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A new algorithm, “HiER-leap” (hierarchical exact reaction-leaping), is derived which improves on
the computational properties of the ER-leap algorithm for exact accelerated simulation of stochastic
chemical kinetics. Unlike ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organi-
zation of reaction channels into tightly coupled “blocks” and is thereby able to speed up systems with
many reaction channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on
the reaction propensities to define a rejection sampling algorithm with inexpensive early rejection
and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done in par-
allel. An accept/reject step is used to synchronize across blocks. This method scales well when many
reaction channels are present and has desirable asymptotic properties. The algorithm is exact, paral-
lelizable and achieves a significant speedup over the stochastic simulation algorithm and ER-leap on
certain problems. This algorithm offers a potentially important step towards efficient in silico model-
ing of entire organisms. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766353]

I. INTRODUCTION

Computational biology is moving toward even more
complex, comprehensive and detailed biological models. It
is becoming increasingly important to simulate and under-
stand these models computationally. The stochastic simula-
tion algorithm1 (SSA) was introduced to exactly sample the
chemical master equation (CME) and has seen widespread
adoption.

The original SSA iteratively samples reaction events in a
way that requires O(R) computational steps per sampled reac-
tion event, where R is the number of reaction channels. This
can be prohibitively slow when there are a large number of
reaction channels or reaction events.

This fact together with the importance of the SSA has in-
spired a slew of SSA acceleration techniques.2–10 The work
of Gillespie11 and its recent variants12–14 reduces the total
number of reaction events that need to be sampled but does
so at the cost of accuracy. Additionally, the work of Gibson
and Bruck2 reduces the amount of work per simulated reac-
tion event to log R. The work of Slepoy et al.15 ups the ante
further by finding the next reaction event to sample in O(1)
time using rejection sampling under assumptions reasonable
for biochemical networks.

There have been recent advances in consumer level multi-
core central processing unit (CPU) technology. There are
indications that next-generation CPU technology is moving
from maximizing single-core speed to increasing the num-
ber of cores by orders of magnitude. There has been work
on the parallelization of SSA via graphics processing units
(GPUs)6, 16, 17 and multi-core CPUs.18 However, the paral-
lelization was used to speed up the sampling of many trajec-
tories rather than speeding up each trajectory in a large sys-
tem. Multi-core GPUs and CPUs have not been effectively
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used to speed up the sampling of a single chemical master
equation trajectory exactly. Arguably this becomes the domi-
nant problem when extremely large systems are being studied.
For example, the E. coli genome has been estimated to have
about 4400 gene products.19 This fact suggests that tens of
thousands of molecular species will needed to be present if
an E. coli specimen is to ever be comprehensively modeled
in silico.

Relatively little work has succeeded in reducing the num-
ber of reaction events sampled without introducing bias.
While the work of Riedel and Bruck20 is able to skip over
cyclic states (e.g. loops), this method of reducing work
does not apply to reaction networks with little state cycling.
The previous work of the present authors (ER-leap)10 is a
leaping algorithm and was the first known general method
to effectively reduce the number of SSA iterations sam-
pled without sacrificing accuracy. This method scales well
when reducing the number of SSA iterations. However, this
method does not scale well when many reaction channels are
present.

The currently proposed work describes a new SSA-
equivalent algorithm that can take advantage of parallel hard-
ware, and additionally provides an algorithmic speedup for
systems with many reaction channels. Like exact reaction-
leaping (ER-leap), this “HiER-leap” (hierarchical exact
reaction-leaping) algorithm achieves these advances without
the loss of accuracy. The HiER-leap algorithm uses a divide-
and-conquer strategy to independently sample sparsely con-
nected submodules of the reaction network, in a way some-
what similar to ER-leap. HiER-leap then performs a network-
wide synchronization using rejection sampling. As will be
shown, this synchronization step is efficient for “reasonably”
independent submodules. The acceptance probability associ-
ated with synchronization is asymptotically equal to one as
the number of reaction channels goes to infinity. This implies
that the majority of the work will take place during submodule
sampling, which may be performed in parallel.
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This work therefore presents a potentially important step
towards organism-scale simulation.

II. BACKGROUND THEORY

The new HiER-leap algorithm begins its derivation from
the state transition distribution defined by the chemical master
equation after L > 0 reaction events. We then algebraically
manipulate the CME until a distribution suitable for parallel
sampling and synchronization is found.

In many ways this derivation closely follows the deriva-
tion found in ER-leap. Therefore, this section is dedicated to
recalling the notation and key equations from ER-leap10 that
will serve as a starting point for the algorithm derivation in
Sec. III.

A. Notation

We define reaction channels, indexed by r, as a set of
input and output species, Ca, with corresponding input (m(ra ))
and output (m′(ra )) stoichiometries{

m(r)
a Ca

} −→ {
m′(r)

a Ca

}
with reaction rate ρr (1)

and the net stoichiometry for a given species and reaction
channel as

�m(ra ) = m′(ra ) − m(ra ).

Later, we will show the probabilities of state transitions after
L “reaction events” occur.

Under the chemical master equation it is assumed that
each reaction channel has a small probability of firing dur-
ing a small time interval dt with probability equal to ar (n)dt .
The vector n, possibly indexed by α for species type α, repre-
sents the quantities of the constituent species in terms of raw
counts. This ar (n) term is also called the propensity or rate of
reaction channel r and is defined as

ar (n) ≡ ρrF
(r)
n ,

a0(n) ≡
R∑

r=1

ar (n), (2)

where

F (r)
n ≡

∏
{a|m(r)

a �=0}

({
na !(

na−m
(r)
a

)
!

if na � m(r)
a

0 otherwise

)
. (3)

Note that superscripts involving “r” and related variables
that index reaction numbers occur here and numerous times
in the following. These are enclosed in parentheses “(r)”
throughout, to indicate that they are not powers but rather
indexes.

In this work, it will be notationally convenient for us to
keep the propensity term factored out into ρr and F

(r)
n .

As a brief aside, the upcoming derivations in this paper
may work with other forms for F

(r)
n . For example, the “umbral

transformation” of a Hill function,

F (r)
n = Umbral[Hill(n; K)]

= n(k)

(Kn + nk)
,

may work as propensity function, where the falling factorial
n(k) ≡ n!/(n − k)! replaces nk in Hill(n; K) (or more generally
in a rational function) for each power of any integer-valued
molecule number n. This functional form has the advantage of
being monotonic and equal to zero for n < k, as required for
a stochastic version of the Hill function with discrete integer
numbers of molecules.

Furthermore, we define the total propensity DI for some
reaction to occur in state I as

DI ≡
∑

r

ρrF
(r)
I , (4)

which is equivalent to Eq. (2).
Bounds for F(r) and D, after L reaction events, are com-

puted by bounding species counts after L reaction events.
For each species identifier (ID) a, we bound the number of
molecules present, n′

a , by

na + L minr

{
�m(r)

a

}
� n′

a � na + L maxr

{
�m(r)

a

}
. (5)

If we introduce the notation that a tilde superscript or sub-
script, x̃ or x˜, represents upper or lower bounding values, re-
spectively, then, we can re-write the above as

n˜a ≤ n′
a ≤ ñ.

The corresponding propensities calculated from using the up-
per and lower bounding states, after L − 1 reaction events,
respectively, are written as

F̃
(r)
K,L−1 ≡ F

(r)
ñ ,

F˜(r)
K,L−1 ≡ F˜(r)

n ,

and therefore

D̃K,L−1 =
∑

r

ρr F̃
(r)
K,L−1,

D˜K,L−1 =
∑

r

ρrF˜(r)
K,L−1

for any state K.

B. Markov process

In the ER-leap paper10 it was shown that the probability
of starting at state I0 and ending up in state IL after τ time
elapses is

P (IL, τ |I0, L) =
∑

{Rk |k=1..L−1}

[ ∏
k=L−1↘0

ρRk
F

(Rk)
Ik(R,I0)

× exp(−τk(DIk(R,I0),Ik (R,I0)))

]
(6)

for every ordered vector {Rk|k = 1. . . L − 1} of reaction chan-
nel events. Each state may be uniquely transformed by a re-
action as I0 → I1(R, I0).
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Furthermore, it was shown in ER-leap10 that for any func-
tion e(r) summing over all possible orderings of L reaction
events is equivalent to summing over all possible counts of
reactions (e.g., a multinomial with L draws) and then permut-
ing each of these draws for all unequal reactions, yielding∑
{rk |k=1..L−1}

e(r) =
∑

{s|sr∈N,
∑

r sr=L}

∑
{σ |σ permutes unequal r’s|s}

e(σ (r)),

(7)

which, when combined with Eq. (6), and introducing the pre-
viously defined bounds, separating out terms in e(r) which are
permutation invariant, and after some algebra results in

P (IL, τ |I0, L)

=
∑

{s|sr∈N,
∑

r sr=L}

(
L

s1 . . . sR

)
×

⎡⎢⎣ R∏
r=1

⎛⎜⎝ ρrF̃
(r)
I0,L∑

r

ρr F̃
(r)
I0,L

⎞⎟⎠
sr
⎤⎥⎦

×(D˜I0L−1)L exp

(
−
(∑

k

τk

)
D˜I0L−1

)

× (D˜I0L−1)L

(D˜I0L−1)L

〈[ ∏
k=L−1↘0

(
F

(rk)
Ik(σ (r),I0)

F̃
(rk )
I0,L−1

)

× exp(−τk(DIk(σ (r),I0),Ik(σ (r),I0) − D˜I0L−1))

]〉
{σ |s}

.

(8)

This expression can be interpreted as a rejection-sampling al-
gorithm (last line) that corrects a multinomial approximate
sampling algorithm (first two lines).

1. Rejection sampling

Through the lens of rejection sampling, Eq. (8) represents
an algorithm.

Briefly, rejection sampling is a method to sample x from
some distribution, x ∼ P(x), by means of an approximate dis-
tribution P′(x). This can be expressed algebraically since P(x)
can be rewritten as

P (x) = P ′(x)
P (x)

MP ′(x)
+ (1 − 1/M)P (x) (9)

assuming M ≥ 1. Equation (9) can be viewed as a mixture
distribution with the probability of sampling from P′(x) being
the “acceptance” A(x)

A(x) = P (x)

MP ′(x)
(10)

for some constant M such that ∀xA(x) ≤ 1.
It is now possible to see the ER-leap algorithm repre-

sented in Eq. (8). If in Eq. (8) we recognize P(x) = P′(x)MA(x)
(equivalent to Eq. (9)), with M = (D̃I0L−1)L/(D˜I0L−1)L, then
we will implicitly define a P′(x). This P′(x) has the next L re-
action events sampled from a multinomial with the probability

pr of choosing the rth reaction channel being equal to

pr =

⎛⎜⎝ ρrF̃
(r)
I0,L∑

r

ρr F̃
(r)
I0,L

⎞⎟⎠ .

Furthermore, our P′(x) samples τ from an Erlang distribu-
tion (equivalent to a Gamma distribution with integer “shape”
parameter) with rate parameter being D˜I0,L and shape pa-
rameter being L. Finally, if needed when calculating A(x),
a random permutation σ is drawn uniformly and {τk|τ
= ∑L−1

k=0 τk} is sampled from an L-simplex.
The work in Sec. III will similarly arrive at an equation

representing an efficient and exact leaping algorithm for sam-
pling L reaction events from an SSA equivalent distribution.

III. THEORY

A. Hierarchical notation

The HiER-leap algorithm uses a divide-and-conquer
strategy to accelerate SSA. Evidence suggests that protein-
protein interaction (PPI) networks tend to be modular.21

These networks contain submodule clusters that interact heav-
ily inside the cluster. Interactions with other clusters of pro-
teins are less common. Although still an active area of
research, evidence22 suggests that similar modularity may
exist in genetic regulatory networks as well. Additionally,
when modeling spatial interactions,23–28 events spatially dis-
tant must interact through sparse intermediate diffusion reac-
tion channels. In this way, it is probably common that many
reaction channels are weakly coupled to the majority of other
channels. This observation suggests a potential avenue to-
wards algorithm acceleration and parallelization for large bi-
ological networks.

Notation is introduced below to describe a hierarchical
organization of reaction channels. Table I provides a compre-
hensive guide to notation used throughout Secs. III B–III D.
Next, following and generalizing the strategy of Sec. II, we
will derive bounds on propensities and species. The bounds
will be essential for deriving an algorithm for exact speedup
of SSA for systems amenable to hierarchical organization.

Reaction channels must belong to exactly one block. A
block is defined as a set of reaction channels. If reactions
are “connected” by shared reactants, it is preferred that reac-
tions should be more strongly connected within them between

TABLE I. Notation: Accents and meaning.

Symbol Meaning

x̃ Upper bounding value for x after L − 1 reaction events.
Calculated by assuming each species type will be maximal.

x̂ Upper bounding value for x after L − 1 reaction events.
May not depend on bounding all species values and
therefore may be tighter than x̃.

x̄ Upper bounding value given u.
Will often involve inner block calculations.

x˜, x̂, x Lower bounding versions of the above definitions.
x* The optimal value of x with respect to some objective function.
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blocks. For this work, a two-level hierarchy of reactions and
blocks is used. However, it is straightforward to apply this
method repeatedly to multiple levels.

Each reaction channel is indexed by its block ID r1, and
its within-block ID r2, and will be designated as R = (r1r2)
for r1 ∈ {1. . . b} and r2 ∈ {1 . . . br1}. The “block propensity”
for block r1 and state I, denoted D

(r1)
I is the sum of propen-

sities of constituent reaction channels. Specifically, similar to
Eq. (4) this means

D
(r1)
I =

∑
r2∈r1

ρr1r2F
(r1r2)
I . (11)

Furthermore, we denote the number of reaction events
occurring within block r1 as ur1 . Finally, the number of events
for the reaction channel indexed by R = (r1r2) is denoted
by vr1r2 .

B. Bounds on propensities and species counts

Similar to Eq. (5), we now develop bounds on species
counts and propensities. This enables us to derive a two-scale
rejection sampling algorithm in many ways analogous to ER-
leap at each scale. For reasons that will become evident in
Sec. III C, we first derive bounds on the block propensities
given L and I0. Afterwards, bounds will be developed on the
species molecule counts and reaction channel propensities
given u.

First, recall that in Eq. (5) we found bounds on species
and propensities after L reaction events. Note that similar to
Eq. (5) we can define

D̃
(r1)
K,L−1 =

∑
r2∈r1

ρr1r2 F̃
(r1r2)
K,L−1

and a similar definition for D˜(r1)
K,L−1.

1. Optimized block level bounds

If it is the case that we only need bounds on the block
propensities, and not individual reaction channels, then we
can take advantage of “reaction event exclusion”. This means
that we only need to consider the sequence of at most length L
reaction events which will result in the most extreme value for
the sum of propensities in block r1. Therefore, we no longer
need to assume that all species counts are at the most extreme
value possible after L reaction events.

We want to find a bound closer to the optimal block
propensity

D̂
(r1)
(I0L)

∗ = max
vr1 ||ur1 =L

∑
r2∈r1

ρr1r2F
(r1r2)
I (I0,vr1 ). (12)

Unfortunately, naïvely solving this exactly for r1 requires enu-
merating (br1 )L possible choices for vr1 upon every iteration.
Fortunately the bound we seek, D̂

(r1)
(I0L), is not required to be

exactly optimal. Instead we only require that

D̂
(r1)
(I0L)

∗ ≤ D̂
(r1)
(I0L) ≤ D̃

(r1)
(I0L), (13)

such that D̂
(r1)
(I0L)

∗ ≤ D̂
(r1)
(I0L) is required for algorithmic correct-

ness and D̂
(r1)
(I0L) ≤ D̃

(r1)
(I0L) is needed for improved efficiency.

A heuristic algorithm for D̂
(r1)
(I0L) is developed. We demon-

strate that this falls between the requisite values and has
“nice” asymptotic properties that will be discussed later.

a. Derivation The idea is to find the maximum �D̂
(r1)
(I0L)

possible resulting from one reaction channel firing sometime
during the next L reaction events. If we determine this value,
we can upper bound D

(r1)
(I0...IL−1) with

D
(r1)
(I0,L) ≤ D

(r1)
I0

+ (L − 1)�D̂
(r1)
(I0L)

∗
, (14)

where

�D̂
(r1)
(I0L)

∗ = max
Rr1r2 ||I0 ..IL−1

�D̂
(r1)
(I0L).

Note how this is an upper bound on D
(r1)
(I0,L). By construction,

�D̂
(r1)
(I0L)

∗
is the largest amount that the block propensity may

change for any of the upcoming possible (L − 1) reaction
events in r1. Since there are (L − 1) reaction events, and the
most any of them may increase D

(r1)
(I0,L) is �D̂

(r1)
(I0L)

∗
, Eq. (14)

will always bound D
(r1)
(I0,L).

This method improves upon our previous methods, which
found the maximum ña for all species and then calculates the
block propensity. Each within-block reaction channel propen-
sity will be larger when ña rather than na is used to calculate
the propensity. Therefore, using the increased bound will re-
sult in a block’s propensity being O(br1 ∗ L) larger than D

(r1)
I0

.
However, by calculating using Eq. (14) the bound will be just
O(L) larger than D

(r1)
I0

.

Again, naïvely solving for �D̂
(r1)
(I0L)

∗
requires an imprac-

tical amount of work. But as with our previous argument, we
can upper-bound �D̂

(r1)
(I0L)

∗
and still achieve an upper bound

for D
(r1)
(I0,L). To upper bound �D̂

(r1)
(I0L)

∗
we use the monotonic

nature of D
(r1)
Ik

. If any species increases to n′
a ≥ na we know

that D
(r1)
n′

a
≥ D(r1)

na
. Therefore, if we find the reaction channel

that increases the block propensity the most when ñI0,L is used
for positive �m(r1r2)

a , we are guaranteed that there does not ex-
ist a larger �D̂

(r1)
(I0L).

This yields

�D̂
(r1)
(I0L) = max

r2∈r1

[D(r1)(q(ñ, r2)) − D(r1)(ñ)], (15)

where

q(n, r2)a =
{
na + �m(r1r2)

a if �m(r1r2)
a > 0,

na otherwise,
(16)

as our final equation for �D̂
(r1)
(I0L). A proof that this bounds the

maximum delta possible can be found in the Appendix.
This tighter bound will result in a greater acceptance ra-

tio. The basic reason for this improvement is that we need not
overestimate every propensity in r1 by O(L), and add the over-
estimates up, since only L and not b1L reactions will occur.

Naïvely finding the reaction channel R = (r1r2) that will
increase D(r1)(ñI0,L) by a maximal amount will cost O(|Rr1 |)
steps to compute. To accelerate this step further, blockwise
priority queues (PQ) are used to find this R efficiently. Nodes
in the PQ are reaction channels and values are the �D

(r1)
(I (ñ,br1 ))

caused by each reaction channel firing. Upon acceptance
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of L reaction events we must update the priority queue for
each block. Only nodes that interact with species which have
changed, need to be adjusted. This, at worst, will be O(log br1 )
work for each node, although in practice the order rarely
needs to change.

2. Propensity bounds given u

If we know u, the number of reaction events for r1 and
adjacent blocks, we can derive even tighter bounds on the re-
action channels Rr1∗. In fact, these tighter bounds help us to
efficiently increase L when larger systems are considered, as
will be demonstrated in Sec. III C.

We determine F̄ (r1∗) by finding bounds on species counts
given u. In other words, we want to find

nA(r, n0, k) ≤ n̄Ar1 (u, n0), for

k = 0..[(index of final r1 event) − 1],

which is the maximum possible value of nAr1 prior to the last
event in r1 occurring. In this way nA(r, n0, k) will never exceed
the propensity calculated from n̄Ar1 (u, n0).

Finding the optimal value for n̄Ar1 (u, n0) is straightfor-
ward. We first need to consider blocks other than r1 which
may change nAr1 . Since the order of reactions is unknown,
we must assume that all reaction events in blocks except r1,
written as u\{ur1}, occur prior to those in ur1 . It is desired
that the number of neighbors relative to the total number of
blocks will be small. This will decrease nA(r, n0, k) and ul-
timately lead to a more efficient algorithm. Second, we need
to consider reactions in r1. In calculating the bound, it is as-
sumed that all (ur1 − 1) reaction events chosen will behave
adversarially. This is analogous to the method considered in
Sec. III B, with the modification that we will consider a subset
of reaction channels. Thus

n̄Ar1 (u, n0) ≡ nA +
∑
r1

′
(ur1

′ − δr1r1
′) max

r2
′

�m
(r1

′r2
′)

(a1a2)

will bound each nAr1 with respect to r1 and u. The Kronecker
delta function δ(a, b) or δ(a − b) is as usual:

δ(a − b) = δab = 1 (a = b) ≡
{

1 if a = b

0 otherwise
.

Finally, the propensities of reaction channels inside of block
r1 are bound as,

F̄ (r1r2)(u, n0) ≡ F (r1r2)(u, n̄Ar1 ).

As in ER-leap, lower-bounding the propensities and
species is done with the same techniques as that used for
upper-bounding with the restriction that propensities and
species molecule counts cannot go below zero. These derived
bounds are used in Secs. III C–III D.

C. Equivalent Markov process

Similar to Sec. II B, we want to algebraically manipulate
the distribution represented by the chemical master equation
(a special case of the Kolmogorov-Chapman equation29) into

a form suitable for parallelization and acceleration. The hier-
archical description from Sec. III A will aid us in this trans-
formation.

First, note that it is possible to rewrite Eq. (7) into a hier-
archical version with u’s and v’s strictly ordered such that

∑
{Rk |k=1..L−1}

e(R) =
∑

{u|uR∈N,
∑

R uR=L}

∑
{vr1 |vR∈N,

∑
r′2

vr1r′2
=ur1 }∑

{σ1|σ1 permutes unequal R′s|u}

∑
{σ2|σ2 permutes unequal R′s|vr1 }

e(σ1(σ2(R))).

By taking an average of e(σ (R)) and weighting by the number
of ways the selection may occur we get

=
∑

{u|uR∈N,
∑

R uR=L}

∑
{vr1 |vR∈N,

∑
r′2

vr1r′2
=ur1 }

×
(

L

R1R2 . . . Rn

)
〈〈e(σ1(σ2(R)))〉σ2

〉σ1

and analogous to the way shuffling a deck of cards is the same
as shuffling by suit and then, maintaining that order, shuffling
by value independently for each suit, we may write(

L

R1R2 . . . Rn

)
= L!

R1!R2! . . . Rn!

= L!

ur1 !ur ′
1
! . . . ur ′′

1

∏
r1

ur1 !

vr1r2 !vr1r
′
2
! . . . vr1r

′′
2
!

=
(

L

ur1 . . . ur ′
1

)∏
r1

(
ur1

vr1r2 . . . vr1r
′
2

)

and arrive at a useful form for our distribution, which is al-
ready suggestive of a block-parallel algorithm:

∑
{rk |k=1..L−1}

e(r) =
∑

{u|uR∈N,
∑

R uR=L}

(
L

ur1 . . . ur ′
1

)

×
∑

{vr1 |vR∈N,
∑

r′2
vr1r′2

=ur1 }

∏
r1

(
ur1

vr1r2 . . . vr1r
′
2

)
×〈〈e(σ1(σ2(R)))〉σ2〉σ1 . (17)

To go further, we need to re-examine e(. . . ).

1. Introduction of probability bounds

We now make use of our previously derived propensity
bounds to derive a parallel algorithm. From Eq. (6) we have

〈〈e(σ1(σ2(R)))〉σ2〉σ1 =
〈〈 ∏

k=L−1↘0

ρRk
F

(Rk)
Ik(R,I0)

× exp(−τk(DIk(R,I0),Ik(R,I0)))

〉
σ2

〉
σ1

;
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with inclusion of derived bounds,

〈〈e(σ1(σ2(R)))〉σ2〉σ1

=
〈〈 ∏

k=L−1↘0

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)

ρRk
F̄ (r1r2)(u, I0)

D̄(r1)(u, I0)

× D̄(r1)(u, I0)

D̂
(r1)
(I0L)

D̂
(r1)
(I0L)

× exp(−τk(DIk(R,I0),Ik (R,I0) − D̂(I0L))

× exp(−τkD̂(I0L))

〉
σ

〉
σ1

.

If we separate out terms based on independence of σ 1, σ 2,
and v, then

〈〈e(σ1(σ2(R)))〉σ2〉σ1

= exp(−τD̂(I0L))

(∏
r1

D̂
(r1)
(I0L)

ur1

)

×
(∏

r1

∏
r2

(
ρRk

F̄ (r1r2)(u, I0)

D̄(r1)(u, I0)

)vr2
)

×
(∏

r1

(
D̄(r1)(u, I0)

D̂
(r1)
(I0L)

)ur1
)

×
〈 ∏

k=L−1↘0

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)

× 〈exp(−τk(DIk(R,I0),Ik(R,I0) − D̂(I0L))〉σ2

〉
σ1

We now substitute the expression for 〈〈e(σ1(σ2(R)))〉σ2〉σ1 into
Eq. (17), combining terms where appropriate:⎡⎣ ∏

k=l−1↘0

Ŵ exp(−τkD)

⎤⎦
Il ,I0

=
⎛⎝∑r ′

1
D̂

(r ′
1)

(I0L)

D̂(I0,L)

⎞⎠L ∑
{u|uR∈N,

∑
R uR=L}

×
⎡⎣( L

ur1 . . . ur ′
1

)∏
r1

⎛⎝ D̂
(r1)
(I0L)∑

r ′
1
D̂

(r ′
1)

(I0L)

⎞⎠ur1
⎤⎦

×
∑

{vr1 |vR∈N,
∑

r′2
vr1r′2

=ur1 }

[∏
r1

(
ur1

vr1r2 . . . vr1r
′
2

)

×
∏
r2

(
ρRk

F̄ (r1r2)(u, I0)

D̄(r1)(u, I0)

)vr2
]

× (D̂(I0,L))
L exp(−τD̂(I0L))

×AcceptCoarse(u; I0, L)

×
(∏

r1

AcceptBlock(vr1 , σ2; u)

)
×AcceptF ine(σ1; u, v, I0, σ2) (18)

The acceptance probabilities are as follows:

AcceptCoarse(u; I0, L) =
∏
r1

(
D̄(r1)(u, I0)

D̂
(r1)
(I0L)

)ur1

, (19)

AcceptBlock(vr1 , σ2; u, r1) =
∏
k∈r1

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)
, (20)

AcceptF ine(σ1; u, v, I0, σ2)

=
∏

k=L−1↘0

exp(−τk(DIk(R,I0),Ik(R,I0) − D̂(I0L))). (21)

Furthermore, prior to turning these equations into an al-
gorithm, we note that we can lower-bound these acceptance
probabilities. This will enable us to do an early acceptance
or rejection without always doing all of the work to calculate
these values exactly.

2. Lower bounding acceptance probabilities

We begin by lower-bounding AcceptFine(. . . ). This prob-
ability requires the most work to calculate and as we will see
may be bound fairly tightly. The bound only requires that τ

has been sampled.
The lower bound AcceptF inê (. . .) is sought such that

AcceptF inê (. . .)

≤
∏

k=L−1↘0

exp(−τk(DIk(R,I0),Ik(R,I0) − D̂(I0L))).

for all possible {τ k} and {I0. . . IL−1}. In the above, note that
D̂(I0L) is constant with respect to k. Therefore, when we also
upper bound

D̂I0L ≥ DIk(R,I0),Ik(R,I0),

this creates an easily computable expression for the lower
bound

AcceptF ine(σ1; u, v, I0, σ2, τ )

≥
∏

k=L−1↘0

exp(−τk(D̂I0L − D̂(I0L)))

so that

AcceptF inê (τ ; I0, L) = exp(−τ (D̂I0L − D̂(I0L))) (22)

Furthermore, recall that E[τ ] = L/D̂(I0,L). If we assume that
�D̂(I0L) ∝ L when computing D̂(I0L) and D̂(I0L) (see Eq. (14))
in the limit of many non-zero propensity reaction channels〈

lim
|R|→∞

exp(−τ (D̂I0L − D̂(I0L)))
〉
→ 1,

which implies that both AcceptF inê (. . .) and Ac-
ceptFine(. . . ) tend to unity as the number of reaction
channels increases.

Next, we set out to lower-bound AcceptBlock(. . . ). This
acceptance probability depends on σ 2. Therefore, work will
be saved if we can calculate the lower bound without sam-
pling σ 2. This can be accomplished by noting that Accept-
Block(. . . ) is a product of fractions. If we have a numerator
and denominator that are independent of σ 2 we can re-write
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this equation in terms of r2. Specifically, using F
(r1r2)
u,I0

allows
us to lower-bound the equation,

AcceptBlock(vr1 , σ2; u, r1)

=
∏
k∈r1

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)
≥
∏
k∈r1

F (r1r2)(u, I0)

F̄ (r1r2)(u, I0)

yielding

AcceptBlock̂ (vr1 ; u) =
∏
r2∈r1

(
F (r1r2)(u, I0)

F̄ (r1r2)(u, I0)

)vr2

. (23)

D. Algorithm

The above equations, along with rejection sampling, al-
low us to create an efficient algorithm that will allow much
of the work be done in parallel. From Eq. (18) it is observed
that there are two probability mass function expressions for a
multinomial distribution. Specifically,

Multinomial

⎛⎝u;

⎧⎨⎩pr1 = D̂
(r1)
(I0L)∑

r ′
1
D̂

(r ′
1)

(I0L)

⎫⎬⎭ , L

⎞⎠
=
(

L

ur1 . . . ur ′
1

)∏
r1

⎛⎝ D̂
(r1)
(I0L)∑

r ′
1
D̂

(r ′
1)

(I0L)

⎞⎠ur1

is the multinomial distribution for sampling u. And for each
r1 the vector vr1 is sampled as

Multinomial

(
vr1 ;

{
pr1r2 = ρRk

F̄ (r1r2)(u, I0)

D̄(r1)(u, I0)

}
, ur1

)
=
(

ur1

vr1r2 . . . vr1r
′
2

)∏
r2

(
ρRk

F̄ (r1r2)(u, I0)

D̄(r1)(u, I0)

)vr2

,

which is interesting and implies that vr1 is independent of all
other block’s vr ′

1
given u.

The multinomials vr1 may be sampled independently for
each block, however it may be the case that Eq. (20) needs
to be computed by considering multiple blocks simultane-
ously. Specifically, computing Ik(R, I0) for block r1 may re-
quire knowledge about any neighboring blocks, r ′

1, changing
the chemical species counts for reaction channels vr1 reacting
on the same species. Since Eq. (23) is independent of Ik(. . . ),
this “joint” acceptance probability only needs to be calculated
when (a) blocks r1 and r ′

1 share a chemically reacting species
in their respective vr1 and vr ′

1
sampled reaction channels and

(b) block r1 or r ′
1 does not pass early block-acceptance. Com-

puting Eq. (20) jointly involves computing a σ 2 for reaction
events in r1 and r ′

1. Then, Ik(. . . ) may be computed properly.
It should be noted that in the pseudocode below some possi-
ble optimizations (e.g., independent early block accept and
some parallel execution) are not shown for clarity. Instead
“connected components”, block groups which may need to be
sampled jointly if conditions (a) and (b) are met, are sampled
entirely in “joint” form.

We now present the HiER-leap algorithm, which is a real-
ization of the aforementioned equations, in pseudocode. First,

note that if we have an early global acceptance, then most
of the computational effort will be put into line 12 of the
following pseudocode. The subroutine from this line will be
shown later. Notice that this function is independent for all
blocks, with the exception that computing Eq. (20) may need
to be done jointly for neighboring blocks, and needs to be
done for all blocks with at least one reaction event. This is
an ideal scheme for parallelization and is done so with good
efficacy as will be shown. Furthermore, for the tests in Sec.
IV B the full calculation AcceptFine(. . . ) was rare because
in general: AcceptF inê (. . .) ≥ 0.995. The algorithm is as
follows:

Require: D̂(I0,L),D̂(I0,L), {D̂(r1)
(I0,L)} precomputed for L ≥ 1 and I0.

Ensure: Return (IL, �t) � return updated state and duration of L steps
function HIER-LEAP(I0, L)

τ ← ERLANG(τ ; D̂(I0,L), L)

u ←MULTINOMIAL(u;

⎧⎨⎩pr1 = D̂
(r1)
(I0L)∑

r′1
D̂

(r′1)
(I0L)

⎫⎬⎭ , L)

Compute D̄’s � May be done in parallel.
5: � In accordance with Eq. (19).

if UNIFORMRANDOM (0,1) ≥ACCEPTCOARSE(u; I0 , L) then
return HIER-LEAP(I0 , L) � Early Rejection. Try again.

end if
10: for all c ∈ CONNECTEDCOMPONENTS(u, R, I0) do

� See algorithm below.
(vr1 , σ2) ← SAMPLECONNECTEDCOMPONENTS(c, u, I0)

� May be done in parallel.
end for

15: z ← UNIFORMRANDOM (0,1)
if z ≤ AcceptF inê (τ ; I0, L) then � See Eq. (22).

return (IL(I0, v, u), τ ) � Early Acceptance.
end if

� Computation should be rare; see Eq. (21).
20: if z ≤ ACCEPTFINE(σ1; u, v, I0, σ2, τ ) then

return (IL(I0, v, u), τ )
else
return HIER-LEAP(I0 , L) � Try again.

end if
25: end function
Ensure: Return each connected component of blocks, where two blocks are

in the same connected component if they share a reaction species and each
blocks has at least one reaction event such that ur1 ≥ 1.
function CONNECTEDCOMPONENTS (u, R, I0)

C ← {} � C is a set.
B ← R � B is the set of blocks.

30: while B �= � do
b ← B.CHOOSEELEMENT()
if ub ≥ 1 then

c ← DEPTHFIRSTSEARCH (b, u, B)
� Blocks share an edge if and only iff for each ur1 ≥ 1 and they
share a species.

35: B ← B\c � Set operation subtraction.
C ← C.Append(c)

end if
end while
return C

40: end function
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The pseudocode to sample each connected component is
as follows:

Require: The connected component c contains blocks which all have at least
one reaction event.

function SAMPLECONNECTEDCOMPONENTS(c, u, I0)
pEarly ← 1
for all r1 ∈ c do

vr1 ←MULTINOMIAL (vr1 ;

{
pr1r2 = ρRk

F̄ (r1r2)(u,I0)

D̄(r1)(u,I0)

}
, ur1 )

for r2 ∈ r1 and v(r1r2) ≥ 1 do

pEarly ← pEarly ×
(

F (r1r2)(u,I0)
F̄ (r1r2)(u,I0)

)vr2

end for
end for
z ← UNIFORMRANDOM (0,1)
if z ≤ pBlockEarly then

return (v, σ2) � Early Accept.
end if
pComponent ← 1
σ 2 ← PERMUTATION (ur1 ) � Must compute exact acceptance

probability.
for all k = 1 . . . |v| do

r ′
2 ← σ2(v, k)

pComponent ← pComponent ×
F

(r1r′2)
Ik (σ2(vr1 ),I0)

F̄
(r1r′2)(u,I0)

Calculating Ik

takes the most work.
end for
if z ≤ pBlock then

return (v, σ2) � Accept sample.
else

return SAMPLECONNECTEDCOMPONENTS (c, u, I0) � Sample
rejected, try again.

end if
end function

IV. NUMERICAL EXPERIMENTS

A. CaliBayes validation

We check the HiER-leap algorithm correctness numeri-
cally with the CaliBayes test suite similar to the work in ER-
leap.10 If is possible to solve analytically for P(X|t), this al-
lows us to compare many simulated trajectories to the true
distribution defined by the CME. Since HiER-leap reduces to
ER-leap when the number of blocks goes to one, and it has
already been shown that ER-leap samples the correct distri-
bution, we wish to test across a variety of reaction channel
quantities and organization structure.

The reaction networks in CaliBayes for which we know
the analytical solution involves at most two species types.
However, simulating many replicates of these networks on a
grid, not connected with diffusion, will allow us to treat each
block as an independent sample. We can then treat the simula-
tion of many network replicates as many sampled trajectories
of a single network.

We perform tests over a number of network replicates m
= 2. . . 1000. The number of blocks range from b = 1. . . m.
The leap is in the range L = 3. . . 18, where the leap used de-
pends on the specific reaction network, m and b, but is held
constant throughout the simulation.
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FIG. 1. The Williamowski-Rössler model as seen in Sec. IV B is used for
this experiment. There are different number of network replicates on a 2D
square grid with diffusion rate of 0.1. The number of replicates ranges from
4 to 8649 which equates to 64 to 189 612 reaction channels.

CaliBayes models 1-01, 1-03, 1-04, 2-01, 2-02, 3-01 and
3-0230 are tested, on the spaced defined by the Cartesian prod-
uct of the possible values for the m, b, and L parameters as
described above, for parameters which result in an acceptance
probability greater than about 0.05. These tests pass on these
cases using the criteria of Evans et al.30

We now turn to a large, spatially coupled system.

B. Acceleration

As an exact algorithm, the key performance metric of rel-
evance to HiER-leap is the amount of acceleration achievable.
As discussed earlier, in principle adding more reaction chan-
nels and processors should increase the relative speedup over
SSA. We can see this trend experimentally in Figures 1 and 2.
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FIG. 2. The same experimental setup as used for Figure 1 except 1D diffu-
sion is used.
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We test using a spatially coupled version of the
Williamowski-Rössler model31 defined as

X
k1←→
k2

2X Y
k5←→
k6

∅ Z
k9←→
k10

2Z X + Y
k3←→
k4

2Y X + Z
k7←→
k8

∅

replicated over a d-dimensional grid for d = 1 or d = 2. Dif-
fusion reaction channels for all species are added between ad-
jacent grid cells with a rate of kd = 0.1. Parameters and initial
conditions for each of the replicated Williamowski-Rössler
grid cells are as follows: k1 = 900, k2 = 8.3 × 10−4, k3

= 0.00166, k4 = 3.32 × 10−7, k5 = 100, k6 = 18.06, k7 =
0.00166, k8 = 18.06, k9 = 198, k10 = 0.00166. X(0) = 39570.
Y(0) = 511470. Z(0) = 0.

The following tests are all run on an Apple Macintosh
Pro with a Quad-Core Intel Xeon processes running a total
of 8 cores at 2.26 GHz and 13 GB of RAM using OS X
10.6.8. The algorithms are coded in C++ and Boost.Thread32

and the Intel Threading Building Blocks33 are used for mul-
tithreading. Connected components were found using the
depth-first search algorithm. We compiled the code using the
LLVM compiler 1.0.2. The HiER-leap code may be found at
http://computableplant.ics.uci.edu/hierleap/.

Results are shown in Figures 1 and 2. They show a sub-
stantial speedup of HiER-leap over SSA and ER-leap, around
100× and 10×, respectively, as we increase the number of re-
action channels to around 190 000. The spatial nature of this
experiment means that blocks are neighbors with relatively
few other blocks. This leads to a greater “coarse-scale” ac-
ceptance probability and therefore increased efficiency.

Additionally, we see that the slopes of the log-log run-
time plots for SSA and ER-leap become nearly equal as the
number of reaction channels increase. This is expected, since
ER-leap finds bounds on individual reaction channels after L
reaction events, and this bound is independent of the number
of reaction channels. HiER-leap, however, does not have this
shortcoming and has a lower slope (e.g., better asymptotic be-
havior) as a result.

C. HiER-leap properties

The algorithm parameters, such as leap size and hier-
archical organization, require optimization before the fastest
possible execution time is achieved. To find the ideal meth-
ods with which to optimize our algorithm, we explore various
trade-offs here.

In Figure 3 we observe that the optimal b and L are in-
terdependent for a given network. However, it is interesting to
note that for this experiment there is a relatively large plateau
of nearly equivalent optimal running times. This means that
the range of reasonably good parameters is large. Further-
more, the contour plot of Figure 3 indicates that there is only
one global optimum. This seemingly convex behavior indi-
cates that finding the optimum requires only a simple hill
climbing algorithm.

Thus, the results from Figure 3 indicate that finding the
optimal L and hierarchical organization for a spatially dis-
tributed system is an easy optimization problem. These re-
sults, and those from ER-leap, suggest that L will generally
have a local optimum that is also a global optimum. However,
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FIG. 3. Log CPU Time vs Leap and Hierarchical Structure. The
Williamowski-Rössler model as seen in Sec. IV B is used for this experi-
ment. There are 400 network replicates on a 1D grid with diffusion rate of
0.1. The model execution time depends on leap and hierarchical organiza-
tion. As leap increases the amount of work per iteration goes up but the ac-
ceptance ratio goes down. Furthermore, if there are many reaction channels
per block the total acceptance probability of the system goes down. However,
in this situation the inner-block acceptance probability goes up. When the
number of reaction channels per block goes down, the opposite trends occur.
In this way the chosen leap and block organization will determine the total
execution time.

the optimal configuration of the blocks and reaction chan-
nels for networks not specifically representing a spatially dis-
tributed reaction network remains an open problem.

V. SUMMARY

We have presented a novel accelerated stochastic simu-
lation algorithm which has demonstrated an ability to sample
from the CME without a loss of accuracy. Due to its hierarchi-
cal design, this method (a) scales very well with the number
of reaction channels and simultaneously (b) takes advantage
of parallel hardware for single trajectory samples. As far as
we are aware, this is the first exact accelerated algorithm with
either property (a) or (b), and is therefore of potential signifi-
cance to the computational biology community.

Open questions and future work abound. For example,
it is not known how well this method works on “real net-
works” of substantial complexity taken from biological mod-
eling practice. We believe that modular structure in biological
networks will make the method particularly useful. Addition-
ally, it is unknown how substantial increases in the parallel
architectures of future computers will increase performance.
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APPENDIX: BOUND ON REACTION BLOCK
PROPENSITIES

We will show that for �D̂
(r1)
(I0L)

∗
from Eq. (14) and

�D̂
(r1)
(I0L) from Eqs. (15) and (16), it is the case that �D̂

(r1)
(I0L)

∗

≤ �D̂
(r1)
(I0L).

Proof by contradiction. Assume there is some r2 ∈ r1 and
state I ′ = n′ with ∀an

′
a ≤ ña and ∃an

′
a < ña , reachable from

I0 in at most L − 1 reaction events used to find �D̂
(r1)
(I0L)

∗
such

that �D̂
(r1)
(I0L)

∗
> �D̂

(r1)
(I0L). Substituting in our definitions for

�D̂
(r1)
(I0L)

∗
and �D̂

(r1)
(I0L), using Eq. (4), and introducing the no-

tation that I(r2) will be the result of r2 applied to I and I(r2
+)

is the result of r2 applied to I only for species which have net
gain (�m(r1r2)

a > 0), yields

�D̂
(r1)
(I0L)

∗ = D
(r1)
I ′(r2) − D

(r1)
I ′

=
∑
r ′′

2 ∈r1

ρ(r1r
′′
2 )F

(r1r
′′
2 )

I ′(r2) −
∑
r ′′

2 ∈r1

ρ(r1r
′′
2 )F

(r1r
′′
2 )

I ′

=
∑
r ′′

2 ∈r1

ρ(r1r
′′
2 )

(
F

(r1r
′′
2 )

I ′(r2) − F
(r1r

′′
2 )

I ′

)
and

�D̂
(r1)
(I0L) =

∑
r ′′

2 ∈r1

ρ(r1r
′′
2 )

(
F

(r1r
′′
2 )

Ĩ (r2
+)

− F
(r1r

′′
2 )

Ĩ

)
.

Therefore, we can equivalently say that we are trying to
disprove∑

r ′′
2 ∈r1

ρ(r1r
′′
2 )
(
F (r1r

′′
2 )(n′ + �m(r1r2)) − F (r1r

′′
2 )(n′)

)
>
∑
r ′′

2 ∈r1

ρ(r1r
′′
2 )
(
F (r1r

′′
2 )(ñ + �m(r1r2)) − F (r1r

′′
2 )(ñ)

)
. (A1)

Note that by grouping terms by r ′′
2 , there is a one-to-one corre-

spondence between the summation terms on each side of the
inequality.

If true, Eq. (A1) implies that there is at least one reaction
channel r ′

2 ∈ r1 for �m(r1r2)
a > 0 such that

F (r1r
′
2)(n′ + �m(r1r2)) − F (r1r

′
2)(n′) > F (r1r

′
2)(ñ + �m(r1r2))

−F (r1r
′
2)(ñ). (A2)

But we will show that this is impossible for any ña > n′
a ≥ 0.

Note that we do not need to consider �m(r1r2)
a ≤ 0 because F

is monotonic, the LHS will be decreased and the RHS will not
change as per the definition of �D̂

(r1)
(I0L) (negative �m(r1r2)

a are
ignored).

Before proceeding we will introduce the forward differ-
ence operator, �F(i), such that

�F (i)f (z) ≡ f (z + i) − f (z) (A3)

for any function f(z).
Furthermore, F (r1r2)(n) can be decomposed by species

into terms including chemical species Ca and those which do
not. Following from Eq. (3), this allows us to rewrite F (r1r2)(n)

as

F (r1r
′
2)(n) = G(r1r

′
2)(n\{na}) × (na)k

for some constant G(r1r2)(n\{na}) ≥ 0 which does not depend

on na, where k = m
(r1r

′
2)

a is the input stoichiometry for reaction
r ′

2 and species Ca, and

(n)k ≡ n!

(n − k)!
.

For Eq. (A2) to be true there must exist a species Ca such
that

F (r1r
′
2)(n′

a + �m(r1r2)
a ) − F (r1r

′
2)(n′

a) > F (r1r
′
2)(ña + �m(r1r2)

a )

−F (r1r
′
2)(ña) (A4)

is true. All of the above F (r1r2) are calculated using
nb = n′\{na} and na ∈ {n′

a, ña}. When we show that n′
a will

not result in a greater delta than that offered by using ña in-
stead, this implies that Eq. (A2) may never be true.

Equivalent to Eq. (A4), by dividing out G(r1r2)(n′) ≥ 0,
using Eq. (A3), and setting m = �m(r1r2)

a we arrive at

�F (m)(ña)k − �F (m)(n
′
a)k < 0. (A5)

However, because n′
a < ña , if it is shown that �F(m)(n)k

is monotonic in n then this will imply Eq. (A5) is false.
Therefore, it just remains to be shown that �F(m)(n)k is

monotonic in n. Consider the following equation which tests
for monotonicity:

�F (m)(n + 1)k − �F (m)(n)k

= [�F (1)(n + m)k + . . . + �F (1)(n + 1)k]−
[�F (1)(n + m − 1)k + . . . + �F (1)(n)k]

= �F (1)(n + m)k − �F (1)(n)k

= k(n + m)k−1 − k(n)k−1

= k

[
(n + m)!

(n + m − k + 1)!
− n!

(n − k + 1)!

]
= k

n!

(n − k + 1)!

[
n + m

n + m − k + 1

× . . . × n + 1

n − k + 2
− 1

]
≥ 0

because k ≥ 1 implies every factor in the long product is ≥1.
This implies monotonicity. Therefore Eq. (A4) is false for all
Ca, implying Eqs. (A2) is false, as was to be proved. �
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