)
~COarSe  V’[v’lv, X ’ ]  =  ‘;[v’lX’]  -  ‘;[i(v, X’)IVJ  X’]

l’he  o~tima of these two expressions with respect to their free arguments then

(33)

determine the
functions in equation (32). Note that l&r~e”, v’“[ I . ..] is independent oft, though the constant
E[i(v, x’)] is subtracted off to satisfy equation (31).

The F functions of ecluation (33) may be understood in the terminology of section 2.1.1 as a com
trol term (A E)e~t[xlv]  = L’[i(v,  x’)] – JJ[V], a transient term @(x), and a subspace  term L’[v’lx’].
I1owever,  the subspace term is carefully norlnalizecl by subtracting the constant L’[C(V, x’)] in orcler
to apportion credit for a given AE (equation (31)) between the x and v phases of the dynamics.
Dy equations (9) and (25), the subspace  term F;[v’Ix’] may be written as h’[v’{z(x)}].  So the
objective function of equation (33) is equivalent to the clocked objective function

~!a,~en = (AE)cs,[xlv]  +  ~(x) @ ~~[v{n(x)}]. (34)

It remains to specify the parameterization n(,y)  of the focus of attention, the cost Q(x)  for a given
focus of attention, and the estimation formula for the AL’ that woulcl accrue from a given focus of
attention T(x).  Each can be specified in a variety of ways. @(x) may be a k-winner constraint.
Also the estimation formula (A E),~t may be meta-optimized  to provicle more accurate estimations
as judged by their effect on the performance of the attention algorithln.

In summary, once we are given the function V(v, x’) ancl the cost terms Ca,  there is a Lagrangian
(the sum of cost and functionality terms) ancl an associated optimization principle (6~1, = O, as in
section 2.2 of Part I) that determines the discrete-time dynamics of v and x. l’he  action is given
by (30) for S and (33) for F.

3.2.1 Criteria for Estimating the Effects of a Focus

It remains to find suitable expressions or dynamics for i(v, x’). l’hese  have tt,c function of es-
timating the influence of alternative x vectors (hence of different foci of attention) on v }vithout

[ I ]. ‘lhis  problem is closely analogous toactually performing the minimization of lI&arS~ v, v’ v, X’
the recta-optimization probletn  posed in section 3.2 of Part I . ‘l’here we sought a functional form
K(v, v) for the kinetic energy which resulted in tl~e “optimal” dynamical system, where optimality
was defined to depend on behavior in many different trials of the network. I,ikewise we must first
clefine rneta-optimality ancl then seek it, in the cletcrlnination  of a formula for i which will be usecl
in many different trials of the network.

For any such functional C, the required nct,work  computation must be very inelprnsiue  compared
to that of v’ for this reason: the cost of optitllizing  f’~oar$e,, is expected to be SOIIIC large number
of fine-scale iterations times the cost of finding Q and is to be added to (and ttlerefore  balanced
with) the cost of finding v’,



/\s alw’ays W’(’ 11111s1  wtigll fu[i(’lioltality agaillsl  cost. If’ll:lt  Illilkt% illl estitllator i’(v,  X’) cfrcctivc’?
I:or a sillglf’  l]eural IIetworli trajectory, the obvious clloicr is to consider the O functiol) cf~cctive to ttic
(’xtcll[  tl]at tl~e resulting v(f)  trajectory lniniltlizm  ttic actio(i .$’ ill (30). After all, lIIc [,agrangian
already collt,aills the correct  balance of cost arid benefit tcr[iis forju[lgiu,g tllc v dyual[lics,  co[nplcte
}vittl a stopping criterion. ‘1’lte olily relnaillili,g  clurwtion is how to aggregate over lnany  trials of
the nct,wor-k which share the same  formula for +, i.e. r[lany starting points, inputs, and possibly
connection matrices. O[ie could attenlpt a worst-case analysis as in the dcterminat ion of /i(v, v),
but we have not sLIcce.ecled  in that, Alternatively we consider an average case measure of action,
averaged just over sornc probability distribution on starting points.

We have already proposecl  a recta-objective, (35), for t,tiis type of problem, I[ere we are averaging
over starting points (and perhaps also over inputs h and connection matrices 1’):

where {VP(0)} are P starting points sampled from the same random  clistributiorl  over initial con-
ditions.

Generally, predictive accuracy in t is rewarded by this objective because of the term E[v’1#]
in (33): X’ is optimized for E[; (v, x)] and then usecl as a constraint in optimizing E[v’Ix’]  with
respect to v’.

l’he  sampling procedure converts the infinite sum into a computable and optimizab]e  quan-
tity MP at the expense of introducing a learning  and gmcrufi2ati011  Problenl.  AS irl theoretical
approaches to learning [Vap82,  IJJ189],  we must ensure a sample size sufficient not only to approxi-
mate the infinite sum, but to continue to do so even after the sampled objective has been optimized
(by tuning +) to that particular sample (so that it is no longer a random sample of the infinite
sum). In this way, a nontrivial predictive learning problem enters into the design of the switched
neural network dynamics.

Mm may also be regarded as an average over all configurations along a trajectory, rather than
just over the starting points, since every decision point along the trajectory contributes to the
summed action. But to do this we must define a suitable probability distribution of configurations,
and the distribution itself is a function of t. This may limit its usefulness for sirnptifying  the
objective.

The connection between the optimization of i and a learning problem demonstrates one ad-
vantage of the derivation in section 3.2 of I’art  I of optimal kinetic energy terms from a worst-case
meta-objective (equation (60) in Part I) rather than an average-case rneta-objective  (ecluation
(35)): by this means analysis could be substituted for a large and (in general) recurring training
computation.

3.2.2 Candidate i Estimators

We now present several possible forms for $(v, x), which are to be optimized and evaluated accord-
ing to the criteria of the previous section. In the simplest form, t is to be cornputccl by hypothesizing
a small, constant time At between course scale clecisions, during which i and therefore E[v] change
according to ‘1’aylor’s  formula:

dui
Gi =v, +At -

d Tv

(36)

(cf. (29)) where T v = f &(t)dt M in Figure 2.1.
We may also introduce, for each variable vi, a hypothetical time axis T; which increases linearly

with real time t when neuron vi is in the focus of attention (equivalently, when ~~v(t) = 1 and x
allows vi to bc actively updated, i.e. when ~v(t)~i(x) = 1 ) and stays constant otherwise. SO

T:(t) =
/

dl~jv(t)~l(x),  and drl/drv = T(X). (37)

d lJi (~ T2
tii=’rli+-~t  ——

(171 d r“
(38)



a[kd

where

I(.,,ar.c- ~([xlv] == E[v(v,  ~’)] – f;[v] + a’(x)
E (AE)AIXIV] + Q(x),

We introduce the useful quantity
19 P.’ d 111

~~;i [v] ~ ~ z ,

which for lIopfield/Grossberg  dynamics becomes (cf. equation (30) of I)art I)

(39)

(40)

(41)

first proposed as an objective function for driving a focus of attention in [hljo87].  With these
definitions, (All)est  becomes

and the associated t becomes, from (38),

where now tii ~ dvi/dri and ii will take boundecl  values determined by the v-phase L,agrangian.
‘l’he optimizing parameter here (for the prediction objective M) is At, which will also enter

into the coarse-scale cost term, since the cost of switching can be amortized only over the time
At. Note that the variablesxa  are still discrete, and the cost ofpartly orconlplctel  yn~inirnizing
Fcoar.e  ~f depends on the relation between fii(x)  and X. to be specified.

Naturally the partial relaxation cost associated with ~i (x) will only increase if we take the
natural step of expanding + and E to second order in At. One good reason for dcjing this second-
order expansion is that the optimal At will not be small if switching costs are sufficiently high,
so a second order approximation may be more accurate. ~’he second-order expansion proceeds as
before:

A t2

tii = vi + At~i(X)tji  + ‘7Ti(X)ti~
2

(45)

and

(A~j)est[xIv]  = At ~ ~i(z)~;;i[v]  + $ ~ ‘l(X) Tj(X)F;;ij[v]  + @(X), (46)
i 1.7

where E;i has been defined in equation (43) and where ~j;ij[v] is the quadratic form given bY

(47)

For example under Hopfield/Grossberg  dynamics, F;,ij can be calculated aS

( )9“(”i)(~1i)2~;{~;ij[v]  = 9’(~i)9’(~j)~;,i~,jE,ij + ‘ij9’(’’:)E,: ~g’(”k)F;,ik ~ ~ , (48)
k

l]ecausc  ~i(x)2 = ~i(x), any diagonal ter[l~s in the quadratic form ~ij ~j,ij~i(z)~j(z)  (~f (46)),
in particular all those ter[ns  with Jij factors as ill (48), can be absorbecl  into  the T-linear  parl of
P;oar,,: ~! For example, in a quadratic neural net objective ~~[1)]  = –( 1/2) ~i~ ~;,;~)t ~~j – ~] ‘~i ~’, +
~i @(vi),  the cocfficier]t  of tl)c quadratic form for x could be taken M



at~d a (’orrespondillg connection Illatrix  would have tlie ol)posite  sign.
‘l’lie essential ncw feat(lre  of objective (46) is tltat it involves quadratic infraction.s between the

x cxl)ressions  correspo[lding  to difrcrcrlt neurons ‘1’his  introduces a nontrivial scheduling  problem as
{mrt of the c~cternlination  of the next focus of attention: separate neurons must not only be capable
of makiilg  progress individually, but  also those neurons likely to cooperate shoulcl be scheduled into
the same focus of attention. ‘1’his point will be elaborated in section 4.2.

3.2.3 Cost  Terms

At the coarse scale, the cost of one cycle of computation is the cost of running the v network for
titne Atv, plus the cost of switching to the x network, plus the cost of running the x network for
a periocl  Atx, plus the cost of switching back to the v network to start the next cycle.

‘1’hese considerations may be expressed in the following cost terms for a coarse-scale clocked
],agrangian:

cc o a r s e - v  = C~Witctl  +  Nl(Tt)AtV  -t Clanlp(Ax, {A~il.,(x)=O}) (51)

and
Ccoar.e.x  = C~Witch + iV2(n)Atx  + C1amp(Av), (52)

where “Clan~p”  is a penalty or barrier function which enforces the constancy of v or x as needed.
I]oth  of the cost terms here are constant if we regard n, At”, and Atx = constant within a run,
although in that case the constant values of the n and the At’s probably should be chosen by a meta-
optimization procedure using the same action, averaged over many trials, as the rneta-objective.

Such a meta-optimization procedure coulci also be generalized to produce a simple rule, rather
than a constant value, for each At ancl for 71; wherl  such a rule produces the result At” = Atx = O,
the computation stops, In that way the cornrnon problem of choosing a stopping criterion, a-s well
as the more specialized problem of switching between optimization of v and of X, fall naturally in
the purview of meta-optirnizatiorl.  Of course such a rule could be given in the form of a Lagrangian
for Atti, or equivalently for ~o, but we will not pursue this case here.

3.3 1. at the Fine Scale

Since the v are analog variables, fincling fine-scale L’ and F terms which act to minimize the
coarse-scale ones is now easy. We proceed as in sections 2.1.2 of Part I and 3 of Part I, except
that the Lagrangian  functional of ecluation (22) in Part 1 is generalized to integrate each variable
I)i according to its own interrlal  time variable ~i = ~ ~~v (t)~i(x)(t)dt EM in Figure 1:

(53)

\Ve may convert this into an integral of a single Lagrangian over a single time variable by using
the formula for ~i and the fact that & (t) and ~i(x)(t ) are each approximately zero or one almost
all the time:

(54)



Illlt  this is [lot qllltc  t lIe N’lIf~lc fill(-s,al(’ I,:igrallgiarl  for tile act ive-v clcx-k  l)llilS(>,  1)((’allse  of t Ile
Coitrst’  cost, trr[lls  of equatiol)  (51 ), ‘1’llc “( ~lall]l)” tcr[lls lllay b e  refi[le<i  t~y adding  a[)[)r{)[)riilt(’
C(jst-of-lll[)vclllellt  terllls  A“[.i, .r] (!vllcre  A’ is IIli[lirlial  at j = 0) for CWII of tll(: cl;LIIIl)eLl  v:lri:il)l(~s:

Adcling S’( 1

(55)

and .$(z) togcttlcr,  we get the part of the action  that pertains to the active-v pl~asc:

sfife-v=/~@.(~) (a,,,~,,c,r~;[~l~l+  ~~i(x)+%) (56)
,’

~or[lpariilg  this  actiol~to  t~le I,agrarlgiarl  irlecll!atiorl (6), wesecthat the fine-scale cfynalnics is that
of a clocked objective function governed by the focus of attention characteristic function ~i(x),

Note that, as far as the Lagrangiau  is concerrled, this refinement amounts to an algebraic
substitution

7/b(t) [cv+F[v]]  + W( ~ C?fi’ )l{[i,l’]+~~:(x)~~)i , (57)
all variables T

I
i

which is justified since at the end of a coarse-scale step, F is just a constant starting value plus a
coarse-scale change Acoar$e F’, ar!d the coarse-scale change is equal to a sum of fine-scale changes
~ dt ~i(6’1’/dui)tii. Also, the A’ terms for the clamped variables (some ti ancl all other variables)
serve as penalty terms which, in the absence of other i terms, enforce ~ = O when &. = 1 and
thereby refille the “Clamp” terms of L’v.

lhel~ard  part ofrefinil~g afoc~ls-of-atterltiorl  l,agrarlgiar~ istofirld  fine-scale (~and~’ terms for
the variable-z phase, because our coarse-scale tcrln.s a.ssurne  discrete-valued x variables and the
previous refinement techniques don’t apply to that case. Indeecl, a general, N variable, cliscrete-
valued optimization may be the goal of the entire neural computation (at the coarsest time scale
of all) so we surely can’t assume that much capability at the tine time scale. On the other hand we
have already accepted an approxitnation  in t’c~~,sc.x  on the grounds that it is not global convergence
but merely the order of neural updates that is at stake. Additional simplifying approximations may
also be acceptable if optimized through training and verified through testing.

Unless E-oar.c.x  is linear in Xa, (for example by being linear in At with ~i(x) linear in x), this
F is a nonlinear objective which will require many steps of analog relaxation dynamics, implying an
uncertain time to convergence to a nearly discrete- valuecl X. Since we only have an intermediate,
fixed time At available for relaxation, some additional mechanism will be required to find discrete
values for x after a possibly inconlplete  analog optimization of F’[&],  w}lere <0 are continuous-valued
versions of Xa.

3.3.1 Two Phases of Switching

‘1’he con~putational savings we seek accrues througtl  the actual switching froln one active set of
neurons to the next,  For switching to occur, however, we neccl a “digital restoration phase” in
which the x variables are restored to definite 0/1 values. l’his  phase could be left implicit irl our
modeling, as part of the unspecified switching hardware, but then we would be unable to analyze
possible failures of the mechanism such as too little time to converge to discrete values, or too many
ni(z) = 1. Ily contrast it is easy to leave purely digital circuit switching details unspecified, since
accumulated experience makes it relatively easy to engineer such circuit nlcchanislns  outside of our
methodology. We will however explicitly rnoclel a third phase, in which analog variables ,t~ are
restored to nearly cliscrete values la, as close to O or 1 as any physical circuit cluantity  ever gets,

Then  we will have a global  cycle through o(~e phase that relaxes the analog v variables ancl two
phases that optinlize  the discrete 0/1 X variables by first optimizing analog variables ~ atlct tllcn
restoring thcrn to nearly discrete values x wliich can substitute for actual cliscrcte  values x ill any
circ’uit irllplcl[lcrl tatioll. Of course ill a cligital i[ll~)lerilerltatiorl rnediunl  (suc’11  as a geil~~rt~l-~)~lrl)os(:
software environ nlent,) wtlich exists  as an abstraction of sonle analog physical systerll,  o[ie slloulcl
ilwteacl move clircctly fror[l  ( to x,



\Vit}l this  adclition tl,c fillc’-s,ale I,agra[lgiali  twco[lles

[Tim  = x A-[i,.r]-t ~ f),,(t)
all varial,l(s  J ,,.”.12.s  x, (~x”)ptlaws  (t ,<

(f}3)

which, as we showed  with cquatioll  (6), is exactly tflc I,agrangiarl  correspond itlg to a clocked
objcchivc function

hm. = ~ !J,,(t)m?[xal  .] = &’a[xa,x/5#a]. (64)
a o

More particularly (substituting from equations (57) and (60)) we get the clockecl ol,jcctive  function
for three-phase attentive dynamics:

‘i:3-p}kase  =

~ni[t]~’;i[v]+o(?ni(()  -”) .

+ ~ ~o,l (<a  ) ( c o n t r o l  terrlls)

(65)
@’ – ~x.(<. –q + ~AJ/l(x J (transient terllls)

6) E[v~7r(x)}].  “ (subspace  term)

This clocked objective function for a focus of attention is a more elaborated version of equation
(34). Note that, from equation (57), we have

(66)

which is the essential feature of a clocked objective function, as derived in (5).
Various special case expressiotrs for ~i (x)  will be explorecl in the next sectio~l. In the result-

ing networks we will often omit the digital resetting phase for a simple kJVrl’A network, on the
understanding that it should be restored as part of an analog circuit design.

4 APPLICATIONS TO COMPUTATIONAL
ATTENTION

IIere we present several possible applications of the forgoing computational attention nlecha-
nisms and notation. The first two (sections 4.1 ancl 4.2) have been employed to good effect in ~1ki97]
where substantial savings in computational cost are clocumented.  ‘lhc  rest of the applications below
may be considered as design examples.

4.1 Priority Queue Attention
‘l’he simplest possible expression for ~i (z) is the identity function, in which each variable vi has its
own attention indicator ,yi:

~i(X) = Xi & {O, 1}, where XX’ = ?i << N. (67)
i

We have previously reported on this case in [hl M91]. “i’he objective function for x woulcl be
transformed into a clocked objective, m in (30) (again using the notation of section 2. 1.3):

E[v] ~ (kWrI’A(X,  ?L) +  ~ X: E,i[V])  @ E[v{x}]. (68)
i

Ibis representation of ~i (z) looks ex[mnsivc,  since ally savings obtained by leaving niost  t~i ‘S out of
the focus of attention could be lost by updating all the xi variables each iteration. l:ro~n equation
(65) this update would also require computitlg  I;,, for every Z,i n  the  fOCUS o r  not. I\Ut ill fact 1,’;
is unchanged unless v, is in the focus of attclltioll, or Ilcas a network neighbor ill the focus; so for
efficiency we can store this gradient itlfor[nation  in a variable 1{~: wliich is only updated in those



‘1’!1(%(’ (’{JllSl(!(’l’ilt  II}IIS (“all IX’ f_orIIlilll  ZCd  aS a S!l~llt lllO(llfiCatloll Of’ tll(’ l,a~rall~larl  trallSfC)rfllEitiOn

[)oillt ot’ view IIsml  ir~ sc{.tio[l 2.1 of I’art I to derive a fiIIwscale [,agra[lgiwl  for v. Now we arc rc{luircd
to )KI/tta/f!/  ol)t illlize all ot>jct’tivc l,~.,)ar~c.i[xlv], wllilc guaralttccing  tllc discrctc[lcss  of X. Wc wil l
a(la])t the salnc  tllrec transf’or[rlatious  a s  bf~forc. I:irst wv switch fro[n discrete to constrained
coIltinuous  optimization, acconl~)lishrd  in two successive l)tlascs using clocked objective fllnction
llotatio[)  (2. 1):

[
I’X(t)  ~;x +  ~“[X] +“ ‘(~ ‘i(X)  –  ‘t) 1 + o<(~)i

+r)~(t
Lali variables r a J

(58)
where <i E [0, 1], ~i ~ [0, 1], O is a threshold, and @ is a sparseness term such as those of equation
(27). SCcond, replace all constraints with penalty functions aclclecl to the objectives:

F’[&] + l“,y-o~~[~] ~ ~“[c] +  ‘(~: ~i(f)  -  ‘1)+  E. d(~(l),
x. i.(<a -  0) +  ~;restore[x]  = z. ia(<a -  0) +- z. #(i.).

(59)

IIere the threshold O is usually taken to be 1/2, but other values may be used if the analog x
dynamics would thereby be sped up without losing accuracy. Also ~(i) = ~i(~),  as in equation (25).
h’ote that the objective lj,,stO,c[X] is especially well-behavecl  among those wc have considered, since
the only way a large condition number or delay can arise is t,llrough the potential terms. The third
transformation is to refine these coarse-scale objectives, and the usual volumetric cost terms, into
fine-scale Lagrangians  (cf. (57)):

~~ + ~[tl + ~dw + ~ K[i, r]+v
n

~[~’[tl + ‘(~ni(~)  - ‘1) +~d(t.)]  “i
all variables r

Cx +  ~. i.(ta –  q - t  x. 4’(XC7) + x
K[i, x] + vx[~i. ((. - q +- ~d(x.)j’”x

all variables r a a

(60)
These two Lagrangians, along with the usual one for v, must be reassembled into a full three-phase
Lagrangian  by rnaltiplyin,g  by nonoverlapping  clocks d~e(t) and sutntning  over ct as in section 2.1;
that is the only way to express the action as a sum over algorithm time i (some J .dt or some ~t .)
rather than over the intra-phase  time variables ro.

3 . 3 . 2  C o m p l e t e  M u l t i p h a s e  D y n a m i c s

We now have a 3-phase dynamics: First, choose the focus of attention using analog x variables so
as to optimize their estimated effect on AE subject to resource limitations. Second, discretize X .
l’bird, relax EIvIx],  using the chosen focus of attention. The analog ,y phase includes a global k-
winner constraint for m(x).  We will assemble the previously derived fine-scale cost and functionality
terms for this net into an action functional and an associated clocked objective function.

Aclcling the partial I.agrarlgians  of equations (57) and (60), we get a preliminary Lagrangian

i,fine =:
{

~ da(~) ~ ~~[~!~] + Q
}

~ g.xa
(61)

phases o
c1

all variables T o-variables, x-

‘Ibis Lagrangian presents a problem for times t between a-phases, when ~0 #~(t) = O, because
at such times no clynamics is specificcl. ‘1’he clesirecl dynamics between phases is that all variables
should be clamped. ‘1’his can be ensured by adding a penalty term for movement of any variable
bctweea  phases, in the form of a kinetic energy term A’:

‘extra= (1-Fdo(t))allv21es1i’ix]
(62)

Note that in physics, a l,agrangiau  consisting only of a kinetic energy terln  corresponds to a particle
rlloving alo]lg a geodesic such as a straight line (~ = O), whereas here it corresponds to a variable
rlarnprcl  to a l)articular  value.



t.ir{’utllstanccs. Also, ttlr ?~-wi]lller  circuit call lx ililplcnlc[ltcd  digitally a.s aII i[l~.rclncntal
(111(’LIC  of tl~i vltlll(’s, SO Lll(’ clOcked objective futlction bccolllcs

priority

(transient terlns)

<1) F;[v{x}]. (subspace  terms)
(69)

IIere “start” is initialized to urlity and almost immediately changed to zero (in the second phase of
the first clock cycle), and Nbrij  is a constant 0/1 matrix recording whether neurons vi and vi are
adjacent in the network or not;

{

o
N b rij =

1

if max ] &[v]l = o,
i.e. ;f nlax”(ld~(v)f)  +  l~ijl +  ~k ]~;jk!  = 0;

otherwise.

(70)

Note that at the end of the first phase,  ~~i = –E;i[v].  l’hat’s  because (a) in the first cycle,
starti = 1, and every variable ~~i is initialized to —E)i; and (b) in subsequent cycles, either u)i is
again set to the proper value, or else Xi = O and ~~j N’brijxj = O. In the latter case we know that
UIi is ~lncharlged fronl the previolls  cycle (since it is only changed in the first phase  of any cycle),
and also that Ij;i is unchanged from the previous cycle because it is unchanged by the dynamics of
E[v{x}]’s relaxation:

(71)

c O (since Xi + ~ Nbrijxj ~ O).
j

SO throughout the seconci  phase when x is being determined, tii == –E;i[ti].
Also note that in accordance with the clefinition  in equation ( 11), the expression that controls the

clamping of a variable such m trli is implicitly held constant and need not be explicitly clamped.
Only the second phase of equation (69) above has O(N variables, and it can be replaced by

ia priority queue data structure with update cost O(rZ log N + cN),  where k c]epends  on digital
hardware cletails  and where c <<1 reflects the cost of storing u~i in inactive memory for future use,
presumed to be relatively small.

Equation (69) assun-res  that n is constant. ‘l’his assumption tnay be removed, if the coarse-scale
cost of each n is moclelec[ explicitly as mentioned in section 3.2.3. I’o a first approximation we
may take the cost of a focus of attention to be proportional to its size, n, and ignore the effects of
various different border shapes on the actual cost (these effects would tend to favor a focus with
a small-hounclary.)  Hut what should the proportionality factor be between cost and benefit (All)
terms? To get sensible results we’ll answer this question in an ad }toc way, not (yet) derived from
fundamental considerations. Suppose that the cost of updating a neuron is clorninated,  not by space
and time costs, but by the A E benefit foregone by not saving those same space-time resources to
u[xlate  some other neuron in the following iteration. ‘1’0  estimate that cost, per focal neuron, we
r[~u[tiply the average available AE per neuron by a constant f which must be meta-optimized.
‘1’lierl  we have the following functionality expression.

(72)



()~jtilllizing  ttlis /“ nlay be achieved by (a) soct211g i accordi[lg to F;,l, for exalIl[Jlc i[l(’r(lllt’llti illy with
a llriority  qllell(’ da t a  strllcture, illl(l  (b) tllr]ling on  all 11 for  wllicll [};,,[/(/V- ‘ >:, 11’.’,,  [v][) ~ j.
‘1’hc focus of attelltio[]  tllcil consists  of Ilrurolls wlIose sillglr-lleuro]l  estilllated colitributioil  to Al;
is tllore than j tinlcs  t,tle average; it CaII rzrtlge frolll none to all of tile ncurolis. ‘1’tlc Imtctlti:il
function #oiI(71/N)  CaII also be clioscu so ttlat the Iniuiltlulli  focus size is oIIe, rat Iler tlIa II IILJIIr,  of
the neuro~ls.

“J’he  focus ofattclltion  equat ion (67) prol’icles  llla~illlal  flc~i}~ility,  si[~ce atlysubwt  of It ollt of
N neurons in the network ca[l be ill Ltlc focus at one time. however, eflicic[lcy requires a Iliddrll
priority  queue representation  of fi(z))sotllat  Xcanberepresentecl  witllol~ly  atllargillal ill(-reIllellt
of space to encode this focus over that rcquirecl by the n actual neurons in ttle focus at any time.

Generally such a representation is based on the binary  aclcfressing  capabilities of a general-

purpose computer. In fact the nunlber  of bits requirecl in X tos~)ecify SUCII  a focus islogq
N

( )71 “
For large N and II << N, this is approxitnately  nlog2N bits. \Ve can easily e[lcocle x ivith this
many bits, for example using the bitlary  addresses of the n neurons in the unrestricted focus of
attention. (Other eflcient addressing schemes, such as Gray cocles, woulcl work tclo. ) III radix (e.g.
binary) notation for whictl i== il . ..i~.

1

x(i)  =  ~ ~ c$K(xa~  –  ib)

a b=l

(where X.6 are binary-valued and cfK is the Krouecker delta), or ecluivalent [y,

(73)

(74)

If such a representation is substituted directly into a neural network objective functio~~, rather
than used in a hidden digital implementation of a stereotyped objective function such as the priority
queue, then we get relatively intractable high-order objectives for x (see [MG90]  for an example
of a sorting network using a similar high-order representation). Until this probleru is solved by
expressing some special- or general-purpose acfclressiug  and conlrnunication  algorithms with simple
clocked objective functions, we must appeal to non-neural switching circuits as necessary, taking
care to estimate their costs. The clocked objective with brace notation v{,y} still specifies the use
we make of such switching hardware, and would remain a useful notation even if we knew how to
eliminate it in terms of clocked objectives without brace notation.

4.2 Multiscale  Attent ion

l’he  ~i (x) = Xi representation of a focus of attention has the disadvantages of reclrriring a hidden,
digital implementation (e.g. a priority queue) in order to be efficient, ancl of allowing foci without
any coherent structure that might decrease the nu[nber  of borcler neurons that are outside the
focus but involved in the computational decision to move the focus, Both of these problems may be
eliminated by restricting the focus of attention to a choice of one or several blocks of neurons, from
a fixecl partition of all the neurons i[lto equal-sized blocks with low connectivity between the Mocks.
An example of such a partition would be the clivision of the 2-d grid of the regior]-segrnentation
network (equation (19) in Part I) into A << N uuiform rectangular sub-grids. Any such partition
can be represented by a sparse, norl-square  0/1 matrix B for which ~. l~io := 1. Given such
a partition, only one focus indication neuron X. is needed for each block CL ~ {1, . . . . A << N},
rather than one per neuron index i E {1, . . . . N}. In return for increa.secl efficiency iri the attention
mechanism as compared with the previous case, one gives up flexibility in the shape of the focus of
attention. Some of that flexibility can be reacquired by generalizing ttle partition scher[le clescribecl
below to many levels in a recursive algorith[il

For a single level of partitioning, in whictl neuro[ls  u, are groupecl into fixecl blocks o which enter
or leave the focus together accorcliug  to indicator neurons la,



wllcrc 11 is tile colwtallt  pi~rtitioll [Ilatrix.
\Vc coul(l just, substitute this  expmsion for \l (or 7r, (X)) into eqllatio[i  (69) (or (65)), ill wl)icll

case tl]e tllost  active I)locks  of tlie partition ~) would be tl)e focus of attention. Attention W’OUld
Lx a very affordable co[nputation,  a k-wi[lncr-take-all (k\V’1’A) tletwork.  Ot)c clocked objective is

which can again be improved by storing F;,i as tr)i, to be recalculated only as necessary, and which
can be further improved by storing Wa = ~i Bio~~i.

Ilut here we will push the method a little farther, by choosing the L blocks not only based
on their internal gradients but also on their predicted synergies with each other. The synergy is
predicted by using the second order expansion for 1;, equation (46), which may be affordable now
that we have only A focus-control neurons:

(77)

Then the clocked objective analogous to (69) is

0

(78)
where we have introduced constant sparse matrices

ant]
(80)

1)

In (78), as in its prototype (46), the main departure from other clocked objective functions for
attention is the quadratic objective function for ~ which expresses a nontrivial scheduling problem:
which k neuron-blocks shoulcl be active simultaneously in order to maximize the expected sum of
single-block and block-pair contributions to IAEI? This quadratic optimization could be as hard M
the original optimization problem E, were it not for the fact that it involves far fewer variables fa.
So it is crucial to have a separate restoration phase for x in case the ~ analog schccfuling  optimization
does not finish within its clock ~Jhase. ln fact if the convergence time of the scheduling network
isn’t known well enough, we may need two restoration phases: one which restores ~ to an analog
kWTA solution ?~, and a subsequent phase to ensure discrete 0/1 values x for the attention control
variables. ‘Ibis  conservative approach to restoratioil  is incorporated in equation (78).
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l?igure2: A rolling window of attention.

The scheduling network isakinci ofauxiliary, coarse-scale network which controls attention at
the level of blocks. Its connection matrix is surprisingly similar to part of a previously studied
multiscale  optimizationneural  network [M GM91], which also had anauxiliary coarse-scale network
at the level of blocks of neurons. In that case the coarse-scale network was not for the purpose
of control, but rather to accelerate the convergence of the much more expensive fine-scale net~vork
(which was simulated without any attention mechanism). In this regard the coarse-scale attentiom
control connection matrix wa~ may be taken (as discussed in section 3.2.2) to be the negative
of equation (50)  after substituting (75) for ~i (x); then it becomes identical to the coarse-scale
acceleration connection matrix from [MGh191],

4.3 Jumping and Rolling Windows  of Attention
The block-attentive neural network algorithm of equation (78) is equipped with a focus of attention
that jumps from one block or combination of blocks to another in successive clock cycles. ‘1’hese
jumps are rather expensive, since they involve storirlg the values of whole blocks of neurons which
used to be in the focus of attention but no longer are, and retrieving from static memory the blocks
of neurons which are newly promoted to the focus. A more gradual migration of neurons to and
from the focus of attention is studied in this section, for networks with such a regular topology
that the focus of attention can roll (i.e. move incrementally) from one region to another as well as
jump.

A rolling focus of attention is one which moves incrementally, keeping most of its neurons
assigned to the same implementation harclware. For example, consider a two-cl imensional  mesh of
neurons with local connectivity, as occurs for example in the region-segmentation objective function
(19) of Part I. A small piece of such a mesh COUICI  be implemented by a two-dimensional VLSI chip
in which a fraction of the chip area is devoted to end-around connections, giving the circuit the
topology of a torus, together with so[ne form of secouclary  storage for the many neuron values which
are clamped and stored off-chip. ‘1’he torus can roll in any direction. l’he situation is illustrated in
figure 2. Consider also the a.ssignnlent of physical (chip-implemented) neurons to the much larger set
of virtual neurons comprising the neural network. A rolling motion allows this assig; nnlent  to remain
unchanged everywhere except at the boundaries of the chip, or equivalently the boundaries of the
focus of attention. This minimizes the need for off-chip communication and orl-chip analog shifting
circuitry everywhere in the chip, at the expense of requiring dynalnic  boundary circuitry (probably
digital) throughout tt(e chip, An alter-native would be to allow the focus of attention to “slide”
around the [Ieural net instead, ill wllictl case tile clynanlic boundary circuitry may be elinlinated
in favor of the analog shifting circuitry. Our clocked objective function can be inlplcll)ented  either
way. rror clarity we will discuss ttlc rolling’  case.



‘1’0  (Iestrilw  ttlc focus 01 altetltion rll:~ttl(:lll:itic?llly,  Yve jllst Ilced T(X).  tVc wa[lt to use a set
of IIICNIW of IIcurons  M ill section  4.2, so that ttley can jurllp  under the control c)f {y G}, cxcel)t
that tl)e tjlm-ks also roll (or slide) around the [rlcsll.  Itacti block’s position earl be characterized
I)y its center. Ijlock a has ccllter  cc + x~, ir) Whictl c~ is a honlc position for block a defined by
a I;xed coarst’-scalc grid, and X. is a dynalnical  displaccrlletlt  variable. ‘J’he reason for inclucliug
the holne l)ositions  is to allow urlusecl blocks to stay near ttlcir  ho[nc positions, providing coverage
of the alterIIative  locations that the focus of attention can jump to. (rl’his  capability would not
be rleccssary if blocks were only allowecl  to roll, but  that would introduce spurious local minima
into  the attent, io~l mcchanisrn,  for example when a rollirlg window encounters its own or arlother
winclow’s path. ) Then m(z) is as in section 4.2, with IJio = bi(ca + Xa):

(l

We may scale our two-dimensional coordinates so that a block is a unit square,
assign addresses ci ir[ this coordinate system to each neuron i. We take Ca and X. to
in this coordinate system also. ‘1’herr  the window boundary function b i becomes

bi(ca +Xa)  = b(~a+xa – ci) ,

where
d i m x

b ( x )  =  ~ 0(1/2–  Iral).
0=1

(82)

ancl we may
be measured

(83)

(84)

\Ve will also have occasion to use a soft (differentiable) version of this window boundary function,

where
dinl x

i(x) =  ~ 6(1/2–  I“al) (86)
a=l

and

{

o, 3 < – ul/2
0($) = z/u) + 1/2, – 1 1 1 / 2  < x < ul/2 (87)

1, x < ul/2

Then a clocked objective function for the rolling and jumping window of attention is

where as before

(88)

(89)



Figure 3: Spring function ~I(x) = C[x[ + cIp(/z/ – 1/2) + @*I (*), solid  curve. l)irst term restores

Ixl to zero when block is out of the focus of attention. Second term favors hand-off to a neighboring
block (neighboring block spring functions shown in dotted curves.) ‘1’he thircl  term is a barrier term,
limiting the number of blocks that can be attracted to an attractive focal region of the network.

A crucial ingredient is the spring potential function H which allows a block o to move freely
away from its home position until it is more than halfway into another block’s territory, then to
hanri off the rolling window to a neighboring block 6 by turning off X. ancl turning on ,yb, ancl then
to return to the borne positiorl  Xa = O to co[npute  its expected AE and compete for another chance
in the focus of attention.

A spring function that makes this possible is illustrated in figure 3. An explicit expression for
11 is

din) x

(90)
a=l

where
if(r) = Clzl-t Clg’([rl–  1/2)+ 4 * 1 (  r

1 – w/2)’
(91)

and where

J
1’

{

o ,  r<o
p(r) == E)(r)dr  =

—m a, O<a’ “
(92)

4.4 Sparse Networks and Spreading Activation

‘l’he attention mechanisms of the previous sections are designed to limit the number of active vari-
ables at any time, including both problem variables v and attention-control variables X. IIowever
there is no attempt to limit the number of inactive variables whose values must still be stored ancl
which therefore still occupy some harclware at all tilnes,  By imposing such a limit, we may be able
to achieve far greater efllciency for optimization problems whose solutions are constrained to be
sparse. What is required is that most of the variables outside the focus of attention shoulcl take on
default values, such as zero, which neecl not be stored at all. The strategy is to enforce sparseness
of v at every phase in every cycle, not just at the end of the computation. ‘1’0 achieve ttIis we will
allow mild expansions in the number of active neurons at some phases within a cycle, ancl enforce
counterbalancing contractions in the number of active neurons at other phases in the cycle.

Suppose v is a set of N variables, constrained to be sparse in the sense that all but n << N
of them take (possibly identical) default values default(i) at any valid configuration. ‘1’he clefault
values may be zero or any number easily computecl from the index r’ alone, wittlout  the use of a
large table of values (which would have to be stored). Let E(v) be an objective which inclucles
penalty terms for sufllcient  sparseness constraints on at least some of the variables v, a[lcl tv}lictl
h~s the property that at any sparse configuration in which cn variables are uncla[llped  in a focus of
attentic)rl,  all but n of the variables rtlust approxinlat,e  their clefault  values at any local minimum.
(lIere  c z 1 is a constant, ) Also suppose it is possible to initialize tile network so that ttlc focus of



at lent  iotl cotllaitls all Ilcr[l-defalllt variables (of wllicll  tllcre ar(’ < Tt) a[ld also all IIeigllbors  of suull
VitriaL)leS  (of wlli[.lL  lllcr-c  a rc  < cl~).

‘1’lIeII  at ttle Iwgillning of a relaxation phase for f~[v{X}],  all < n nomdefault  variables and all
ttleir  < cII neighbors are included in the focus of attention At the c[ld of the relaxation IJhase,
sor[lc new set of < IL variables have non-default values; the rest have Ilcar default values wtlich can
be reset to their clfault values without introducing IIluch error, and which therefore do not neecl to
be stored explicitly. In this way a limited front of activation relaxation, will propagate through the
network of possible neurons which we shall refer to as latent  neurons. ‘lhe cfynarnics  is renliniscent
spreading activation or “marker propagation” algorithms in artificial intelligence [Fah79,  ‘1ou86],
and could perhaps be developed in that direction by using objective functions proposed in [MGA89].
I,atent neurons are to be distinguished from the virtual neurons of previous sections (e.g. section
4.1 ), tile latter recluiring storage even when out of tile focus of attention.

A suitable clockecl objective function for such a spreading activation network, with many latent
neurons, is

1“~spread = ~X:{Xi}+  ~@o/l(Xi{xi})

a) -;~xi{.i +  ~br:j.j} +  ~4cr/~(Xi{Si  +  Nbr,jsj})
i

~ J;[;{x}; 71,  c]

@ --  ~si{xi}(~:  - default(i)  )2/~’ - 1) + ~ @o/l(sI{Xl}) (93)

l~@(~Sr’{xi} –  ?t) +~~Si{xi}I;,:(V;rI]

a) ‘-(1/’2) >j(V:{xi(Si -  1)} -  ;efault(i))’ +  ~40/l(t}i{Xi(si -  1)})
i i

Ilere  the first phase serves simply to find all nonzero  X’S and to set their values to zero. The
second phase  sets the focus of attention to include all nomdefault  ~)i’s (for which si = 1 ) and
their neighbors in the network topology. The thircl phase relaxes the network within the focus of
attention, which we assume procluces a new set of s n variables vi’s  which are not close to their
default values. The fourth phase finds these variables and updates si to record them. Optionally,
we can set ~ > 0 to ensure what is already supposed to be guaranteed by L’, that s =. 1 for nonzero
gradients and that xi si < n. The fifth phase truncates near default values to exact default values,
because neurons taking their default values do not need to be storecl.  (So in an implementation the
fifth phase would not, physically perfor[n  a truncation; it would simply de-allocate the hardware
used to support the affected Ileurons. ) l’he  five phases together constitute one iteration of sparsity  -
preserving dynamics.

As an example of a suitable objective function h’, we discuss a simple network fc~r finding roots
of a continuous function ~(x) of one variable r ~ [0, 1], by the bisection method. This network
dynamically constructs a tree of at most n nonzero indicator neurons ai} taken from an infinitely
large tree of latent neurons. ‘1’he  network seeks large negative values of f(z) f(x+c),  and then bisects
the interval [z, r + c]. Using multiple index notation i = il i2 il, the search tree consists of all the
latent 0/1 neurons ail.. i, which take a value close to orle if the search cllrrently  includes  that node
of the tree; also each node has a census neuron ?T~il.. it E [0, lt] which counts  the nun~ber  of rleurorls
(including a’s and Tn>s) active at or below that nocle  in the tree. ‘1’hese  sets of variables worrlcl include
the 1 = O versions, a aucl ?n without any indices, which are associated with the root of the search
tree. ‘1’he  bisection search ir~terval boundaries arc zo = O, rl = 1, .rOO = O, rol = xlo = .5, 211 = 1,
ancl in general, .C; ,.. i~b = ~ =1 ip2 ‘r’ + b2–1.

[“‘1’hen  a sparse objective unction for this problerll is



where g+ is au odd nlonotonic l’llllc’tioll with slow asylnptotic  growth, e.g.  Iogarittl[[lic  grolvll], ‘1’llc
network could be iriikializf’d  will)  al] a, T~/ at)d s Vilriat)les  taking near-zero (O(()  << [) values, Cxcf’})t
at the root  where s = 1. At illitializatio]l  all tlic non-zero gradients of ~; (}vhictl  arise froltl tile
k-winner-take-all terms) arc concentrated at tile root and its in~tl~cciiate childrc[l i == O aricl i = 1.

A noteworthy propci-ty  of the objective (94) is that the sparseness constraints are not global,
but rather distributed over tl)f:  topology of the network in sucti a way that, an actual ncuroll a is
involved in every ternl  of the sparseness constraint. ‘1’his prevents many census variables 711 froru
being given non-zero values ill an eflort to find one non-zero a variable. Instead, only as many
census variables will bc activated M needed. lhc ai + g+ 1 (?~~i ) su[nmand  in the k-winner term
serves to include both ai and ~~li in the count of activated variables: tit 1 (m) is a sigmoid  with
values w 771 for 7n << 1, and R 1 for m ~ 1. l’hc g+ 1 (?71) expression could be replacecl  by another
O/l-valued neuron whose sole connection is to 7n.

We speculate that it may be possible to give a similar treatment of the conventional objective
functions for inexact graph matching, such as [11’1’86]

+Il~A4:.(1 – 
kfia)+~@O/l(Mi.  ).

ia ia
(95)

IIowever it is again necessary to localize the winner-take-all constraints, for example by embedding
them in spanni[ig  trees for both G and g, in which each variable Nfia c~lters into each W’1’A constraint
at its own location in the spanning tree. An additional attraction of such a sparse graph-matching
network is that the E-relaxation ~]hase of the clocked obiective  could actually  t)e a rlestecl  IOOP
which performs deterministic annealing in order to avoid local minima, Since successive cycles
would have different foci of attention, the successive annealing procedures woulcl be different - the
high-temperature part of an annealing relaxation would not erase the progress towards a solution
encoclecl in the focus of attention. A related technique for accelerating the convergence of matching
networks by exploiting their sparseness was used in [I,h194,  GI,R+95].

4.5 Orthogonal  Windows

As suggested in [Mjo87], we can take advantage of the fact that some or all of the neurons in many
hand-designed neural nets fall into natural cross-products, e.g. vi E ~il ,i,. An example is the
graph-matching objective function of equation (95). In such cases we can greatly decrease the cost
term by decomposing x and hope to retain functionality since it is only X, not v, whose information
content is thereby reducecl.  An obvious decomposition to try is:

i.e.

where

( 1 )  ( 2 )
‘i(X) = Xil Xi2 1

( 1 ) (2)
‘(X)  =  Xil @Xi~ *

(96)

(97)

(98)

‘l’he last  may be ensured by constraining

For more than two terms in ttlc cross procluct, all this generalizes to

w h e r e

(101)
i~=l 1 b



i

+  ‘Do/l (d:))+ 4>ff$o,, (d:)). 12

(103)

i] 12

A major problem with this  scheme is that all the I;;i[v] clerivatives must be calculated, even though
we want a small window of attention. A simple solution is to window the control variables x also,
and only calculate the few that are necessary. ‘1’here  may be only O(N1 + N2) of those, rather than
O(iV). One possibility is the disjoint union focus of attention n(z) = (q(l),  7~(2J) for X. We will

(1) 12) for xi,  and then to Xapply transformation (68) twice: first to v, substituting ~:(x) = Xi, ~io
itself, using a straightforwarct  focus of attention:

- . .  .

7r(~,i&)  (T))  = q$~), where x~f:) ~ Cr’b
ib

~Fronl equations (41) and (42), we can calculate

.(1) _~\/l[Xlvl = l;x,i[X! ‘lXil –
–9j (9; 1 (x:: )) ( ~ X!~)~;,i[vl +

i2

and
-  . ( 2 ) _

‘;fj, [X,  ‘]  = l’;x,i[X,  ‘lX~,  –

(‘9~(g~l  (Xf~)))  ~ X\~)J;;i[vl  +
i2

l’hen  the doubly attentive clockecl objective function becomes

. . )

).

cnz)

(107)

(105)

(106)

The  first phase  may be traded in as before for a priority queue implementation; but the space
cost of the default circuit implementation is already so small (O(nl + n 2) for the kWTA  network)
that the priority queue is not necessary. In the second phase at most (c+ l)2rr2  gradients E;i must
be calculated, As in previous networks, one could make the efllcient calculation of all gradients
explicit by adding extra phases and variables.

‘1’hc  focus of attention introduced in this section applies when the neuron index i takes values in
some domain which is a cross procluct of other clornains,  domain(i) = domain(il  ) xdornain(i2). ‘I’his
is of interest for building complex network architectures by composing simpler elements. Another
natural operation on index domains is the disjoint union i = (b, ib). ‘1’he Ex example above showed
how to compose a focus of attention for this case a.s well (see equation (104), with ~~ Cm < the
number it of active neurons allowed), though that case is much simpler than for the cross procluct.

5 DISCUSSION AND CONCLUSIONS

In part 1 of tliis work wc introduced a I,agrangiall  formulation of the relaxation dynamics of
rlcural networks wllirll corn~)ute try optimizing an objective function in a standard neural network



forlll. ‘1’tle [Jagrailgiall foritllilitlioti II IakCS IIovel  usc of a  gr~’cdy fu/IctIoria~ dc)~w~ttuc,  wlli<.11 we
defilld a[icl co[[lputccl. \\ ’itll tlIHS  kmls vw CIe[llollstratc(l  tlIc  use of thin’ levels of ol)tilllization it)
ttlc desigrl of relaxation) Ileural [letwOrli  dyllalllics:  the  or ig ina l  objec t ive  11, tllc I,agr:ittgiali  /,, a n d
a I l lc ta-object ive  M wliictl  [Ilcasurcs cost and futlctiolldity over [Ilii[lj’  trials of tllu llctwwrk.

Ill part, 11 ller( wc cleal with a SCCOII<I groul~ of nlore ralllificd ap~)lications. For tllcsc \ve intro-
duced a clocked objective fullctioll  al)d all associate(l  llotation.  ‘1’llcse collstructs  have ttle czrljability
to clamp or unclalnp  [let variables depending  on tile values of other of the rlct variables. ‘1’llis  IIO-
tation and tile stcpwisc  rcfinelllellt  strategy for designing clocked objective fu[lctio~is  sufliccd to
obtain computational attention n~cc/iarlisnts. Analogous to virtual nle[nory or virtual processors
in digital computers, such computational attention ~nechanis~ns  have a focus of attention quality
which can take a variety of forms. ‘1’hese  include a priority queue, a set of coarse-scale blocks of
neurons which could be scheduled according to their expected synergies in optimization, a set of
jumping and rolling rectangular windows in a tw~dimensional network, a sparse set of active neu-
rons for which the excluded latent neurons recluire no memory, ancl ttle cartesiau  prociuct of several
simpler foci of attention. Itach of these cases was concisely expressed using simple analytic notation
with clockecl objective functions. Reference was nlade  to a number of experirneuts,  application aucl
computation, which e[nploy tile greedy variational ancl clocking calculus which we klave iutroclucecl
here.
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