
Time-Ordered Product Expansions for
Computational Stochastic Systems Biology

Eric Mjolsness

April 8, 2013

Abstract

The time-ordered product framework of quantum field theory can also
be used to understand salient phenomena in stochastic biochemical net-
works. It is used here to derive Gillespie’s Stochastic Simulation Algo-
rithm (SSA) for chemical reaction networks; consequently, the SSA can
be interpreted in terms of Feynman diagrams. It is also used here to
derive other, more general simulation and parameter-learning algorithms
including simulation algorithms for networks of stochastic reaction-like
processes operating on parameterized objects, and also hybrid stochastic
reaction/differential equation models in which systems of ordinary differ-
ential equations evolve the parameters of objects that can also undergo
stochastic reactions. Thus, the time-ordered product expansion (TOPE)
can be used systematically to derive simulation and parameter-fitting al-
gorithms for stochastic systems.

1 Introduction
The master equation for a continuous-time stochastic dynamical system may
be expressed as dp/dt = W · p where W is the time-evolution operator, often an
infinite-dimensional matrix. Particular choices for W lead to the special case
of the “chemical master equation” for stochastic chemical kinetics, often useful
in bioligical applications; we will see this and other applications below. The
general master equation has the formal solution p(t) = exp(tW) · p(0). If W
can be decomposed as a sum W0 +W1, then there is a perturbation theory for
exp(tW) in terms of exp(tW0) and its perturbations by W1. The time-ordered
product expansion (which we refer to by the acronym TOPE) gives a formula

1

emj
Text Box
Author's version. Apears inPhysical Biology,June 2013.

for the solution of a master equation [1-3] which can be expressed as follows [4]:

exp (tW) · p0 = exp (t (W0 +W1)) · p0

=
∞∑
k=0

[∫ t

0

dtk

∫ tk

0

dtk−1 · · ·
∫ t2

0

dt1 exp((t− tk)W0) ·W1

· exp((tk − tk−1)W0) · · · ·W1 · exp(t1W0) · p0

]
(1)

This expression can be derived (as in [4]) by expanding in powers of W1,
each expanded to all orders in W0, and using the normalization formula for the
Dirichlet distribution to subdivide the time interval [0, t]) into k subintervals.

SinceW0 andW1 do not generally commute, this expression involves alterna-
tion from right to left ofW0 andW1 related operations. Using the “time-ordered
exponential” of operators [5], this result can be compactly reexpressed as:

exp(t (W0 +W1)) = exp(tW0)
(

exp(
∫ t

0

W1 (τ) dτ)
)

+

(2)

where
W1 (τ) ≡ exp(−τW0)W1 exp(τW0). (3)

Here (exp(
∫ t

0
G(τ)dτ))

+
is obtained term by term from the Taylor series for

the operator exponential, by reordering all monomials containing terms evalu-
ated at different times so that they are indexed by ordered sequences of times
(τk, ..., τ1) that increase right to left (details reviewed in Section 3.5.1 below). In
field theory it is standard to prefer Equation 2 over Equation 1 for theoretical
calculations, but for algorithmic concreteness this paper will favor the more ex-
plicit expression Equation 1 where possible. Indeed, each summand of Equation
1 already looks like a Markov chain in which the matrix or operator product
operation “ ·”. which sum over states, is supplemented by integration over an
extra time variable. This observation will be made precise in Section 3. In gen-
eral there is a risk that the infinite sum over terms could diverge. However, the
master equation must conserve total probability and this constrains W to have
zero column-sums and also constrains the spectrum of W to have nonpositive
real parts. In this setting some decompositions W = W0 + W1 converge well
enough, as we will see by example below.

One particular specialization of TOPE lets us derive Gillespie’s Stochastic
Simulation Algorithm (SSA): take W0 = −D = the diagonal part of W , and
W1= Ŵ= the off-diagonal part of W . Then for chemical reaction networks
TOPE generates Feynman-like diagrams. An example is illustrated below for
the simple reaction network with just two reactions, the forwards and backwards
parts of the generic trivalent reaction A + B
 C, to which others can be
reduced.

Figure 1. A time history of the reaction A+B
 C. Time flows left to right.
Open circles represent reaction events, with probability factor ×W1. In between

2

Figure 1 goes about here.

reaction events are unimolecular particle propagators exp((tk − tk−1)W0), la-
belled by arrows and particle names (repeated for clarity). This is a non-spatial
version of the Lee model in quantum field theory (cf. for example [6]).

The TOPE (Equation 1 or Equation 2) can be applied recursively, since
it reduces one operator exponential exp(tW) to another one exp(tW0). This
fact will be exploited in Section 3 below. But eventually one must get to an
operator exponential that is tractable by other means. One way to do this is
to let W0 = D = the diagonal part of W , as in the SSA algorithm derivation
below.

2 Methods

2.1 Creation/annihilation operator notation
We will use operator notation for molecule (or other reactant) creation and
annihilation state changes [1-4]. Here we just review the notation as used in
[4]. The elementary operators a and â act (respectively) to destroy and create
identical particles of a given type. In the particle-number basis their elements
have the entirely off-diagonal expressions

aij = jδij−1 and âij = δij+1 forall i, j ∈ {0, 1, 2, ...} . (4)

Here δij is the Kronecker delta function. The creation and annihilation operators
satisfy the Heisenberg algebra [a, â] = I but are different from those of quantum
mechanics because they are not conjugates or transposes of one another. (This
is the reason we do not denote the creation operatora†, as it is in quantum
mechanics, or a∗.) Instead of being conjugate to â, the annihilator a encodes the
chemical law of mass action since its nonzero entries are equal to the number of
particles available to react or decay. The diagonal “number operator” is N ≡ âa.

The creation and annihilation operators may be represented in terms of
their action on probability generating functions g(z) =

∑∞
n=0 pnz

n, where pn is
the probability that there exist n particles of a given type. In this case:

a = ∂z · · · and â = z × · · · (5)

In the presence of different types of particles (eg. molecules or other objects)
the creation/annihilation operator notation is generalized, eg to aα and âβ for
molecule types Aα, in which all operators for unequal types commute:

[aα, âβ] ≡ aαâβ − âβaα = δαβ

Operating on an empty “vacuum” state |0〉 with no objects, the monomials in the
creation operators âβ span a Fock space. Molecule or object types indexed by
α may even be taken to include arbitrary discrete-valued molecular attributes

3

(or attributes of other objects) such as phosphorylation state or integer-valued
parameters. Continuous-valued parameters such as position (in quantum field
theory it would more naturally be the conserved momentum, unlike the typical
viscous-medium dynamics in biology) may be encoded into a real-valued vector
argument xwhich requires a Dirac delta function instead of a Kronecker delta
function, so for example:

[aα(x), âβ(y)] = δαβδ(x− y) (6)

A non-molecular example of such parameterized objects would be: cells of a
given real-valued volume and/or lengthscale as in Section 3.5.5 below.

However for some attributes such as real-valued object positions one may
wish to limit the state space to between zero or nmax,α molecules (or other
objects) at each unique real value. The resulting commutator is still diagonal
as described in [4]. The particular case nmax,α = 1 is not a stochastic version of
fermions because particles with different types or values of the attributes still
commute rather than anticommuting.

The basic rule for translating chemical reactions into creation/annihilation
operator notiation is: first, annihilate all objects on the incoming or left hand
side of a reaction; then create all the objects on the outgoing or right hand side
of a reaction. Thus, the off-diagonal part of the operator for a reaction{

Aα(p)(xp)|1 6 p 6 pmax

}
∗ −→

{
Aβ(q)(yq)|1 6 q 6 qmax

}
∗

with reaction rate ρr([xp]
pmax
1 , [yq]

qmax
1)

that converts an incoming multiset {· · · }∗ of numerically parameterized reac-
tants {Aα(p)(xp)|p ∈ lhs(r)}∗ each with parameter vector xp (reactants can ap-
pear multiple times in a multiset) into an outgoing multiset {Aβ(q)(yq)|q ∈ rhs(r)}∗
each with parameter vector yq, is:

Ôr = ρr([xp], [yq])

 ∏
q∈rhs(r)

âβ(q)(yq)

 ∏
p∈lhs(r)

aα(p)(xq)

 .(7)

There is one such operator for every possible set of values for the numerical
parameters. Since time-evolution operators for different processes just add, a
generic operator for all parameter values must sum and/or integrate the operator
of Equation 18 over all the parameters, in the Cartesian product of measure
spaces in which they take values:

Ôr =
∫ ∫

d {x} d {y} ρr([xp] , [yq])

 ∏
q∈rhs(r)

âβ(q)(yq)

 ∏
p∈lhs(r)

aα(p)(xq)

 (8)

The generalization is conceptually straightforward because we have simply used
a function ρr([xa], [yb]) to express the possibly infinite number of different reac-
tion rates that pertain to objects that differ only in their attributes. Because

4

of the algebra of noncommuting basic creation and annihilation operators, re-
action operators Ôr and Ôr′ for reactions r 6= r′ that produce and consume a
shared reactant Aα(x) (or Aα for reactants with type α but no other parameters)
generally also have nonzero commutators.

Equation 18 or Equation 8 add probability to the new state of the sys-
tem, but do not take it away from the old state of the system before a re-
action. That job requires a negative diagonal matrix as shown in Equation
10 below. In the case of Equation 18, the corresponding diagonal operator is
Dr = ρr [

∏
a∈lhs(r)

Nα(p)(xp)]. Examples are provided in [4] and below.

2.2 Solvable example: An exact solution for SSA behavior
For a few very simple examples, we can not only solve analytically for the
behavior of the biochemical system, but we can even add in the behavior of
the SSA simulation algorithm and solve for that exactly as well. For example
consider the minimal bidirectional reaction A ←→ ∅. This case is analytically
solvable, including the complete statistics of its SSA algorithm simulation. It
has forward synthesis and backwards decay reactions. The operator expression
is therefore:

W = ks(αâ− I) + kd(αa−N) (9)

Here α = 1 is the generating function variable for the total number of reactions,
corresponding to off-diagonal matrix elements of W . Power series in α will
decompose total probability according to this number.

Translating the master equation for Equation 9 into a PDE in the two
variables t and z using representation Equation 5, and solving analytically, this
model has the exact solution

gm(z, t|α) =
(
α+ (z − α) e−kdt

)m
exp[−ks

kd

(
(1− α) kdt+

(
zα− α2

) (
e−kdt − 1

))
]

=
(
α+ (z − α) e−kdt

)m
exp[

ks
kd

(zα− 1)
(
1− e−kdt

)
)
]

exp[
ks
kd

(
α2 − 1

) (
kdt+ e−kdt − 1

)
)
]

= Binomialinitialconditionwithdecay ∗ Poissononforwardreactions
∗ Poissononforward/backwardreactionpairs.

As usual z is the generating function variable whose exponent is the total
number nA of A molecules or particles, m is the initial number of molecules, and
t is continuous time. The ∗ operation is a convolution of probability distribu-
tions. A product of generating functions with the same variable is a convolution
of distributions [7]. Note the interpretation in terms of Binomials and Poissons
with time-varying parameters. The third factor represents a linearly increasing
number of canceling forward/backward reaction pairs as a function of time - a
kind of random walk.

The full derivation below will generalize this solvable example, again sepa-
rating the diagonal from the off-diagonal terms in W .

5

2.3 Notation for SSA rederivation from TOPE
One specialization of TOPE lets us derive SSA for biochemical reaction net-
works, as follows. First decompose W into nonegative off-diagonal and non-
positive diagonal parts, as must be possible by the conservation and nonnega-
tivity of probability. For example conservation of probability implies ∀p 0 =
d(1 · p)/dt = (1 ·W) · p⇒ 1 ·W = 0. Then

W = Ŵ −D, where D
4
= diag(1 · Ŵ), i.e.

ŴIJ
4
= (1− δIJ)WIJ and DIJ

4
= δIJ

∑
K

ŴKJ
4
= δIJDI (10)

where I and J index the possible states of the system. To prevent negative
probabilities from evolving under the master equation, all entries of Ŵ and
therefore D must be nonnegative. In this circumstance the TOPE becomes:

exp
(
t
(
Ŵ −D

))
=
∞∑
k=0

[∫ t

0

· · ·
∫ t

0

(
Πk
q=0dτq

)
δ

(
t−

k∑
q=0

τq

)

× exp(−τkD)Ŵ · · · exp(−τ1D)Ŵ exp(−τ0D)

]

=
∞∑
k=0

∫ t

0

· · ·
∫ t

0

(
Πk
q=0dτq

)
δ

(
t−

k∑
q=0

τq

)
exp(−τkD)

 0∏
q=k− 1↓

Ŵ exp(−τqD)

Since the summands over k and integrands over [τq]

k
0are mutually exclusive,

exhaustive and nonnegative, we define the conditional probability distribution
on k and [τq]

k
0 by these summand/integrands (where [τq]

k
0

4
= [τ0, ...τk] denotes

an ordered contiguous sequence of time intervals):

Pr(I, [τq]
k
0 , k|J, t)

4
=

exp(−τkD)

 0∏
q=k− 1↓

Ŵ exp(−τqD)

 δ(t− k∑
q=0

τq

)
I,J

(11)

(where a product over zero terms such as
0∏

q=−1↓
is interpreted as the identity

matrix, and products over negative numbers of terms such as
0∏

q=−2↓
should not

occur). For DII 6= 0,

Pr(I, [τq]
k
0 , k|J, t) =

exp(−τkD)

 0∏
q=k− 1↓

(
Ŵ D−1

)
(D exp(−τqD))

 δ(t− k∑
q=0

τq

)
I,J

6

Either way,

Pr(I|J, t) =
∞∑
k=0

∫ t

0

· · ·
∫ t

0

(
Πk
q=0dτq

)
Pr(I, [τq]

k
0 , k|J, t) =

[
exp(t

(
Ŵ −D

)
)
]
I,J
.

The bracket notation [Xq]
max
min

4
= [τmin, ...τmax] for an ordered set of components

indexed by q will also be used for state variables [Iq]
max
min . The notation “4=”

means “equal by definition” . In what follows, the notation “Θ(Pred)” where
Pred is a predicate is the Heaviside step function or indicator function taking
the value 1 if the predicate is true and 0 if it is false.

2.4 Semigroup property
Suppose t = t1 + t2, all nonnegative. Then for any time-evolution equation we
must have the semigroup property:

Pr(I|J, t) =
∑
K

Pr(I|K, t2) Pr(K|J, t1).

Is there a k-event version of this rule, for k = k1 + k2? In other words, can we
add (nonnegative) numbers of reaction events rather than time intervals ? We
observe (where again [τq]

k
0 ≡ [τ0, ...τk])

Pr(I, k|J, t) =
∫ t

0

· · ·
∫ t

0

(
Πk
q=0dτq

)
Pr(I, [τq]

k
0 , k|J, t).

Then, according to a derivation given in Appendix I, if k = k1 + k2 and for any
τ ′k1 ∈ [0, τk1], there is a semigroup law:

Pr(I, [τq]
k
0 , k|J, t) =

∑
K

∫ t

0

dτ Pr(I,
[
τ ′k1 , τk1+1, ...τk

]
, k2|K, τ)

× Pr(K,
[
τ0, ...τk1−1, τk1 − τ ′k1

]
, k1|J, t− τ). (12)

In this result there is an arbitrary choice of τ ′k1 from the interval [0, τk1]. How-
ever this form does not yet pertain to conditional probabilities of the form
Pr(I, t|k, J), as needed to obtain a computable Markov process algorithm.

3 Results and discussion
Given the foregoing notation, we undertake the derivation of a Markov chain
representing the SSA algorithm. We then consider extensions of this result,
including parameterized reactants, but focussing mainly on hybrid stochastic
event/ordinary differential equation dynamical systems.

7

3.1 Derivation of a Markov chain
3.1.1 Bayesian recurrence

In Appendix I we argue that the correct Bayesian strategy for moving from
Pr(I, k|t, J) to Pr(I, t|k, J), as needed to obtain a simulatable Markov chain, is
to consider large stopping times T � t which are overwhelmingly likely to have
large reaction numbers n� k; then to marginalize the probability distribution
Pr([I], [τ], n|J, T) over all event numbers n > k and to conditionalize it over all
event numbers q < k. By that means in Appendix I we derive the recurrence
relation

P̃r([Iq]
k
1 , [τq]

k−1
0 |k, J) = P̃r(Ik, τk−1|1, Ik−1)P̃r([Iq]

k−1
1 , [τq]

k−2
0 |k − 1, J) (13)

where

P̃r([Iq]
k
1 , [τq]

k−1
0 |k, J)

4
= lim
T→∞

∞∑
n=k+1

∑
{[Iq]nk+1}

∫ T

0

· · ·
∫ T

0

[dτq]
n
k Pr([Iq]

n
1 , [τq]

n
0 , n|J, T)

(14)
and in particular

P̃r(Ik, τk−1|1, Ik−1) =
P̃r([Iq]

k
1 , [τq]

k−1
0 |k, J)

P̃r([Iq]
k−1
1 , [τq]

k−2
0 |k − 1, J)

= ŴIkIk−1 exp(−τk−1DIk−1)Θ(τk−1 > 0). (15)

Note that P̃r([Iq]
k
1 , [τq]

k−1
0 |k.J) marginalizes over τk, the time elapsed since

the last event k, as well as all later times and events. It is a distribution on
histories up to and including the “just-fired” k’th reaction event, within a much
longer history.

3.1.2 Markov chain - Summary

From the forgoing Bayesian recurrence equation, and the definition

P̃r(I, tk|k, J)
4
=

∑
{[Iq]k−1

1 }

∫ ∞
0

· · ·
∫ ∞

0

[dτq]
k−1
0 P̃r([Iq]

k
1 , [τq]

k−1
0 |k, J)δ

(
tk −

k−1∑
q=0

τq

)
,

Appendix I shows P̃r(I, tk|J, k) is a probability density function and proves the
following Markov-like property:

P̃r(I, t|k, J) =
∑
K

∫ t

0

dτ P̃r(I, τ |1,K)P̃r(K, t− τ |k − 1, J).

We may reexpress this result as

P̃r(I, t|k, J) ≈
∑
K

∫ t

0

dτW(I, t|K, t− τ)P̃r(K, τ |k − 1, J)

8

where we define the Markov chain kernal

W(I, t|K, t− τ)
4
= P̃r(I, τ |1,K) = ŴIK exp(−τDK)Θ(τ > 0) (16)

In vector/operator notation, for k > 2,

P̃r(., .|k, J) ≡ W ◦ P̃r(., .|k − 1, J)

and finally the algorithmic Markov chain expression for SSA including now an
initial distribution P̃r(J |k = 0) over J at time t = 0, we have for all k > 0:

P̃r(.|k) =Wk ◦ P̃r(.|k = 0) (17)

which expresses the iteration of a Markov chain of the SSA algorithm. Of course
the factor [DK exp(−τDK)Θ(τ > 0)] in Equation 16 is just the SSA exponen-
tial distribution of non-negative waiting times τ between reaction events, and
ŴIK/DK is just the branching probability for immediately thereafter chosing a
reaction that leads to state I.

The foregoing derivation was outlined in far less detail in [8]. A similar
equation for SSA was reached by very different methods in [9], Theorem 10.1.
To our knowledge this is the first complete derivation of SSA from field theory
methods such as TOPE.

This Markov chain expression has also been used as the starting point for
the derivation of exact accelerated stochastic simulation algorithms [10,11] that
execute many reactions per step (i.e. they “leap” forward) and thus go much
faster than SSA, while also sampling from the exact probability distribution
given by the just-fired probabilities above. These derivations proceed by alge-
braic rearrangement of terms to express computationally efficient versions of
rejection sampling. The algorithm of [11] has been parallelized, which is often
difficult for discrete-event simulations.

3.2 Algorithm: SSA
The SSA algorithm represented by the Markov chain in Equation 16 and Equa-
tion 17 above may be written out in pseudocode as follows:

repeat {
compute propensities k(r)

compute k(total) =
∑
r
k(r)

draw waiting time ∆t from k(total) exp(−∆tk(total))
t := t+ ∆t; // advance the clock by ∆t

draw reaction r from distribution k(r)/k(total)and execute reaction r
} until t > tmax

3.3 Extension: Parameterized rule and graph grammar
SSA-like algorithm

For biological modeling, including spatial and mechanical modeling of biological
systems, it is important to generalize from pure particles to particles with both

9

discrete and continuous attributes. The complication is that reaction or process
rates can then depend on the attributes both of the incoming and outgoing
objects. A non-molecular example of such parameterized objects would be cells
of a given size, whose propensity to divide may actually depend on their real-
valued size parameter (as in Section 3.5.5). More generally, this capability
enables agent-based modeling and simulation since it allows interacting objects
to have dynamic internal state and even (as explained in Section 3.3.2 below)
dynamic relationships.

The time-evolution operator of Equation 18 requires that each attribute or
parameter vector consist of constants or variables, each variable appearing just
once, and any relationships between variables (such as x2,1 = y1,2, x2,1 = x1,2,
and/or y2,1 = y1,2) enforced by the reaction rate ρr([xp], [yq]). Alternatively
we can allow repeated appearances of symbolic variables Xc upon which the at-
tributes may depend, through the identity function or otherwise. This is a useful
improvement in reaction notation which however may require special-purpose
symbolic variable-binding algorithms to support efficiently. Generalizing from
Equation 18 and Equation 8, as in [4], we include all possible instantiations of
parameters xp[X] and yq[X], allowing for repeated occurences of some or all of
the variables Xc in [X], with the integrated off-diagonal process representation
operator

Ôr =
∫
· · ·
∫
dµc(Xc) ρr([xp[X]] , [yq[X]])

×

 ∏
q∈rhs(r)

âβ(q)(yq[X])

 ∏
p∈lhs(r)

aα(p)(xp[X])

 . (18)

As before, α(p) and β(q) represent the type of a parameterized object i.e. an
object with attributes. Now the symbolic variables Xc each have a type c which
has an integration measure µc. Again (as in Equation 18 or 8), summation
over all discrete-valued parameters and integration over all continuous-valued
parameters generalizes the operator to handle all possible sets of parameter
values.

3.3.1 Algorithm: SSA with parametrized reactant objects

The resulting variant of the SSA algorithm for parameterized reactions can be
expressed in pseudocode as follows (outlined briefly in [8]):

forall reactions r factor ρ(r)(xin, xout) = k(r)(xin)p(r)(xout|xin);
repeat {

compute SSA propensities as k(r)(xin);
compute k(total) =

∑
r
k(r)(xin);

draw waiting time ∆t from k(total) exp(−∆tk(total)) ;
t := t+ ∆t; // advance the clock by ∆t

draw reaction r from distribution k(r)(xin)/k(total);

10

draw xout from p(r)(xout|xin) and execute reaction r;
} until t > tmax

3.3.2 Structural matching

The functions ρ(x, y) appearing in Equation 18 may impose constraints includ-
ing equality of variables; equivalently we may allow some variables to appear
multiple times in object parameter lists. Either way there follows a mecha-
nism to encode structural relations - graphs and labelled graphs - in the input
and output variable lists. Object attributes can include Object ID codes which
other objects can also include in their parameter lists. (Of course, the numeric
values of Object IDs can be globally permuted without changing the structural
relationships among extant objects.) In this way, the integrated version of the
parameterized reaction operator above encodes structural pattern matching, in-
cluding variable-binding in logical formulae, among the preconditions that can
be enforced before such a generalized reaction or “rule” can fire.

From this point of view, syntactic variable-binding has the semantics of
multiple integration [4]. In this way we can entrain pattern-matching systems
such as the computer algebra system Mathematica, or logic-based programming
languages, to the job of simulating complex process rules. As in rule-based
expert systems, when multiple rules might fire the Rete algorithm [12] can be
used to speed up the computations required to maintain knowledge of their
relative rates.

The resulting systems have the power to model and simulate dynamic
labelled graphs including growing multicellular tissues with dynamical cell-
neighbor relationships [4] and molecular complexes with dynamical binding
structure [13-15]. Thus, the TOPE operator algebra approach also explains
why and how structural (graph-) matching computations arise naturally in bio-
chemical and multicellular biological simulation.

3.4 Hybrid SSA/ODE setup
As will be shown in Section 3.4.1 below, the operator formulation for a system
of ordinary differential equations is [4]:

Ôdrift = −
∫ ∫

d {x} d {y} â({y})a({x})

[∑
i

∇yi

(
vi({y})

∏
k

δ(yk − xk)

)]
(19)

Here and in the calculations that follow, the Dirac delta function can be con-
sidered as a Gaussian with very small variance, which participates in a limiting
process by which, at the end of each calculation, the limit of zero variance is
taken.

In [4] this operator expression is generalized from ordinary differential equa-
tions to stochastic differential equations, for example those pertaining to the
diffusion of particles, as equivalently represented by the Fokker-Planck equa-
tion.

11

3.4.1 Computation of matrix elements

From the commutator

[a(y), â(x)] = δ(y − x) (I +Q(N(x)|nmax)N(x)) ,

we may calculate matrix elements of Ôdrift in Equation 18 such as:〈
w
∣∣∣Ôdrift

∣∣∣z〉 = −

〈
{w}

∣∣∣∣∣
∫
d {x}

∫
d {y}

(∑
i

∇yivi({y})δ({y} − {x})

)

× â({y})a({x})â({z})

∣∣∣∣∣0
〉

= −

〈
{w}

∣∣∣∣∣
∫
d {x}

∫
d {y}

(∑
i

∇yi
vi({y})δ({y} − {x})

)

× â({y})δ({x} − {z})[I +Q(N(x))N({x})]
∣∣∣0〉

= −
∫
d {x}

∫
d {y}

(∑
i

∇yi
vi({y})δ({y} − {x})

)
δ({x} − {z}) 〈{w} | {y}〉

= −
∫
d {y}

(∑
i

∇yi
vi({y})δ({y} − {z})

)
δ({w} − {y})

= +
∫
d {y} δ({y} − {z})

(∑
i

vi({y})∇yiδ({w} − {y})

)

−
∫
∂

d {y}

(∑
i

vi({y})δ({y} − {z})δ({y} − {w})

)
=
∑
i

vi({z})∇zi
δ({w} − {z}) + boundaryterm (→ 0 here)

The easiest treatment for the boundary terms is to add the assumptions that
boundaries are at infinity in the space of parameters x, yandz, and that initial
conditions place zero probability there, and that finite velocities v(x) ensure the
probability remains zero at infinity at finite times. In that case boundary terms
can be neglected. Alternatively, we can define Odrift =Ôdrift−diag(1·Ôdrift)
which in this case subtracts off the boundary term. Then

Odrift = −
∫ ∫

d {x} d {y} (â({y})a({x})− â({x})a({x}))

×

[∑
i

∇yi

(
vi({y})

∏
k

δ(yk − xk)

)]
(20)

If we define x(t) as a time-varying version of z, satisfying
∂xi
∂t

= vi({xk}),

12

then∑
i

vi({z})∇xi
δ({w}−{x(t)}) =

∑
i

(
∂xi
∂t

)(
∂

∂xi

)
δ({w}−{x(t)}) =

(
d

dt

)
δ({w}−{x(t)})

Next we calculate 〈w| exp(τOdrift)|z〉. To this end, Taylor’s theorem may be
written

Shiftτ ◦ f(t) = f(t+ τ) '
∞∑
n=0

τn

n!

(
d

dt

)n
f(t) ' e(τDt)f(t)

if τ is a constant. For small τ we have

〈w| exp(τOdrift)|x〉 = 〈w|x〉+ τ 〈w|Odrift|x〉+O(τ2)

=
(

1 + τ(
d

dt
)
)
δ({w} − {x(t)}) +O(τ2)

= Shiftτδ({w} − {x(t)}) ≡ δ({w} − {x(t+ τ)}) +O(τ2)

For larger τ we have

〈w| exp(τOdrift)|x〉 = limn→∞

〈
w

∣∣∣∣∣
n∏
i=1

exp(
τ

n
Odrift)

∣∣∣∣∣x
〉

=
∫
· · ·
∫
dxn−1 · · · dx1[Shiftτ/nδ({w} − {xn−1})] · · · [Shiftτ/nδ({x1} − {x})]

= limn→∞

(
n∏
i=1

Shiftτ/n

)
δ({w} − {x(t)})

= Shiftτδ({w} − {x(t)}) ≡ δ({w} − {x(t+ τ)})

= δ({w} −
(
z(t = 0) +

∫ t

0

vi(z(t))dt
)

)

Thus (where “IC” means initial condition)〈
w| exp(tO{DE})|z

〉
= exp(t

∑
i

vi({z})∇zi
)δ({w} − {z})

= δ({w} −
(
{z(0) = z}+

∫ t

0

vi(z(t′))dt
)

)

= δ({w} −
(

Solutionof
∂xi
∂t

= vi({xk})withIC z(0) = z

)
) (21)

QED.
As far as we know this detailed derivation has not appeared previously,

though our previous work [4] outlined a simplified version. As a corrollary,

13

using Equation 21 we may multiply by f(w) and integrate over w to calculate

exp (tv ({z}) · ∇z) δ (w − z) = δ(w −
(
z(0) +

∫ t

0

v(z(t′))dt′
)

)

⇒ exp (tv ({z}) · ∇z) f (z) = f(z(0) +
∫ t

0

v(z(t′))dt′). (22)

3.5 Hybrid SSA/ODE: Operator algebra derivation
We now derive a new SSA-like simulation algorithm for hybrid combinations
of discrete events and ODE dynamics, using operator algebra. The main idea
is to replace the exponential distribution factor exp(−tD)with a time integral
[15]:

exp(−tD) −→ exp(−
∫ t

0

D(t′)dt′), (23)

and to add an extra ODE to the system of ODEs in order to keep track of the
integral. We will now use the more compact formulation of TOPE in Equation
2 to derive this method.

3.5.1 Heisenberg picture

Let the operators, rather than the states, evolve in time according to W0 ac-
cording to Equation 3. This is traditionally called the “Heisenberg picture” in
distinction to the “Schroedinger picture” in quantum mechanics. Recall Equa-
tion 2 and Equation 3, where (· · ·)+ is the time-ordering super-operator :

(O(ti)O (tj))+ =

{
O(ti)O (tj) if ti > tj
O(tj)O (ti) if ti 6 tj

(and likewise for higher order products). Note that if O(ti) and O(tj) commute
for all pairs of times ti and tj , then (O(ti)O(tj))+ = O(ti)O(tj), and the time-
ordering operator (· · ·)+ can be dropped. Often the notation T (O(ti)O(tj)) is
used in place of (O(ti)O(tj))+ to denote the super-operator that time-orders
operator products.

3.5.2 Application to ODE + decay clock

The hybrid system consisting of chemical reactions (possibly parameterized)
together with ordinary differential equations has the combined operator W =
(Ôreact −Dreact) +ODE, which we can regroup as

W = (ODE −Dreact) + Ôreact

and then apply TOPE to ODE −Dreact first with W00 = ODE and W01(tk) =
−Dreact(tk), and then again to (ODE−Dreact) + Ôreact with W0 = W00 +W01 =
ODE −Dreact and W1 = Ôreact.

14

In the first application of TOPE to ODE − Dreact with W00 = ODE, the
opererators W01(tk) = −Dreact(tk) defined at different times are all diagonal in
the same (particle number basis and therefore commute:

[Dreact(ti), Dreact(tj)] = 0.

In this circumstance, we can simply drop the time-ordering super-operator (· · ·)+

in Equation 2 and write

exp(t (ODE −Dreact)) = exp(tODE) exp(−
∫ t

0

dt′Dreact(t′)) (24)

where, as in Equation 3, Dreact(t′) = exp(−t′ODE)Dreact exp(t′ODE). In our
case, Equation 24 specializes to :

〈
w| exp(t

(
O{DE} −Dreact

)
)|z
〉

= exp(t
∑
i

vi({z})∇zi) exp(−
∫ t

0

dt′Dreact(t′))δ({w}−{z})

= exp

(
−
∫ t

0

dt′Dreact

(
z(0) +

∫ t′

0

v({z})dt′′
))

δ(w−
(
z(0) +

∫ t

0

v(z(t′))dt′
)

)

(25)

This result looks very similar to Equation 22 applied to

f(z) = exp
(
−
∫ t

0

dt′Dreact(t′))δ({w} − {z})
)
,

and we now aim to understand and exploit this similarity.

3.5.3 Equivalent ODE

Consider the dynamics expressed in Equation 25. Can we obtain the first factor
from ODE’s alone? Yes, if we introduce a new state variable τ involved in every
ODE-related rule. Set τ(0) = 0 as the new variable’s initial condition, and
augment the ODE operators as follows

Z = (z, τ)
V (z) = (v({z}),−D(z))

∇Z = (∇z, ∂τ)

Õ{DE} = V (Z)∇Z = v({z}) · ∇z +D(z)∂τ (26)

In other words, we have added a differential equation for τ to the ODE
system

∂xi
∂t

= vi({xk}) and
dτ

dt
= D(z). (27)

15

This equation is solvable in terms of a “warped time” coordinate

τ(t) =
∫ t

0

Dreact(z(t′))dt′. (28)

(Cf. Equation 23.) There are degenerate cases Dreact = 0 only if there are
terminal states in the reaction network.

To see that this is the correct procedure, calculate from Equation 21:〈(
w

τmax

)∣∣∣∣∣ exp(tÕ{DE}) exp(−τmax)

∣∣∣∣∣
(

z(0)
τ(0) = 0

)〉

= exp

(
t

(∑
i

vi({z})∇zi
+D (z) ∂τ

))
δ({w} − {z})δ(τmax − τ) exp(−τmax)

= δ

(
{w} −

(
z(0) +

∫ t

0

vi(z(t′))dt
))

δ

(
τmax −

∫ t

0

Dreact(z(t′))dt′
)

exp(−τmax)

= δ({w} − (SolutionofEquation27, withIC z(0), τ(0) = 0))× exp(−τmax)
(29)

This expression agrees with Equation 25, as required. But how do we insure
the IC on τ ? That can be done as follows:〈(

w

τmax

)∣∣∣∣∣ exp(tÕ{DE}) exp(−τmax)

∣∣∣∣∣
(
z

0

)〉

=

〈(
w

τmax

)∣∣∣∣∣ exp(tÕ{DE}) exp(−τmax)

∣∣∣∣∣
(
z

0

)〉
×

(
1 =

∫
dτ ′dz′

〈(
z′

τ ′

)∣∣∣∣∣
(
z

τ

)〉)

=

〈(
w

τmax

)∣∣∣∣∣ exp(tÕ{DE}) exp(−τmax)

(∫
dτ ′dz′

∣∣∣∣∣
(
z′

0

)〉〈(
z′

τ ′

)∣∣∣∣∣
)
|
(
z

τ

)〉

=

〈(
w

τmax

)∣∣∣∣∣ exp(tÕ{DE}) exp(−τmax)Pτ :=0

∣∣∣∣∣
(
z

τ

)〉
(30)

Pτ :=0 ≡
∫
dτ ′dz′

∣∣∣∣∣
(
z′

0

)〉〈(
z′

τ ′

)∣∣∣∣∣
is a projection operator (i.e. one that satisfies P ·P = P) that resets the variable
τ to zero after each use. In summary,〈(

w

τmax

)∣∣∣∣∣ exp(tÕ{DE}) exp(−τmax)Pτ :=0

∣∣∣∣∣
(
z

τ

)〉
= δ({w} − (SolutionofEquation27, withIC z(0), τ(0) = 0))× exp(−τmax)

(31)

16

Clearly this result is equivalent to Equation 25 and is in the correct form for a
Markov chain that can represent a computation. Of course, the matrix element
calculated is only relevant if τmax as drawn from the exponential is constrained
to be equal to the final value of τ in the final state 〈

(
w

τmax

)
| as solved by the ODE

system Õ{DE}. We can implement this constraint with a factor of δ(τ − τmax)
in the Markov chain over states and times. Thus a step in the Markov chain in
between reactions can be written as:

Wbetweenreactions = δ(τ − τmax) exp(t Õ{DE})Pτ :=0 exp(−τmax)Θ(τmax > 0)

W = Ôreact · Wbetweenreactions

As in the SSA derivation, the reaction step is given by factors of Ôreact which
need to be normalized by Dreact. Using δ(t− tmax(τmax))dt = δ(τ −τmax)dτ and
dτ/dt = Dreact(t), we find

M01 = exp(−τmax)Θ(τmax > 0)

M00 = δ(t− tmax(τmax)) exp(t Õ{DE}) · Pτ :=0

M1 = Ôreact/Dreact

W = M1 ·M00 ·M01

(32)

where W represents the Markov chain corresponding to the simulation algo-
rithm.

In implementations so far [4,15] we have used instead the equivalent differ-
ential operator

Õ{DE} = V (Z)∇Z = v({z}) · ∇z −D(z)p∂p

with p = exp(−τ), initialized at p0 = 1, and a uniform distribution on pfinal ∈
[0, 1]. This variant of the ODE was reported independently in [16], though the
derivation there did not proceed by general field theory techniques.

3.5.4 Algorithm: Hybrid SSA/ODE solver

By Equation 32 above, a Markov chain algorithm for simulating the hybrid
system can be represented in the following SSA-like pseudocode:

factor ρ(r)(xin, xout) = k(r)(xin)p(r)(xout|xin);
repeat {

initialize SSA propensities as k(r)(xin);
initialize k(total) :=

∑
r
k(r)(xin);

17

initialize τ := 0 ;
draw effective waiting time τmax from exp(−τmax)
solve ODE system, including an extra ODE updating τ :

dτ
dt = k(total)(t)
until τ =τmax

draw reaction r from distribution k(r)(xin)/k(total);
draw xout from p(r)(xout|xin) and execute reaction r;

} until t > tmax

3.5.5 Application: Cell division

As a simplified model of stochastic cell division, we may consider constant
growth of a linear dimension l of each cell, dl/dt = v, coupled with a stochas-
tic cell division rule whose propensity depends on the ratio of l to a threshold
length l0 for likely division:

cell(l)→ cell(l/2), cell(l/2) with ρdivisionσ(β (l/l0 − 1))

with a sigmoidal function such as σ(x) = 1/(1 + exp(−x)). In this model the
parameter β varies the sharpness of the threshold, and ρdivision is the maximal
propensity for division. Experimental evidence for stochastic dependence of
division events on cell size in plant cells is reviewed in [17].

The differential equation for length can also be put in the form of a reaction
rule that includes an ODE:

cell(l)→ cell(l + dl) solving dl/dt = v(l)

as described in [15]. Clearly this model could be augmented with other pa-
rameters such as growth signals with their own dynamics. This was done in
models of biological stem cell niches in mouse olfactory epithelium and plant
root growth, using the foregoing cell division rules. These systems were studied
and simulated using the hybrid SSA/ODE algorithm above, in [15,18].

3.5.6 Application: Time-varying propensity for complete polymer-
ization

Consider the n-step polymerization reaction

{A→ X1 with k1, X1 → X2 with k2, ..., Xn−1 → B with kn}
τi = τ/n and ki = nk.

There is an n(max) . Then

Ŵ = λân+1

W = λ((ân+1 + cn+1)− In+1) = λ(b̂n+1 − In+1)

18

where cn+1 is all zeros except for a “1” entry in the lower right corner. Since
b̂ and I are matrices that commute, exp(tW) = exp(tλb̂n+1) exp(−tλIn+1) and
we easily compute

P (t|τ, n) = [exp(tW)]1,n+1 =
λntn−1e−λt

(n− 1)!

This is the distribution on polymer completion times. It is an Erlang distribu-
tion (a Gamma distribution with integral values of n). If τ is held fixed and
n tends towards infinity, this distribution approaches a delta function δ(t− τ),
which can lead to differential-delay equation models for reaction networks in-
volving polymerization processes such as transcription [19]. This probability
distribution for termination times also corresponds to the time-varying propen-
sity function

ρ(t|τ, n) = P (t|τ, n)/
[
1−

∫ t

0

P (t|τ, n)dt
]

=
λntn−1e−λt

Γ(n, tλ)
, (33)

which increases monotonically in time.
As in Equation 32, the resulting time-varying propensity still fits within

the framework of a Markov chain W(I, t′|J, t) that advances the time variable
by an increment that is a random variable. The method of the previous section
can be used to implement an SSA-like algorithm, with differential equations
that govern propensities replaced by algebraic equations (Equation 33) or, if
differential equations are also present, by differential-algebraic equations.

Figure 2 goes about here.

Figure 2. Erlang-derived time-dependent propensities for completion of a
multistage process τ = 1, n ∈ {1, ..., 10}. Horizontal axis: time, t. Vertical axis:
propensity, ρ(t|τ, n). Plots for varying n are superimposed. For larger n there is
a “maturation” phenomenon whereby completion at small times is very unlikely,
and when a process is “overdue” for completion then its propensity becomes very
high. By comparison, propensities for very small n increase rapidly at first and
are then relatively flat.

3.5.7 Extended Application: Tissue-level model of Arabidopsis root
growth

A full tissue-level model of a hybrid SSA/ODE system has been presented in
[18], which details a mathematical model of auxin growth hormone patterning
along the developing root of the plant Arabidopsis thaliana, including the pat-
tern formation system in the root apical meristem (RAM). The model was first
formulated using a fixed 1D geometry of cells along the central “stele” of the
root, including both passive diffusion of auxin originating in the above ground
part of the plant, and more importantly autoregulated active transport of auxin.

19

This much of the model is formulated using ordinary differential equations and
spatial discretization at the scale of one cell.

However the real root involves cell growth, division and possibly biome-
chanics in an essential way, so the model was reimplemented in the “Plenum”
implementation of the “Dynamical Grammars” modeling language. Dynamical
Grammars support parameterized rules such as those of Section 3.5 above at
multiple scales (eg cellular and/or molecular scales), and the Plenum implemen-
tation [15] uses the foregoing hybrid SSA/ODE algorithm as an essential part
of its simulation engine. It also uses a data structure of pattern-matched ob-
jects (somewhat akin to that of the Rete algorithm [12]) for efficient handling of
the variable-binding involved when there are many rules in a grammar, some of
which include repeated variable names. The resulting root growth and pattern-
ing model includes rules for cell growth, cell division, mechanical forces between
neighboring cells in 1D, cell death at the tip of the root, auxin influx from
the shoot, production of a hypothetical second morphogen “Y ” possibly play-
ing a role similar to cytokinin, autoregulated active transport of auxin between
neighboring cells, passive transport of auxin and Y between neighboring cells,
degradation of auxin and Y , and dilution of auxin and Y due to cell growth.
There are a total of 13 grammar rules that specify the foregoing mechanisms,
with one or two rules per listed mechanism. As in the previous cell division ex-
ample, each rule is either of “solving” keyword ODE type or of “with” keyword
discrete event type. We now present the first four rules of this model.

In the root model there is just one type of parameterized object, a cell.
Each cell carries its own internal state information in the form of the values of
an ordered list of parameters, each of which is constrained to be of some type
(often integers or real values) associated with a measure that can be summed
or integrated over. In the plant root model, the parameter types of a cell object
are as follows:

cell[currID : N,mode : N, l : R, r : R, A : R, Y : R,prevID : N,nextID : N]

Here currID is the integer-valued (or “integer-typed”, currID : N) unique identi-
fication number (ID) of the current cell, prevID is the integer-valued ID of the
previous cell in the 1D line, nextID is the integer-valued ID of the next cell,
mode is an integer-valued label specifying the cell’s internal growth state, l is
the real-valued (l : R) current cell length, r is its real-valued size or “radius”,
A is its real-valued concentration of auxin, Y is its real-valued concentration
of hypothetical substance Y . Here A and Y could alternatively be typed as
nonnegative integers in a stochastic molecular simulation, but that was not the
modeling choice in this investigation. A slightly simplified version of the rules
for cell growth, cell division, biomechanics, and passive diffusion of chemical
species between neighboring cells is:
grammar root {

/* cell growth: */

cell[curr,mode, x, r, A, Y, prev,next] −→ cell[curr,mode, x, r + dr,A, Y,prev,next]
solving {dr/dt = 1/τcycle}

20

/* cell biomechanics (point masses, dissipation dominated) */

C1 = cell[curr,mode, x, r, A, Y, prev,next],
C2 = cell[next,mode′, x′, r′, A′, Y ′, curr,nextnext]
−→ C1 = cell[curr,mode, x+ dx, r, A, Y,prev,next], C2

solving {dx/dt = −∂xVspring(x− x′, r, r′)}
/∗plus similar rule exchanging next and prev ; dx/dt just adds up over rules ∗/

/* switch from growth mode (mode=1) to division-waiting mode (=2): */

cell[curr, 1, x, r, A, Y, prev,next] −→ cell[curr, 2, x, r, A, Y, prev,next]
with ρstop/ (1 + exp(− (r − rlim))/Tdiv)

/* cell replication, preserving 1D structure: */

cell[curr, 2, x, r, A, Y, prev,next], cell[prev,mode′, x′, r′, A′, Y ′,prevprev, curr]
cell[next,mode, x′′, r′′, A′′, Y ′′, curr,nextnext]

−→ cell[new1, 1, x− r + 2rα+ r(1− α), r(1− α), A, Y,prev,new2],
cell[new2, 1, x− r + rα, rα,A, Y, new1,next],
cell[prev,mode′, x′, r′, A′, Y ′,prevprev,new1],
cell[next,mode, x′′, r′′, A′′, Y ′′,new2,nextnext]

with [base + ampl (Y/Y0) /
(

1 + (Y/Y0)5
]
×Θ(1

2 + ∆ 6 α 6 1
2 + ∆)

/* auxin/Y passive transport between two neighboring cells: */

C1 = cell[curr,mode, x, r, A, Y, prev,next],
C2 = cell[next,mode′, x′, r′, A′, Y ′, curr,nextnext]
−→ C1 = cell[curr,mode, x, r, A+ dA, Y + dY, prev,next],
C2 = cell[next,mode′, x′, r′, A′ + dA′, Y ′ + dY ′, curr,nextnext]

solving {dA/dt = DA(A′ −A), dA′/dt = DA(A−A′),
dY/dt = DY (Y ′ − Y), dY ′/dt = DY (Y − Y ′) }

}
The actual code for these rules is given in Appendix III. It is written us-

ing the Plenum implementation [15] of the Dynamical Grammars framework
[4]. Plenum is embedded in the Mathematica computer algebra problem-solving
environment. Thus, ordinary and partial derivatives as used above are actu-
ally a part of the language. The full model file is available as Supplementary
Data to this paper. Repeated variables on the left hand side (LHS) must have
identical values for the rule to apply. This situation occurs in the cell biome-
chanics, cell replication and passive transport rules above, where left-right cell
neighbor pairs point to one another by sharing ID parameter values like “curr”,
“prev” and “next” in the first and last two parameter positions. By contrast,
there is no repetition of variables on the LHS of the autonomous cell growth
or cell mode-switching rules above, since they have only one object on the LHS
of each rule. Algorithmically such repeated variable matching is achieved by
symbolic pattern matching or variable-binding; mathematically it is expressed

21

by operator integrals such as Equation 18. The coordinate system used in this
example may seem “backwards” since it is a minor convention that roots grow
from left to right, but that the quiescent center near the right tip is the origin
of coordinates.

The Plenum implementation also performs several symbolic computations
including variable-binding for efficient implementation of rules with repeated
variables (Equation 18 above and the present extended example), and aggre-
gating the ODE dτ/dt = k(tota)(t) of Section 3.5.4 by adding up the symbolic
expressions from the individual rules.

Selected pattern formation snapshots are shown in Figure 3. The phe-
nomenology of the resulting simulations, and of the actual root observations
with which they largely agree, is discussed in [18]. Root apical meristem is an
example of a stem cell niche in plants. A somewhat more complex stem cell
niche model for mouse olfactory epithelium, in two dimensions using Plenum,
is given in [15].

Figures 3a,b,c go about here.

Figure 3. Snapshots of the root growth model, showing cell positions along
the horizontal axis (root tip to the right), and concentrations of auxin (solid
red curve with one or two peaks) and hypothetical substance Y (dashed blue
curve with one or two peaks) with increasing time. Cell state (1=idling in
preparation for cell division, vs. 0=growth) is shown in green dotted curve.
Parameters are: ρstop = 1,base = .005, ampl = 100, Y0 = 5, rlim = 1, Tdiv = .01,
∆ = .2, DA = 0.08, DY = 0.16. Some parameter sets including this one develop
extra auxin peaks to the left of the Quiescent Center (∼rightmost blue peak),
which may specify the location for a new lateral root. Full interpretation of this
model is given in [18].

4 Conclusion and outlook
We have shown that the time-ordered product expansion (TOPE) can be used
systematically to derive computational simulation and parameter-fitting algo-
rithms for stochastic systems, connecting two seemingly distant areas of re-
search. In doing so we have developed the means to translate formally between
field theory language and the language of computable Markov chains in which
randomized algorithms can be expressed and derived. By this means we hope
to open the door to the use of TOPE and related methods from quantum and
statistical field theory in the computational simulation of stochastic biochemical
kinetics, with broad applicability in physically based biology. The particular hy-
brid stochastic process/ordinary differential equation simulation algorithm de-
rived here is very different from interleaving and operator splitting algorithms
which are intrinsically approximate; instead, this algorithm is exact in the same
sense that SSA is (that is, it draws from the same distribution of just-fired re-
actions), except for any errors introduced by the ODE solver and in the solver’s

22

detection of the ODE stopping criterion, which is that an auxiliary variable
reaches a threshold value. A future prospect for the field theory approach is
application to reaction-diffusion systems in which the propagator for particles
between reactions is the heat kernal Green’s function for the diffusion equation.
The result may be an alternative avenue for derivation of novel particle-based,
off-grid stochastic numerical solvers for reaction-diffusion problems as treated in
[2], which, like the algorithms shown here, are also amenable to generalizations
to exact “leaping” acceleration and to hybrid stochastic/differential equation
solution algorithms.

5 Acknowledgements
Research was supported by NIH grants R01 GM086883 and P50 GM76516
to UC Irvine. I also wish to acknowledge the hospitality, travel support, and
research environments provided by the Center for Nonlinear Studies (CNLS)
at the Los Alamos National Laboratory, the Sainsbury Laboratory Cambridge
University, and the Pauli Center for Theoretical Studies at ETH Zürich and
the University of Zürich. This paper is dedicated to my father, Raymond C.
Mjolsness, physicist and mathematician, on the occasion of his 80th birthday.

A References
[1] Doi, J. (1976) Second quantization representation for classical many-particle
system. 1976 J. Phys. A: Math. Gen. 9 1465 .

[2] Doi, J. (1976) Stochastic theory of diffusion-controlled reaction 1976 J.
Phys. A: Math. Gen. 9 1479 .

[3] Mattis D.C. and Glasser M.L. (1998) The uses of quantum field theory
in diffusion-limited reactions. Rev.Mod. Phys. 70, 979–1001

[4] Mjolsness E. and Yosiphon G (2006) Stochastic Process Semantics for
Dynamical Grammars. Annals of Mathematics and Artificial Intelligence, 47(3-
4)

[5] H. M. Fried (2002), Green’s Functions and Ordered Exponentials, Cam-
bridge University Press

[6] C. M. Bender, S. F. Brandt, J.-H. Chen, and Q. Wang (2005), "Ghost
Busting: PT-Symmetric Interpretation of the Lee Model". Physical Review D
71, 025014

[7] Xueying Zhang, Katrien De Cock, Mónica F. Bugallo, and Petar M.
Djurić (2005), A general method for the computation of probabilities in systems
of first order chemical reactions. J. Chem. Phys. 122, 104101 (2005).

[8] Yosiphon G. and Mjolsness E. (2010) Towards the Inference of Stochastic
Biochemical Network and Parameterized Grammar Models. In Learning and In-
ference in Computational Systems Biology, (Lawrence N., Girolami M., Rattray
M., and Sanguinetti G., Eds.) MIT Press.

23

emj
Rectangle

[9] Darren J. Wilkinson (2006). Stochastic Modelling for Systems Biology.
Chapman & Hall/CRC Press, Boca Raton, Florida.

[10] E. Mjolsness, D. Orendorff, P. Chatelain, P. Koumoutsakos (2009),
“An Exact Accelerated Stochastic Simulation Algorithm”, Journal of Chemical
Physics 130, 144110.

[11] Orendorff, David (2012). “Exact and Hierarchical Reaction Leaping:
Asymptotic Improvements to the Stochastic Simulation Algorithm”. PhD the-
sis, UC Irvine Computer Science Department, June 2012. Thesis available at:
http://computableplant.ics.uci.edu/~dorendor/thesis .

[12] Forgy C. (1982) Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, (19):17–37.

[13] Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana
W (2006) Rules for modeling signal-transduction systems. Science’s STKE
2006:re6.

[14] Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based
modelling of cellular signaling. Lect Notes Comput Sci 4703:17-41.

[15] Yosiphon, G. (2009), “Stochastic Parameterized Grammars: Formaliza-
tion, Inference, and Modeling Applications”, PhD Thesis, UC Irvine Computer
Science Department, June 2009. Thesis and software :
http://computableplant.ics.uci.edu/theses/guy .

[16] Crudu A, Debussche A, Radulescu O (2009). Hybrid stochastic simpli-
fications for multiscale gene networks. BMC Systems Biology 3:89.

[17] Roeder, A. H. K. (2012), When and where plant cells divide: a per-
spective from computational modeling. Current Opinion in Plant Biology 2012,
15:1–7 .

[18] V.V. Mironova, Nadya A Omelyanchuk, Guy Yosiphon, Stanislav I
Fadeev, Nikolai A Kolchanov, Eric Mjolsness and Vitaly A Likhoshvai (2010).
“A plausible mechanism for auxin patterning along the developing root”. BMC
Systems Biology 4:98.

[19] Likhoshvai, V. A.; Demidenko, G. V.; Fadeev, S. I. (2006), Modeling of
Gene Expression by the Delay Equation. Bioinformatics of Genome Regulation
and Structure II (2006): Part 3, 421-431, DOI: 10.1007/0-387-29455-4_40 .

[20] Wang Y, Christley S., Mjolsness E., and Xie X. (2010) Parameter infer-
ence for discretely observed stochastic kinetic models using stochastic gradient
descent. BMC Systems Biology 4:99.

B Abbreviations list
IC - Initial Condition
ODE - Ordinary Differential Equation
MC - Markov Chain
SSA - (Gillespie) Stochastic Simulation Algorithm
TOPE - Time-Ordered Product Expansion
LHS - Left Hand Side
RHS - Right Hand Side

24

C Appendix I: Bayesian inference derivation

C.1 Semigroup property
Here we provide the omitted details for Section 2.4. For nonnegative times
t = t1 + t2, any time-evolution equation must obey the semigroup property:

Pr(I|J, t) =
∑
K

Pr(I|K, t2) Pr(K|J, t1)

i.e.[
exp(t

(
Ŵ −D

)
)
]
I,J

=
∑
K

[
exp(t2

(
Ŵ −D

)
)
]
I,K

[exp(t1
(
Ŵ −D

)
)]
K,J

.

Is there a k-event version of this rule, for k = k1 +k2? We observe (where again
[τq]

k
0 ≡ [τ0, ...τk])

Pr(I, k|J, t) =
∫ t

0

· · ·
∫ t

0

(
Πk
q=0dτq

)
Pr(I, [τq]

k
0 , k|J, t)

and we calculate for 0 6 k1 6 k:∑
K

∫ t

0

dτ Pr(I,
[
τ ′k1 , τk1+1, ...τk

]
, k2|K, τ) Pr(K, [τq]

k1
0 , k1|J, t− τ)

=
∫ t

0

dτ

k1+1∏
q=k↓

exp(−τqD) Ŵ

 exp(−τ ′k1D)

×δ

τ −
 k∑
q=k1+1

τq + τ ′k1

 exp(−τk1D)

 0∏
q=k1− 1↓

Ŵ exp(−τqD)

 δ(t− τ − k1−1∑
q=0

τq)

I,J

=

k1+1∏
q=k↓

exp(−τqD) Ŵ

 exp(−(τ ′k1 + τk1)D)

×

 0∏
q=k1− 1↓

Ŵ exp(−τqD)

 δ
t−

 k∑
q=k1+1

τq + τ ′k1 +
k1−1∑
q=0

τq

I,J

= Pr(I,
[
[τq]

k1−1
0 , τ ′k1 + τk1 , [τq]

k
k1+1

]
, k|J, t) .

Thus, if k = k1 + k2 and for any τ ′k1 ∈ [0, τk1], there is a semigroup law:

Pr(I, [τq]
k
0 , k|J, t) =

∑
K

∫ t

0

dτ Pr(I,
[
τ ′k1 , τk1+1, ...τk

]
, k2|K, τ)

× Pr(K,
[
τ0, ...τk1−1, τk1 − τ ′k1

]
, k1|J, t− τ).

In this derivation there is an arbitrary choice of τ ′k1 from the interval [0, τk1].

25

C.2 Bayesian recurrence relation
Here we provide the omitted details for Section 3.1.1 . We seek a version of the
semigroup law that pertains to Pr(I, t|k, J) rather than to Pr(I, k|J, t). This is
achieved by a somewhat involved application of Bayes’ rule.

We observe (where again by definition [τq]
k
0

4
= [τ0, ...τk])

Pr(I, [τq]
k
0 , k|J, t) =

exp(−τkD)
0∏

q=k− 1↓

Ŵ exp(−τqD)Θ(τq > 0)

I,J

δ

(
t−

k∑
q=0

τq

)

so we may define (where J = I0 and I = Ik and DIq

4
= DIqIq)

Pr([Iq]
k
1 , [τq]

k
0 , k|J, t)

4
= exp(−τkDIk

)

[
k−1∏
q=0

ŴIq+1Iq
exp(−τqDIq

)Θ(τq > 0)

]
δ

(
t−

k∑
q=0

τq

)

We seek a simple expression for Pr(I, t|k, J), and claim that with suitable
caveats it will be determined recursively by

Pr(I, t|k = 1, J) = ŴIJ exp(−tDJ),

the two factors of which have inverse cancelling normalizations. The obstacle
to overcome is that, from the Bayesian point of view, simultaneous knowledge
of the simulation end time and final event number can trickle backwards and
influence the distribution of likely event firing times at earlier times and event
numbers - a completely nonphysical artifact. To avoid this effect we must be
careful to ask the right questions for Bayesian inference to answer. To begin
with we consider simulation ending times T much longer than event times tthat
we wish to sample. All events after event k at time t are assumed to be of no
interest, so we integrate them out. All earlier events are assumed to be known
already, so we conditionalize over them. This is the correct Bayesian way to
introduce time asymmetry into the global distribution Pr([Iq]

k
1 , [τq]

k
0 , k|...) of

entire trajectories ([Iq]
k
1 , [τq]

k
0), above.

The strategy then is to consider large times T � t which are overwhelmingly
likely to have large reaction numbers n� k; then to marginalize the probability
distribution Pr([I], [τ], n|J, T) over all event numbers n > k and to conditionalize
it over all event numbers q < k.

C.2.1 Marginalizing

Define

P̂r([Iq]
k
1 , [τq]

k−1
0 |k, J, T)

4
=

∞∑
n=k+1

∑
{[Iq]nk+1}

∫ T

0

· · ·
∫ T

0

[dτq]
n
k Pr([Iq]

n
1 , [τq]

n
0 , n|J, T)

(34)

26

This is a “just-fired” probability, in which any wait times τ and events after the
kth event are integrated out (marginalized).

In the limit T →∞ only summands with n� k will contribute (assuming
terminal states have been formally eg. by adding an extra, isolated, slow, re-
versible reaction). First, is this object really a probability distribution? Clearly
every value is nonnegative. They also add up to one in the limit T →∞:

∑
{[Iq]k1}

∫ T

0

[dτq]
k−1
0 P̂r([Iq]

k
1 , [τq]

k−1
0 |k, J, T)

=
∞∑

n=k+1

∑
{[Iq]n1 }

∫ T

0

[dτq]
n
0 Pr([Iq]

n
1 , [τq]

n
0 , n|J, T)

−→
T→∞

∞∑
n=0

∑
{[Iq]n1 }

∫ T

0

[dτq]
n
0 Pr([Iq]

n
1 , [τq]

n
0 , n|J, T) = 1 (35)

due to the normalization of Pr([Iq]
n
1 , [τq]

n
0 , n|J, T). So, P̃r(· · · |k, J) = lim

T→∞
P̂r(· · · |k, J, T)

is also a probability density function.
Next we compute P̂r(· · · |J, T) using TOPE:

P̂r([Iq]
k
1 , [τq]

k−1
0 |k, J, T) =

∞∑
n=k+1

∑
{[Iq]nk+1}

∫ T

0

· · ·
∫ T

0

[dτq]
n
kδ

(
T −

n∑
q=0

τq

)

× exp(−τnDIn
)

[
n−1∏
q=0

ŴIq+1Iq
exp(−τqDIq

)Θ(τq > 0)

]

=
∞∑

n=k+1

∑
{[Iq]nk+1}

∫ T

0

· · ·
∫ T

0

[dτq]
n
kδ

T − k−1∑
q=0

τq −
n∑
q=k

τq

 exp(−τnDIn
)

×

[
k−1∏
q=0

ŴIq+1Iq
exp(−τqDIq

)Θ(τq > 0)

]
[
n−1∏
q=k

ŴIq+1Iq
exp(−τqDIq

)]

But now the product [
k−1∏
q=0
· · ·] is a common factor and can be moved out of all

the integrals and sums. Thus

P̂r([Iq]
k
1 , [τq]

k−1
0 |k, J, T) =

[
k−1∏
q=0

ŴIq+1Iq
exp(−τqDIq

)Θ(τq > 0)

]
I

(
Ik, k, J, T −

k−1∑
q=0

τq

)
,

27

(the first factor of which is independent of T), where

I(Ik, k, J, T ′)
4
=

∞∑
n=k+1

∑
{[Iq]nk+1}

∫ T

0

· · ·
∫ T

0

[dτq]
n
kδ

T ′ − n∑
q=k

τq

× exp(−τnDIn

)

n−1∏
q=k

ŴIq+1Iq
exp(−τqDIq

)

 .
If we define new dummy variables I ′q

4
= Iq+k, τ ′q

4
= τq+k, and n′

4
= n− k, then

τ ′n′ = τn , I ′n′ = In, and

I(Ik, k, J, T ′) =
∞∑
n′=1

∑
{[I′q]n

′
1 }

∫ T

0

· · ·
∫ T

0

[dτ ′q]
n′

k δ

T ′ − n′∑
q=k

τ ′q

× exp(−τ ′nDI′n)

n′−1∏
q=0

ŴI′q+1I′q exp(−τ ′qDI′q)

= 1 ·

(
eT
′(Ŵ−D) − e−T

′D
)
· δ(I ′0 − J)

= 1− 1 · e−T
′D · δ(I ′0 − Ik),

by adding and subtracting the missing n′ = 0 summand and using TOPE again.
Now we can take limits:

lim
T→∞

I(Ik, k, J, T ′) = 1,

and

P̃r([Iq]
k
1 , [τq]

k−1
0 |k, J)

4
= lim
T→∞

P̂r([Iq]
k
1 , [τq]

k−1
0 |k, J, T)

=
k−1∏
q=0

(
ŴIq+1Iq

exp(−τqDIq
)Θ(τq > 0)

)
.

(36)

As a special case, for k = 1 we find P̃r([I1], [τ0]|1, J) = ŴI1I0 exp(−τ0DI0)Θ(τ0 >
0) .

C.2.2 Conditionalizing

If 2 6 k < n, Bayes’ Rule implies:

P̂r(Ik, τk−1|[Iq]k−1
1 , [τq]

k−2
0 , k, J, T) =

P̂r([Iq]
k
1 , [τq]

k−1
0 |k, J, T)

P̂r([Iq]
k−1
1 , [τq]

k−2
0 |k, J, T)

(37)

28

The denominator is a new quantity (since the k’s don’t match up the way they
do in the numerator) and it is the integral of the numerator that normalizes the
left hand side. It can be evaluated in the limit of large T :

P̂r([Iq]
k−1
1 , [τq]

k−2
0 |k, J, T) =

∑
Ik

∫ T

0

dτk−1P̂r([Iq]
k
1 , [τq]

k−1
0 |k, J, T)

=
∞∑

n=k+1

∑
{[Iq]nk}

∫ T

0

[dτq]
n
k−1 Pr([Iq]

n
1 , [τq]

n
0 , n|J, T)

−→
T→∞

lim
T→∞

∞∑
n=k

∑
{[Iq]nk}

∫ T

0

[dτq]
n
k−1 Pr([Iq]

n
1 , [τq]

n
0 , n|J, T)

= P̃r([Iq]
k−1
1 , [τq]

k−2
0 |k − 1, J)

from Equation 34 and Equation 36. As before, the second step is justified by
the fact that n 6 k has probability that approaches zero as T →∞. Defining

P̌r(Ik, τk−1|[Iq]k−1
1 , [τq]

k−2
0 , k, J)

4
= lim
T→∞

P̂r(Ik, τk−1|[Iq]k−1
1 , [τq]

k−2
0 , k, J, T)

we find (from Equation 37)

P̌r(Ik, τk−1|[Iq]k−1
1 , [τq]

k−2
0 , k, J) = lim

T→∞

P̂r([Iq]
k
1 , [τq]

k−1
0 |k, J, T)

P̂r([Iq]
k−1
1 , [τq]

k−2
0 |k, J, T)

=
lim
T→∞

P̂r([Iq]
k
1 , [τq]

k−1
0 |k, J)

lim
T→∞

P̂r([Iq]
k−1
1 , [τq]

k−2
0 |k, J)

since for valid nonnegative τs the ratio of limits exists and is finite, as we will
shortly see. Thus

P̌r(Ik, τk−1|[Iq]k−1
1 , [τq]

k−2
0 , k, J) =

P̃r([Iq]
k
1 , [τq]

k−1
0 |k, J)

P̃r([Iq]
k−1
1 , [τq]

k−2
0 |k − 1, J)

=

k−1∏
q=0

(
ŴIq+1Iq

exp(−τqDIq
)Θ(τq > 0)

)
k−2∏
q=0

(
ŴIq+1Iq

exp(−τqDIq
)Θ(τq > 0)

)
= ŴIkIk−1 exp(−τk−1DIk−1)Θ(τ > 0).

The last line is actually independent (in the functional rather than proba-
bilistic sense of “independent”) of the quantitites [Iq]

k−2
1 , [τq]

k−2
0 , and k, so we

29

can drop all these arguments from P̃r(· · ·). Restating,

P̌r(Ik, τk−1|Ik−1) = ŴIkIk−1 exp(−τk−1DIk−1)Θ(τk−1 > 0)
or

P̌r(I, τ |K) = ŴIK exp(−τDK)Θ(τ > 0).

Importantly, this expression is equal to P̃r(I, τ |k = 1,K) as calculated at the
end of the last section. Also the recursive statement of the Bayesian recurrence
property Equation 37 becomes:

P̃r([Iq]
k
1 , [τq]

k−1
0 |k, J) = P̌r(Ik, τk−1|Ik−1)P̃r([Iq]

k−1
1 , [τq]

k−2
0 |k − 1, J).

Since P̌r(I, τ |J) = P̃r(I, τ |k = 1, J), we find for all k > 2 the Bayesian recur-
rence relation in terms of P̃r(· · ·) alone:

P̃r([Iq]
k
1 , [τq]

k−1
0 |k, J) = P̃r(Ik, τk−1|1, Ik−1)P̃r([Iq]

k−1
1 , [τq]

k−2
0 |k − 1, J). (38)

C.3 Markov Chain Derivation
Here we provide the omitted details for Section 3.1.2 . Continuing from the
foregoing Bayesian recurrence property (Equation 38), we now sum over all Iq
except Ik = I and I0 = J , and integrate over all τq , the following equation:

P̃r([Iq]
k
1 , [τq]

k−1
0 |k, J)δ

(
tk −

k−1∑
q=0

τq

)
= P̃r(Ik, τk−1|1, Ik−1)

× P̃r([Iq]
k−1
1 , [τq]

k−2
0 |k − 1, J)δ

(
tk −

k−1∑
q=0

τq

)
.

We define and calculate

P̃r(I, tk|k, J)
4
=

∑
{[Iq]k−1

1 }

∫ ∞
0

· · ·
∫ ∞

0

[dτq]
k−1
0 P̃r([Iq]

k
1 , [τq]

k−1
0 |k, J)δ

(
tk −

k−1∑
q=0

τq

)

=
∑

{[Iq]k−1
1 }

∫ ∞
0

· · ·
∫ ∞

0

[dτq]
k−1
0 P̃r(Ik, τk−1|1, Ik−1)P̃r([Iq]

k−1
1 , [τq]

k−2
0 |k−1, J)δ

(
tk −

k−1∑
q=0

τq

)

=
∑
Ik−1

∫ ∞
0

dτk−1P̃r(Ik, τk−1|1, Ik−1)

×
∑

{[Iq]k−2
1 }

∫ ∞
0

· · ·
∫ ∞

0

[dτq]
k−2
0 P̃r([Iq]

k−1
1 , [τq]

k−2
0 |k−1, J)δ

(
tk − τk−1 −

k−1∑
q=0

τq

)

=
∑
Ik−1

∫ ∞
0

dτk−1P̃r(Ik, τk−1|1, Ik−1)P̃r(Ik−1, tk − τk−1|k − 1, J)

30

This P̃r(I, tk|J) is also probability density:∑
Ik

∫ ∞
0

dtkP̃r(Ik, tk|k, J) =
∑
{[Iq]k1}

∫ ∞
0

· · ·
∫ ∞

0

[dτq]
k−1
0 P̃r([Iq]

k
1 , [τq]

k−1
0 |k, J) = 1

as shown in Equation 35 above, using the definition of Equation 36. Summariz-
ing its Markov property:

P̃r(I, t|k, J) =
∑
K

∫ t

0

dτ P̃r(I, τ |1,K)P̃r(K, t− τ |k − 1, J). (39)

D Appendix II: Maximum likelihood parameter
inference

Application of the TOPE to maximum-likelihood parameter learning in stochas-
tic reaction networks has previously been presented [20]. Here, for completeness
of presentation for a different audience, we just show the essential gradient cal-
culation step.

Suppose we have observations of the state of a chemical reaction network
at times {ts}, and wish to improve the probability P (Data|Model) of a reaction
network model for the flow of probability at intermediate times. We will use
the TOPE for each time interval in between observation times ts:[

e(ts+1−ts)W̃
]

(x(ts+1), x(ts)) =
∞∑
k=0

∫ ts+1

ts

· · ·
∫ ts+1

ts

d[τ]n0 δ

(
(ts+1 − ts)−

n∑
p=0

τp

)
×
[
eτnD̃Ŵ ...eτ1D̃Ŵeτ0D̃

]
(x (ts+1) , x (ts)) (40)

We will need to compute the derivatives of this probability with respect to
reaction rates:

ρr
∂

∂ρr
[e(ts+1−ts)W] (x(ts+1), x(ts)) =

∞∑
k=0

∫ ts+1

ts

· · ·
∫ ts+1

ts

d[τ]n0 δ

(
(ts+1 − ts)−

n∑
p=0

τp

)

×
n∑
p=0

[
e−τnDŴ ...e−τp+1D(ρrŴr)e−τpD...e−τ1DŴe−τ0D

]
(x(ts+1), x(ts))

−
∞∑
k=0

∫ ts+1

ts

· · ·
∫ ts+1

ts

d[τ]n0 δ

(
(ts+1 − ts)−

n∑
p=0

τp

)

×
n∑
p=0

[
e−τnDŴ ...Ŵ (ρrτpDr)e−τpDŴ ...e−τ1DŴe−τ0D

]
(x(ts+1), x(ts))

ρr[Ŵr]IJ =

 ρr[Ŵr]IJ∑
r
ρr[Ŵr]IJ

 ([
Ŵ
]
IJ

)
= brIJ [Ŵ]IJ

31

where we defined the “branching ratio”

brIJ ≡

 ρr[Ŵr]IJ∑
r
ρr[Ŵr]IJ

 =
〈
δr,R(I,J)

〉
p(I|J)

for reaction r in state J , assuming each reaction r results in just one output
state I per input state J . Here R(I, J) is the random variable denoting the
actual reaction chosen in transitioning from state J to state I. Then

ρr
∂

∂ρr
[e(ts+1−ts)W̃] (x(ts+1), x(ts)) =

∞∑
k=0

∫ ts+1

ts

· · ·
∫ ts+1

ts

d[τ]n0 δ

(
(ts+1 − ts)−

n∑
p=0

τp

)

×
n∑
p=0

[
eτnDŴ ...eτp+1D(brŴ − ŴρrτpDr)eτpD...eτ1DŴeτ0D

]
(x(ts+1), x(ts))

or

ρr
∂

∂ρr
[e(ts+1−ts)W̃] (x(ts+1), x(ts))

=
∞∑
k=0

n∑
p=0

〈br(reaction event p out of n)〉Ŵ,x(ts+1),x(ts)

− ρr
∞∑
k=0

n∑
p=0

〈τpDr〉Ŵ,x(ts+1),x(ts)

This finally is a quantity that is easy to compute as a running average
during a simulation of the network with incorrect values of the parameters,
thereby contributing to the calculation of an improved set of parameter values
in a stochastic gradient descent algorithm. This is the key update equation
in a learning algorithm for reaction rates in stochastic biochemical networks
(extensible to other process networks). Algorithmic details can be found in [20],
noting particularly Equation 2.4 therein. A related stochastic learning algorithm
is proposed in [8].

E Appendix III: Dynamical grammar for root growth
Given the following function simplified definitions among others:

gGrowthModelMult = 1;
growthConst = 1 / gCellCyleTime;
yEffectOnDivisionFunc[y_] := Module[{δ, h1, h2},

0.005 + 100 *
(y
q1)

pv1

1 + (y
q2)

pv2 /. {q1→ 5, q1→ 1, pv1→ 1, pv2→ 5}

]

32

cellGrowthLocFunc[rad_] := Module[{},
gGrowthModelMult * growthConst
];
springXFunc[curPosx_, curRad_, nbrPosx_, nbrRad_] :=
- ∂curPosx springPotential[curPosx, curRad, nbrPosx, nbrRad]

The actual grammar for selected rules is shown here:

33

gRootGrowth := Grammar[rules→
{
(* continuous change in cell c1 radius *)
{c1 Equal cell[cellID1, 1(* growth mode *), loc1, rad1, auxin1, y1, cellIDP, cellIDN]}→ c1,
solving[rad1′EqualcellGrowthLocFunc[rad1]],

(* continuous change in cell c1 location *)
{c1 Equal cell[cellID, cMode, loc, rad, auxin, y, cellIDPrev, cellIDNext],
c2 Equal cell[cellIDNext, cModeN, locN, radN, auxinN, yN, cellID, cellIDNN]}→ {c1, c2},
solving[loc′EqualgGrowthModelMult * springXFunc[loc, rad, locN, radN]],

(* continuous change in cell c1 location *)
{c1 Equal cell[cellID, cMode, loc, rad, auxin, y, cellIDPrev, cellIDNext],
c2 Equal cell[cellIDPrev, cModeP, locP, radP, auxinP, yP, cellIDPP, cellID]}→ {c1, c2},
solving[loc′EqualgGrowthModelMult * springXFunc[loc, rad, locP, radP]],

(* change cell mode from growth to wait, when over a radius threshold *)
cell[cellID, 1, loc, rad, auxin, y, cellIDPrev, cellIDNext]→
cell[cellID, 2, loc, rad, auxin, y, cellIDPrev, cellIDNext],
with[gGrowthModelMult * stopGrowthConst * grammarSigmoid[rad - gLimitCellRad, gDivideTemp]],

(* divide a cell when its in wait mode *)
cell[cellID, 2, loc, rad, auxin, y, cellIDPrev, cellIDNext]→ {
cell[cellIDPrev, cModeP, locP, radP, auxinP, yP, cellIDPP, cellID]→
cell[cellIDPrev, cModeP, locP, radP, auxinP, yP, cellIDPP, grammarCreateObjectID[1]],
cell[cellIDNext, cModeN, locN, radN, auxinN, yN, cellID, cellIDNN]→
cell[cellIDNext, cModeN, locN, radN, auxinN, yN, grammarCreateObjectID[2], cellIDNN],
cell[grammarCreateObjectID[1], 1, loc - rad + 2rad * cellpart + rad * (1 - cellpart),
rad * (1 - cellpart), auxin, y, cellIDPrev, grammarCreateObjectID[2]],
cell[grammarCreateObjectID[2], 1, loc - rad + rad * cellpart,
rad * cellpart , auxin, y, grammarCreateObjectID[1], cellIDNext]},
with[gGrowthModelMult * yEffectOnDivisionFunc[y] *
grammarPDF[UniformDistribution[{0.5 - gRangeParam, 0.5 + gRangeParam}], cellpart]],

(* ... more rules ... *)

(* auxin / y passive transport between two neighboring cells *)
{c0 Equal cell[cellID0, cMode0, loc0, rad0, auxin0, y0, cellIDP0, cellID1] ,
c1 Equal cell[cellID1, cMode1, loc1, rad1, auxin1, y1, cellID0, cellIDNext]}→ {c0, c1},
solving[auxin1′Equal pt(auxin0 - auxin1), auxin0′Equal pt(auxin1 - auxin0) ,
y1′Equal pty(y0 - y1), y0′Equal pty(y1 - y0)],

(* ... more rules ... *)

}];

Note that for efficiency, the symbolic partial derivative is taken out of the
grammar (rule 3, biomechanics) and precomputed. Also, the cell division rule
above actually has the form of a compound rule, whose right hand side comprises
two further rules. This point was simplified out of the notation in the main

34

text. It is an efficiency measure that allows a rule firing to be a multistep
process (similar to the subgrammars or macros of [4]) without slowing down
the computational identification of cells likely to divide specified by the with
clause of the rule. However, its use here relies on the dynamically invariant,
domain-specific fact that each cell is the nth neighbor (in this case n=1 or 2)
of at most one other cell.

F Figure legends
Figure 1. A time history of the reaction A + B
 C. Time flows left to right.
Open circles represent reaction events, with probability factor ×W1. In between
reaction events are unimolecular particle propagators exp((tk − tk−1)W0), la-
belled by arrows and particle names (repeated for clarity). This is a non-spatial
version of the Lee model in quantum field theory (cf. for example [6]).

Figure 2. Erlang-derived time-dependent propensities for completion of a
multistage process τ = 1, n ∈ {1, ..., 10}. Horizontal axis: time, t. Vertical axis:
propensity, ρ(t|τ, n). Plots for varying n are superimposed. For larger n there is
a “maturation” phenomenon whereby completion at small times is very unlikely,
and when a process is “overdue” for completion then its propensity becomes very
high. By comparison, propensities for very small n increase rapidly at first and
are then relatively flat.

Figure 3. Snapshots of the root growth model, showing cell positions along
the horizontal axis (root tip to the right), and concentrations of auxin (solid
red curve with one or two peaks) and hypothetical substance Y (dashed blue
curve with one or two peaks) with increasing time. Cell state (1=idling in
preparation for cell division, vs. 0=growth) is shown in green dotted curve.
Parameters are: ρstop = 1,base = .005, ampl = 100, Y0 = 5, rlim = 1, Tdiv = .01,
∆ = .2, DA = 0.08, DY = 0.16. Some parameter sets including this one develop
extra auxin peaks to the left of the Quiescent Center (∼rightmost blue peak),
which may specify the location for a new lateral root. Full interpretation of this
model is given in [18].

35

Figure 1:

Figs.nb

2

Figure 2:

Figs.nb

3

Figure 3, panels a,b, and c
3a:

Figs.nb

4

3b:

Figs.nb

5

3c:

Figs.nb

6

	Introduction
	Methods
	Creation/annihilation operator notation
	Solvable example: An exact solution for SSA behavior
	Notation for SSA rederivation from TOPE
	Semigroup property

	Results and discussion
	Derivation of a Markov chain
	Bayesian recurrence
	Markov chain - Summary

	Algorithm: SSA
	Extension: Parameterized rule and graph grammar SSA-like algorithm
	Algorithm: SSA with parametrized reactant objects
	Structural matching

	Hybrid SSA/ODE setup
	Computation of matrix elements

	Hybrid SSA/ODE: Operator algebra derivation
	Heisenberg picture
	Application to ODE + decay clock
	Equivalent ODE
	Algorithm: Hybrid SSA/ODE solver
	Application: Cell division
	Application: Time-varying propensity for complete polymerization
	Extended Application: Tissue-level model of Arabidopsis root growth

	Conclusion and outlook
	Acknowledgements
	References
	Abbreviations list
	Appendix I: Bayesian inference derivation
	Semigroup property
	Bayesian recurrence relation
	Marginalizing
	Conditionalizing

	Markov Chain Derivation

	Appendix II: Maximum likelihood parameter inference
	Appendix III: Dynamical grammar for root growth
	Figure legends
	Figures

